
Decongestion Control

Barath Raghavan and Alex C. Snoeren
University of California, San Diego
{barath,snoeren}@cs.ucsd.edu

ABSTRACT

Congestion control is fundamental to network design.
Today’s networks enjoy traffic stability, performance,
and fairness in large part due to the use of TCP and TCP-
like congestion control protocols. In such protocols, end
hosts temper their transmission rates based upon packet
losses, delay, and other observations to explicitly avoid
persistent congestion.

We propose an alternative view on network conges-
tion: it may not be necessary to keep the network un-
congested to achieve good performance and fairness. We
argue that a protocol that relies upon greedy, high-speed
transmission has the potential to achieve better perfor-
mance and fairness than TCP while simultaneously guar-
anteeing protection against misbehaving end hosts and
obviating large router buffers.

1 INTRODUCTION

One of the key problems in network design is ensur-
ing that available capacity is fairly and efficiently shared
between competing end points. Traditionally, fairness
has been achieved either in the network itself using fair
queuing at routers [8], or through the cooperation of
end hosts using a common congestion control protocol
such as TCP. Unfortunately, both approaches have sig-
nificant drawbacks: fair queuing is expensive to imple-
ment, while end-host congestion control is typically far
from optimal and, critically, relies on the goodwill of end
hosts for success [23, 25].

While the Internet has relied upon end-host coop-
eration for some time, ill-conceived or intentionally-
aggressive end-point behavior can drive a network with-
out fair queuing into congestion collapse. This scenario
is a classic tragedy of the commons; individual selfish
behavior can drive the system to a globally pessimal
state, yet there is no incentive for any user to unilaterally
back off. Thus, in game-theoretic terms, the Nash equi-
librium of the network congestion-control game is sub-
optimal [1, 13, 14, 24, 30]. Researchers have proposed
a number of router-based enforcement mechanisms to
avoid congestion collapse that vary in both complexity
and effectiveness: some maintain per-flow state to pro-
vide near perfect fairness [3, 8, 9, 21, 26, 27], while oth-
ers simply throttle the most aggressive senders [17, 20].

We observe that most of the complexity of both fair
queuing and end-host-based congestion control is due to
the perceived need to avoid dropping packets: in both
models, well-behaved flows should experience little or
no packet loss. With the advent of efficient, high-speed
erasure coding [15, 18], we argue that packet loss no
longer needs to be avoided. In fact, modern coding tech-
niques can achieve high throughput even in the face of
arbitrary packet loss. Hence, we propose a novel con-
gestion control paradigm based on fairdropping—as op-
posed to queuing—and erasure-coded data streams that
is both efficient and fair.

Rather than attempting to keep the network uncon-
gested, the goal of our proposed approach, which we
termdecongestion control, is to ensure that all available
capacity is used whenever it is needed by anyone. If
packet drops are not of concern, then it is straightforward
to align the interests of all parties: each sender simply
sends as fast as possible. If congested routers drop pack-
ets in a fair manner [19], each flow will receive its max-
min fair throughput. Better yet, if flows use efficient era-
sure coding, they will achieve goodput almost equal to
their throughput, fully utilizing network bandwidth.

Of course, there is no (non-malicious) reason for a
sender to transmit faster than a path’s maximum un-
loaded capacity; even if no other flows were present,
the sender’s flow would be limited by this value. The
main tasks of a decongestion control protocol, then, are
to enable each sender to apportion its link capacity be-
tween destinations, and to determine at whatcodingrate
to transmit. While packet drops are expected, the actual
drop rate (and, thus, throughput) along any given path is
unknowna priori and will vary from destination to des-
tination. Depending on the coding method used, it may
be advantageous for senders to adjust the coding rate in
response to changes in path delivery rate.

While simple in spirit, there are more intricacies and
ramifications of any congestion control approach than
space allows. Hence, we do not attempt to detail the
full design and implementation of a decongestion con-
trol protocol here. Instead, we present a case for decon-
gestion by enumerating the key potential benefits, briefly
sketching the basics of a possible design, and concluding
with a partial list of challenges that must be addressed by
a real implementation.

1HotNetsV Session 4: The Contrarians 61



2 BENEFITS

Decongestion controlled networks have several attrac-
tive features over and above fairness and efficiency. Be-
cause packet drops are inconsequential, routers can be
simple and provisioned with smaller queues. The re-
sulting decreased fluctuation in traffic arrival rates and
predictable traffic patterns similarly simplify traffic engi-
neering. Finally, because goodput is only dependent on
packet delivery rates, the most effective malicious behav-
ior is flooding (as opposed to timing or protocol-based at-
tacks), which is precisely the prescribed behavior when
a sender has only one flow.

2.1 Fairness and efficiency

A key challenge facing traditional end-host conges-
tion control algorithms is determining the appropriate
fair share for each flow. TCP uses an additive in-
crease/multiplicative decrease mechanism to converge
to a flow-fair allocation. Unfortunately, this alloca-
tion can take a long time to converge on high capacity
and/or long-delay paths and, even in the best case, oscil-
lates around the optimal rate. This issue is particularly
acute during slow start, when the sender needs to rapidly
(re-)discover an appropriate rate. While numerous mod-
ifications to TCP have been proposed to improve slow-
start, they still must rely upon complex mechanisms to
help TCP rapidly discover additional available capacity
should it become available during congestion avoidance.

With decongestion control, in contrast, senders al-
ways transmit at the maximum available rate; fairness
is ensured by appropriate dropping policies at congested
routers. Should available capacity increase at any router
due to, for example, the completion of a flow, the remain-
ing flows instantaneously take advantage of the freed link
resources. The ability of a flow to translate increased
throughput into increased goodput of course depends on
the coding mechanism employed.

Tuning the coding rate between sender and receiver
is not a new class of problem, however. For example,
in TCP efficiency is managed by an end-to-end control
loop (i.e., receive window announcements) that ensures
the sending rate does not exceed the receiver’s ability to
consume the data. We propose to use a similar mecha-
nism described in Section 3.1 to dynamically adjust the
coding rate based on recent throughput rates. A key dis-
tinction between adjusting the coding rate and changing
the transmission rate, however, is that the coding rate
has no impact on other flows. Hence, changes in avail-
able capacity (and, therefore, throughput) are likely to be
less frequent since traffic rates fluctuate only on flow ar-
rival and departure events, in contrast to TCP’s sawtooth
which probes for additional capacity and halves its flow
transmission rate upon packet loss.

Our fundamental efficiency concern is that down-
stream packet drops will lead to wasted capacity at up-
stream links, thereby decreasing the overall throughput
of the network. Kellyet al. use the termdead pack-
ets to refer to packets that will eventually be dropped
before reaching their destination [10]. We conjecture,
however, that the slow-access/fast-core structure of the
Internet may alleviate the impact of dead packets in typ-
ical topologies. Conventional wisdom states that packet
loss typically occurs at access links—not in the core of
the network—so most flows will be thinned out before
they reach the core. Further, dead packets in the core—
those that will be dropped at receivers’ access links—
may be inconsequential in many cases. Previous studies
have shown that existing research networks (in particu-
lar, Abilene) have over-subscription factors less than 2—
that is, the access links can only deliver roughly twice
as much traffic as can be serviced by the transit links at
each access router [28]. We hope to empirically quan-
tify the decrease in efficiency due to dead packets in real
topologies.

2.2 Simplified core infrastructure

Much of the complexity in today’s routers stems from
the elaborate buffering schemes necessary to ensure loss-
free forwarding at line rate. In addition, TCP’s sensitiv-
ity to packet reordering complicates parallelizing router
switch fabrics. Adding fair queuing or similar policing
mechanisms to high-speed routers even further compli-
cates matters. By decoupling loss rate and local packet
order from the end-to-end congestion control protocol,
decongestion control enables significantly simpler router
designs. Idealized decongestion control only requires a
fair dropping mechanism, which can be efficiently im-
plemented with a single FIFO queue [19].

In addition to their inherent complexity, a significant
portion of the heat, board space, and cost of high-end
routers is due to the need for large, high-speed RAM for
packet buffers. Previous work has shown that erasure
coding can reduce the need for queuing in the network;
in particular, for networks with large numbers of flows,
coding schemes can provide similar goodput with cod-
ing buffer sizes on the same order as router buffers [4].
Hence, we suspect that such a minimalistic router design
would require little buffering, which, in addition to re-
ducing cost, also decreases the variance and maximum-
possible end-to-end queuing delay. While recent work
has shown that smaller router buffers may suffice for
large TCP flow aggregates [2], smaller router buffers
make TCP more vulnerable to bursty DoS attacks [11].

We suspect that decongestion control can also simplify
traffic engineering. Decongestion control in no way af-
fects the sources or sinks of data flows, and, therefore,
does not impact traffic patterns. However, due to its

262 Decongestion Control



inherently greedy sender behavior, some links will be
driven in excess of their capacity. In contrast to today’s
networks, where overloaded links cause TCP goodput to
plummet (due to high delays, packet loss, and timeouts),
overload does not require re-engineering paths; links are
equally efficient at full capacity as they are when un-
derutilized. The net result is that engineering for over-
provisioned capacity would be largely unnecessary in
such a network, though backup links are still needed to
cope with maintenance and failure.

2.3 Incentive compatibility

Perhaps the most compelling benefit of decongestion
control is its ability to sidestep many aspects of greed
and malicious behavior.

It is nearly impossible for users to unilaterally increase
their goodput by injecting more packets into a network
dominated by decongestion control flows, since senders
are transmitting at maximum rate anyway—the most ef-
fective way for a sender to increase its goodput is to ad-
just its coding rate, which, as previously mentioned, has
no impact on other flows. This is in contrast to TCP,
whose throughput can be gamed in a number of ways,
perhaps most famously by the misbehaving-receiver at-
tacks of Savageet al. [23].

Decongestion control is similarly more robust to mali-
cious behavior due to its time independence. Senders ad-
just coding rates based upon reported throughputs—not
individual packet events—so they are not as sensitive to
short-term packet behaviors as TCP. In particular, there is
little opportunity to launch well-timed bursty “shrew” at-
tacks [11]. Our goal is to reduce all attacks to bandwidth
attacks: ideally, there should be nothing more effective a
malicious source can do than send traffic at a high rate.
Unlike shrew attacks, flooding attacks are easy to detect
and defend against.

3 DESIGN

Next we consider an initial approach to designing a de-
congestion control protocol, Achoo. At its most basic
level, Achoo sends erasure-coded packets as fast as pos-
sible between a sender and a receiver. Packets are labeled
with unique, monotonically-increasing sequence num-
bers, and the receiver periodically acknowledges packet
reception with information about the rate of reception.
Ideally, all routers implement a fair dropping policy to
ensure that each flow receives its fair share of link band-
width. We conjecture, however, that enforcing fairness
only at access routers would provide an acceptable level
of global fairness. (Recall that TCP itself is known to
be unfair to flows with varying RTTs, loss rates, etc.)
The design of such a dropping mechanism is beyond the
scope of this paper, but a variant of AFD [19] or a similar
mechanism suffices.

Fair dropping is most important when multiple bot-
tlenecks are involved. In the absence of fair-dropping
routers, Achoo flows traversing multiple congested
routers will suffer: as a flow’s packets traverse each link,
they compete with other flows’ packets, and as a result,
lose some rate. Since short flows compete at fewer links,
their packets will experience a lower loss rate, and thus,
yield a higher steady-state goodput. However, a fair
dropping scheme prevents this path-length induced un-
fairness: a flow’s packets are only dropped if the flow
is above its max-min fair share at each router, otherwise
its packets are allowed through. Thus, once a flow has
been throttled to its path fair share by an upstream router,
downstream routers will ensure that the remaining pack-
ets reach their destination unhindered.

Achoo’s transmission behavior is controlled by two
components at the sender: the decongestion controller
and the transmission controller. At a high level, all data
to be sent is divided intocaravans. Each caravan consists
of n fixed-size (1Kb, say) data blocks; we pickn dynam-
ically. The role of the decongestion controller is to select
the appropriate rate of transmission, rate of coding, and
caravan size. The transmission controller is responsible
for ensuring the delivery of each caravan of data as in-
structed by the decongestion controller.

3.1 Decongestion controller

The decongestion controller has three fundamental tasks:
selecting the caravan size, picking the appropriate level
and type of coding, and balancing transmission rates
across destinations. The space of options for each of
these is large: caravans can be anywhere from 1 packet
to thousands of packets, coding can vary from the sim-
ple (duplicate transmission or XORs) to the complex (LT
coding), and available link capacities range from tens of
kilobits to many gigabits.

To select the right caravan size, the controller starts
with a fixed-size caravan and begins the transmission
loop. When a caravan is successfully delivered, the con-
troller doubles the size of the next caravan. If after some
fixed timeout (likely a function of the RTT) there is in-
sufficient data in the socket buffer to fill a caravan, the
caravan size is halved. In this way, the controller quickly
discovers the rate at which the source is generating data.

Once the caravan size has been identified, the decon-
gestion controller must select the type and rate of coding
to use for each caravan. Many strategies can be used,
each with different guarantees and tradeoffs. For now
we consider a simple approach in which small caravans
consist of duplicate data (ordinary redundancy) and large
caravans use rateless erasure codes. This effectively
trades off both the cost and latency associated with era-
sure coding while harnessing its strengths for larger car-
avans of data. Because rateless codes can be expensive

3HotNetsV Session 4: The Contrarians 63



to implement, we intend to experiment with variable-rate
XOR coding for modest size caravans. Senders will ad-
just the rate of coding in response to the successful de-
livery rates reported by the receivers.

The final role of the decongestion controller is to ap-
portion the available access link capacity across flows.
Each physical interface has a maximum achievable rate
(which is generally far in excess of the available wide-
area capacity). The job of the controller is to determine
which flows can put that capacity to most effective use.
Initially, the nth flow on an interface is given1/n of the
link capacity and the transmission rates of the other flows
are decreased proportionally.

The reception rates of all flows are constantly moni-
tored; it is possible that the current transmission rates for
some of these flows are insufficient to capture available
capacity (we call themunbottlenecked). In this case, the
controller considers conducting transmission rate exper-
iments to determine which other flows are bottlenecked
and, therefore, are not making effective use of their cur-
rent transmission rate.

Experiments are conducted when a flow starts a new
caravan. If the reception rate for the last caravan in the
flow was less than the transmission rate, the controller
attempts a rate decrease and monitors the resulting end-
to-end delivery rate. If a transmission rate decrease re-
sults in no decrease in delivery rate, the decrease is kept,
and the newly available capacity is distributed among all
unbottlenecked flows. However, if the experiment results
in a goodput decrease then the previous rate is retained.

Capacity is similarly reapportioned whenever a flow
finishes. Note that transmission rates are only increased
for unbottlenecked flows—bottlenecked flows are not de-
liberately increased, but are driven slightly over their
bottleneck capacity in steady state, so any increase in
path capacity will be immediately reflected in delivery
rate (and the flow reclassified as unbottlenecked if neces-
sary). Of course, if a flow is not able to make use of addi-
tional rate, its receive rate will drop below the transmis-
sion rate, subsequently subjecting the now bottlenecked
flow to decrease experiments. In the case where no flow
is able to make effective use of the additional capacity, it
may be held in reserve.

In the normal case when link access bandwidth ex-
ceeds the bottleneck capacity for all of a sender’s flows,
this procedure keeps each flow overdriven but converges
to (just above) the lowest rate at which the maximum
end-to-end goodput is achievable for each flow; in this
way, the sender wastes as few resources and still maxi-
mizes its welfare. Controlling transmission rate on the
order of caravans allows for bulk flows to have more sta-
ble transmission rates, since they likely send large cara-
vans, whereas short-lived or interactive flows may need
rapid rate adjustment and will have small caravans.

Figure 1: An example topology.

3.2 Transmission controller

The job of the transmission controller is simple: to en-
sure that each caravan is delivered successfully. Our
approach is straightforward. Each caravan is streamed
(using the rate and coding specified by the deconges-
tion controller) until the sender receives an ACK indicat-
ing that the entire caravan has been successfully received
and decoded. The transmission controller can then start
sending the next caravan. More advanced designs might
pipeline the transmission of caravans to eliminate the ef-
fect of network latency on inter-caravan spacing.

Interactive sessions or flows are distinguished by their
sporadic data transmission. The decongestion controller
uses the lack of enough data (a full caravan) as a sig-
nal to decrease caravan size: this ensures that interactive
sessions transmit data in smaller units, and thus, with de-
creased latency. Also, since the type of coding used can
depend upon the caravan size, interactive sessions can
use simpler codes.

3.3 An example

To aid in an intuitive understanding of Achoo, consider
the topology shown in Figure 1 depicting four end nodes,
A, B, C, and D. A and B attempt to send data to C si-
multaneously using Achoo, which results in two flows of
10 Mbps each arriving at a router R. R implements fair
dropping, so both A’s flow and B’s flow will achieve an
end-to-end goodput of about 7 Mbps. After some time,
A decides to start a flow to D, which forces it to divide
its 10 Mbps between two flows. Achoo initially divides
the available capacity evenly between the two flows, al-
lowing the B-C flow to consume the remaining 9 Mbps
on the R-C link. Since the link from R to D only has a
capacity of 2 Mbps, if A sends at 5 Mbps to D, it will
saturate the R-D link and declare the flow bottlenecked.

Conversely, the controller at A will notice that the A-C
flow is unbottlenecked, and conduct bandwidth decrease
experiments on the A-D flow until the A-C flow becomes
bottlenecked again at 7 Mbps. In steady state, A will

464 Decongestion Control



overdrive its flows to both C and D in expectation of
any additional capacity that may be freed up. Indeed,
should the B-C flow cease, A would rapidly capture 8
Mbps for its A-C flow by conducting additional band-
width decrease experiments on the A-D flow.

4 CHALLENGES

We consider a few of the many open questions and for
each discuss the tradeoffs and issues faced by deconges-
tion control.

4.1 What about coding overhead?

While coding provides essential functionality—
resilience against loss—it also increases the end-to-end
delay, packet overhead, and computational cost of
decongestion control. Fortunately, different coding
approaches can be used to suit the operating regime. For
example, for short or interactive flows—ones with small
caravans—packet duplication or simple XOR coding
may yield low latency and low coding cost. As caravan
size increases or there is more network contention,
stronger coding schemes become necessary: flows with
medium sized caravans (with sufficient computational
resources) can use zero-overhead schemes such as
Reed-Solomon codes, whereas large bulk flows may
need to use rateless codes such as LT codes [15] or
online codes [18].

4.2 What about the control channel?

Functionally, connection establishment and teardown for
Achoo is the same as that for TCP. A server opens a lis-
tening socket on a particular port and establishes a new
Achoo flow with each remote party sending a SYN. Sim-
ilarly, once either party has decided to close the connec-
tion, they can send a close message to begin the connec-
tion teardown process. The challenge, then, is to ensure
that control messages are not lost in the fray of compet-
ing data packets. For bi-directional flows, caravan ACKs
can be piggybacked on coded data packets. For uni-
directional flows and SYN/FINs, however, the receiver
must independently determine the transmission and cod-
ing rate to use for the reverse channel.

Because the control channel contains small, indepen-
dent messages, simple duplication will generally be an
appropriate coding method. Determining the transmis-
sion rate, however, is more problematic. In TCP, the
SYN and FIN handshakes are entirely sender-driven (a
receiver only retransmits a SYN(FIN)/ACK upon receipt
of a duplicate SYN/FIN). Unfortunately, with deconges-
tion control, a single SYN/ACK packet is unlikely to be
successfully delivered across a congested path. Hence,
a receiver will likely need to dedicate some portion of
its transmission rate for a control channel to each sender
it is communicating with. A reasonable starting point is

the rate currently being used by the sender to transmit
its SYNs (which are piggybacked on the first data car-
avan for low-latency transmission of short flows). It is
possible, however, that the return path is more severely
congested, which would require the receiver to transmit
the SYN/ACK at a faster rate.

Requiring the receiver to respond at a higher rate than
the sender enables an obvious denial-of-service attack.
Thus, we adopt the TCP method of requiring at least
equal effort from the sender, so the receiver only in-
creases its ACK rate in response to a commensurate in-
crease in sender rate. Note that the transmission rate is
likely far higher than the packet delivery rate at the re-
ceiver. The receiver determines the sending rate by ob-
serving the rate of change in sequence numbers of the
packets it receives (each coded data packet has a unique,
monotonically increasing sequence number). Imple-
mented naively, however, the sender could lie, causing
the receiver to expend undue effort.

4.3 What about unconventional routing?

In recent years researchers have proposed using alterna-
tive routing approaches such as overlay routing, intelli-
gent multihoming, and source routing to improve perfor-
mance and reliability. In such systems, flows can be redi-
rected along different paths as traffic conditions change;
additionally, in some designs, packets can be sent across
multiple paths simultaneously. Achoo’s relative insensi-
tivity to instantaneous packet loss and reordering may al-
low for more aggressive route changes and/or multipath
mechanisms than TCP would tolerate. However, decon-
gestion, like congestion control, is path-specific, so ap-
propriate coding and transmission rates need to be dis-
covered after route changes.

5 RELATED WORK

The literature on congestion control and erasure cod-
ing is far too vast to adequately address here. Focusing
specifically on the relationship between erasure coding
and congestion control, researchers have compared ARQ
schemes with FEC schemes [12] and integrated TCP and
FEC [16, 22]. Naturally, FEC can be placed below, in-
side, or above TCP—thus, FEC can hide losses from
TCP, be used to prevent retransmissions, or be applied
to application-layer datagrams. Fountain codes [15, 18]
famously highlighted the feasibility of non-ARQ based
transport [5, 6] for broadcast and bulk data transmission.
None of these schemes, however, have explored the prac-
ticality and ramifications of an entirely FEC-based con-
gestion control on network design.

Several years ago, Davies proposed isarithmic net-
works in which the network is always fully utilized, just
with emptieswhen end hosts have no data to transmit [7].
Tracking empties proves problematic, however: just as

5HotNetsV Session 4: The Contrarians 65



a token ring protocol requires a token-recovery mecha-
nism, an isarithmic network needs some way to ensure
that empties are not lost forever. Another proposal sim-
ilar to ours, in that it deliberately overdrives network
hosts (though not necessarily links), argues for clients of
DDoS victims to increase their request rates to drown out
the attackers [29], but transport flows remain congestion-
controlled through TCP.

6 CONCLUSION

Given recent advances in coding techniques, we be-
lieve the time has come to consider networks that op-
erate efficiently with high steady-state loss rates. Such
a decongestion-controlled network could have simple
routers, fair bandwidth allocation, low latency, stable
traffic patterns, and incentive compatibility. We are
currently designing and implementing Achoo and aim
to quantify the potential benefits of decongestion con-
trol. Also, we note that many of the issues we are ad-
dressing have direct analogues in traditional congestion-
controlled environments, so even if decongestion control
is not adopted wholesale, the exercise may help us to re-
evaluate tradeoffs made in the current Internet.

7 ACKNOWLEDGMENTS

We thank Rene Cruz, Bill Lin, and Scott Shenker for
their thoughtful discussions. This work is funded in part
through the UCSD Center for Networked Systems and a
National Science Foundation Graduate Fellowship.

REFERENCES
[1] A. Akella, R. Karp, C. Papadimitrou, S. Seshan, and S. Shenker.

Selfish behavior and stability of the internet: A game-theoretic
analysis of TCP. InProceedings of ACM SIGCOMM, 2002.

[2] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing router
buffers. InProceedings of ACM SIGCOMM, 2004.

[3] J. C. R. Bennett and H. Zhang. WF2Q: Worst-case fair weighted
fair queueing. InProceedings of IEEE INFOCOM, 1996.

[4] S. Bhadra and S. Shakkottai. Looking at large networks: Coding
vs. queueing. InProceedings of IEEE INFOCOM, 2006.

[5] J. Byers, J. Considine, M. Mitzenmacher, and S. Rost. Informed
content delivery across adaptive overlay networks. InProceed-
ings of ACM SIGCOMM, 2002.

[6] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A Dig-
ital Fountain approach to reliable distribution of bulk data. In
Proceedings of ACM SIGCOMM, 1998.

[7] D. W. Davies. The control of congestion in packet switching
networks. InProceedings of ACM Problems in the optimizations
of data communications systems, 1971.

[8] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation
of a fair queueing algorithm. InProceedings of ACM SIGCOMM,
1989.

[9] S. Floyd and V. Jacobson. Link-sharing and resource manage-
ment models for packet networks.IEEE/ACM Transactions on
Networking, 3(4):365–386, 1995.

[10] T. Kelly, S. Floyd, and S. Shenker. Patterns of conjestion collapse,
2003. unpublished.

[11] A. Kuzmanovic and E. W. Knightly. Low-rate TCP-targeted de-
nial of service attacks: the shrew vs. the mice and elephants. In
Proceedings of ACM SIGCOMM, 2003.

[12] S. Lin, D. J. C. Jr., and M. J. Miller. Automatic-repeat-request
error-control schemes.IEEE Communications Magazine, 22(12),
1984.

[13] L. López, G. del Rey Almansa, S. Paquelet, and A. Fernández. A
mathematical model for the TCP tragedy of the commons.Theor.
Comput. Sci., 343(1-2):4–26, 2005.

[14] L. López and A. Ferńandez. A game theoretic analysis of pro-
tocols based on fountain codes. InProceedings of IEEE ISCC,
2005.

[15] M. Luby. LT codes. InProceedings of IEEE FOCS, 2002.

[16] H. Lundqvist and G. Karlsson. TCP with end-to-end forward
error correction. InProceedings of International Zurich Seminar
on Communications, 2004.

[17] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson,
and S. Shenker. Controlling high bandwidth aggregates in the
network.ACM SIGCOMM CCR, 32(3):62–73, 2002.

[18] P. Maymounkov. Online codes. Technical Report TR2002-833,
New York University, 2002.

[19] R. Pan, L. Breslau, B. Prabhakar, and S. Shenker. Approximate
fairness through differential dropping.ACM SIGCOMM CCR,
33(2):23–39, 2003.

[20] R. Pan, B. Prabhakar, and K. Psounis. CHOKe - A stateless
queue management scheme for approximating fair bandwidth al-
location. InProceedings of IEEE INFOCOM, 2000.

[21] A. Parekh and R. Gallager. A generalized processor sharing ap-
proach to flow control in integrated services networks: The single
node case.IEEE/ACM Transactions on Networking, 1(3):344–
357, 1993.

[22] L. Rizzo. Effective erasure codes for reliable computer commu-
nication protocols.ACM SIGCOMM CCR, 27(2):24–36, 1997.

[23] S. Savage, N. Cardwell, D. Wetherall, and T. Anderson. TCP
congestion control with a misbehaving receiver.ACM SIGCOMM
CCR, 29(5):71–78, 1999.

[24] S. Shenker. Making greed work in networks: A game-theoretic
analysis of switch service disciplines. InProceedings of ACM
SIGCOMM, 1994.

[25] R. Sherwood, B. Bhattacharjee, and R. Braud. Misbehaving TCP
receivers can cause Internet-wide congestion collapse. InPro-
ceedings of ACM CCS, 2005.

[26] M. Shreedhar and G. Varghese. Efficient fair queuing using
deficit round robin. InProceedings of ACM SIGCOMM, 1995.

[27] I. Stoica, S. Shenker, and H. Zhang. Core-stateless fair queueing:
A scalable architecture to approximate fair bandwidth allocations
in high speed networks. InProceedings of ACM SIGCOMM,
1998.

[28] R. Vasudevan, Z. M. Mao, O. Spatscheck, and J. van der Merwe.
Reval: A tool for real-time evaluation of DDoS mitigation strate-
gies. InProceedings of USENIX, 2006.

[29] M. Walfish, H. Balakrishnan, D. Karger, and S. Shenker. DoS:
Fighting fire with fire. InProceedings of ACM HotNets, 2005.

[30] H. Zhang, D. Towsley, and W. Gong. TCP connection game: A
study on the selfish behavior of TCP users. InProceedings of
IEEE ICNP, 2005.

666 Decongestion Control


