
Human Mobility Patterns and Their Impact on
Routing in Human-Driven Mobile Networks

Injong Rhee (NCSU) Minsu Shin (NCSU) Seongik Hong (NCSU) Kyunghan Lee (KAIST) Song Chong (KAIST)

Abstract—We conduct a statistical study of human mobility
using over 1000 hours of GPS traces of human walks involving
44 participants in five different locations, two university cam-
puses, state fair, New York City, and Disney World. Our data
reveals statistical features similar to those in what physicists
have long called Levy random walks (or Levy walks). These
features include heavy-tail distributions of flight lengths and
super-diffusive nature of mobility. We find that these tenden-
cies are likely caused by human intentions in deciding travel
destinations (and distance and sojourn time thereof), but not by
geographical constraints such as roads, buildings, boundaries,
etc, and that geographical constraints, instead, cause truncations
of flight lengths and discontinuity in the statistical tendency of
mobility statistics. Based on these findings, we construct asimple
Levy walk mobility model that emulates human walk patterns
expected in outdoor mobile networks carried by humans. Based
on these findings, we construct a simple Levy walk mobility
model that emulates human walk patterns expected in outdoor
mobile network environments. We demonstrate that the Levy
walk model can be used to recreate the statistical patterns
commonly observed in previous mobility studies such as the
power-law distributions of human inter-contact times and that
the simulation performance of mobile network routing protocols
under the Levy walk model exhibits distinctive performance
features unexplored under existing mobility models.

I. I NTRODUCTION

Biologists [19], [4], [14] have found that the mobility pat-
terns of foraging animals such as spider monkey, albatrosses
(seabirds) and jackals can be commonly described in what
physicists have long calledLevy Walks. The term Levy walks
was first coined by Schlesinger et al. [17] to explain atypical
particle diffusion not governed by Brownian motion (BM). BM
characterizes the diffusion of tiny particles with a mean free
path (or flight) and a mean pause time between flights. Aflight
is defined to be a longest straight line trip from one locationto
another that a particle makes without a directional change or
pause. Einstein [8] first showed that the probability that such
a particle is at a distancer from the initial position after time
t has a Gaussian distribution and thus is proportional to

√
t,

i.e., the width or standard deviation of a Gaussian distribution.
The mean squared displacement (MSD), which is defined to
be the variance of the probability distribution, is proportional
to t. It is a manifestation of the central limit theorem (CLT)
as the sum of flight lengths follows a Gaussian distribution.
However, when flight lengths do not have a characteristic scale
- in other words, their second moment is not finite, the particles
are making Levy walks and may undergo atypical diffusion.
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Fig. 1. Sample trajectories of (a) BM, (b) Levy walk and (c) RWP

This implies that the MSD of particles making Levy walks
is proportional totγ where γ > 1 – thus CLT does not
hold. Intuitively, Levy walks consist of many short flights and
exceptionally long flights that eliminate the effect of suchshort
flights in average flight lengths. The distribution of flightsl
in Levy walks is typically represented by an inverse power-
law distribution:p(l) ∼ 1

l1+α
, 0 < α < 2 (note that BM has

α ≥ 2). Sample trajectories of an object undergoing BM, Levy
walks and RWP (random way point) are presented in Fig. 1
in which differences in the patterns are visually evident.

We study the statistical patterns of human walks observed
within a radius of tens of kilometers. We use mobility track
logs obtained from 44 participants carrying GPS receivers
from September 2006 to January 2007. The sample settings
where traces are obtained are two university campuses (one
in Asia and one in the US), one metropolitan area (New York
city), one State fair and one theme park (Disney World). The
participants walk most of times in these locations and may
also occasionally travel by bus, trolley, cars, or subway trains.
These settings are selected because they are conducive to
collecting GPS readings. Although the number of participants
is relatively small in our study, the total duration of tracks
taken over the five different sites are over 1000 hours, which
adds to the statistical significance of our findings.

From the data analysis of our traces, we find the followings:

• The mobility patterns of the participants in these outdoor
settings have features similar to those defining Levy
walks; their flight distributions and pause time distri-
butions closely match truncated power-law distributions.
Their MSD also shows significant influence of these
mobility patterns.

• There exist some deviations from pure Levy walks occur-
ring due to various factors specific to human mobility in-
cluding geographical constraints such as roads, buildings,
obstacles and traffic. These deviations are manifested in
our traces in the form of flight truncations which may
make the flight distribution appear like heavy-tailed or
even short-tailed at times.



Site (# of # of Duration (hour) Radius (km)
participants) traces min avg max min avg max

Campus I (20) 35 1.71 10.19 21.69 0.46 1.82 5.84
Campus II (4) 46 4.21 10.62 22.37 0.43 1.26 4.16
NYC (8) 30 1.23 9.34 22.66 0.37 4.18 6.98
DW (4) 15 4.43 8.68 13.20 0.39 1.67 4.43
SF (8) 8 1.81 2.57 3.12 0.22 0.28 0.34

TABLE I
STATISTICS OF COLLECTED MOBILITY TRACES FROM FIVE SITES.

To the best of our knowledge, this is the first work that
studies the Levy walk nature of human walk mobility through
real walk trace data, and none of the existing mobility models
used for mobile network simulations captures the Levy walk
characteristics of human walk mobility. Based on the statistical
patterns obtained from the traces, we construct a simple Levy-
walk model for use in mobile network simulations and show
that the model can be used to create the power law inter-
contact time distributions of human walks observed in [7]. We
apply the Levy walk models to mobile network simulation
and study the performance impact of Levy walks on rout-
ing performance in human-driven mobile networks including
DTNs (delay-tolerant networks) and MANETs (mobile ad hoc
networks). Our study reveals that compared to RWP, Levy
walks induces much better MANET performance and much
worse DTN performance. Given that many existing studies use
RWP as the mobility model for the simulation of human-driven
mobile networks, this result indicates that they have been
greatly under-estimating MANET performance while greatly
over-estimating DTN performance.

In this paper, we discuss these problems in more details and
present some preliminary results. Our trace data and a more
complete technical report will be available on-line.

II. MEASUREMENT METHODOLOGY

A. Data collection

Five sites are chosen for collecting human mobility traces.
These are two university campuses (Campus I and Campus II),
New York City, Disney World (Orlando), and North Carolina
state fair. Garmin GPS 60CSx handheld receivers are used for
data collection which are WAAS (Wide Area Augmentation
System) capable with a position accuracy of better than three
meters 95 percent of the time, in North America [1]. The GPS
receivers take reading of their current positions at every 10
seconds and record them into a daily track log. The summary
of daily traces is shown in Table I. The radius of each trace
is a half of the maximum distance that a participant travels
during a day.

All participants in the five scenarios are different individ-
uals. We perform our analysis separately for each scenario
and we do not aggregate traces from different scenario in
our analysis. Nonetheless, as can be seen in the ensuing
analysis, many statistical similarities are found among traces
from different scenarios.

B. Trace analysis

From the traces, we extract the following data: flight length,
pause time, direction, and velocity. To get these data from the
traces, we map the traces into a two dimensional area (note
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Fig. 2. The rectangular model used to extract flight information from traces.

that the GPS receivers produce three-dimensional positions),
and to account for GPS errors, we clean the data as follows.
We recompute a position at every 30 seconds by averaging
three samples over that 30 second period (note GPS samples
are taken at every 10 seconds). All the position information
discussed below is based on the 30-second average positions.

As participants may move outside a line of sight from
satellites or run out of battery, daily traces may contain
discontinuities in time. For instance, if a participant disappears
at timet (in seconds) at a positionp from a trace and reappears
at timet+∆t at another positionp′, we use a similar method
used in [12] to remove the discontinuity. If the next position
recorded after the discontinuity is within a radius of 20 meters
and the time to the next position is within a day boundary, then
we assume that the participant walks to the next position from
positionp at a walking speed of 1 m/s from timet+ ∆t− k

(k is the distance betweenp andp′ in meters) just before he
shows up again at positionp′ in the trace and the remaining
time (∆t− k) is recorded as a pause at the location where he
disappeared. Otherwise, it is assumed that the trace has ended
at time t and a new trace starts at timet+ ∆t.

We consider that a participant has a pause if the distance that
he has moved during a 30 second period is less thanr meters.
It is not straightforward to extract flight information froma
trace because people hardly move in a straight line. Combined
with GPS errors, this human “errors” make it difficult to
analyze flight data. To reduce noise due to these factors, we use
three different methods, namelyrectangular, angleandpause-
basedmodels. In the rectangular model, given two sampled
positionsxs and xe taken at timest and t + ∆t (∆t > 0)
in the trace, we define the straight line betweenxs andxe to
be a flight if and only if the following conditions are met: (a)
the distance between any two consecutively sampled positions
betweenxs and xe is larger thanr meters (i.e., no pause
during a flight), (b) when we draw a straight line fromxs to
xe, the sampled positions between these two end points are
at a distance less thanw meters from the line (the distance
between the line and a position is the length of a perpendicular
line from that position to the line) and (c) for the next sampled
position x′e after xe, positions and the straight line between
xs andx′e does not satisfy conditions (a) and (b). An example
of the rectangular model is shown in Fig. 2. In that figure, the
straight line movement between positions sampled at times
t(1) andt(4) is regarded as one single flight between the two
positions because all the sampled positions between them are
inside of the rectangle formed by the two end points. In this
example, the flight time is 90 seconds because each sample is
taken at every 30 seconds. Bothr andw are model parameters.



The angle model allows more flexibility in defining flights.
In the rectangular model, a trip can be broken into small flights
even though consecutive flights have similar directions. This
implies even a small curvature on the road may cause multiple
short flights. To remedy this, the angle model merges multiple
successive flights acquired from the rectangular model intoa
single long flight if the following two conditions are satisfied:
(a) no pause occurs between consecutive flights and (b)
the relative angle (θ as shown in Fig. 2) between any two
consecutive flights is less thanaθ degree. A merged flight is
considered to be a straight line from the starting position of
the first flight to the ending position of the last flight and its
flight length is the length of that line.aθ is a model parameter.

The pause-based model can be viewed as an extreme case
of the angle model. The pause-based model merges all the
successive flights from the rectangular model into a single
flight if there is no pause between the flights. A merged flight
is defined in the same way as in the angle model. This model
produces significantly different trajectories from the actual
GPS trajectories, due to the abstraction. However, it represents
more faithfully human intentions to travel from one position
to another without much deviation caused by geographical
features such as roads, buildings and traffic.

III. H UMAN MOBILITY

A power-law distribution of flight lengths is a hallmark
of Levy walks. In this section, we study the distributions of
flight lengths from our traces. In generating its distribution
for each scenario, flight length samples from all the traces of
the same site, regardless of their participants, are aggregated
together and used in the same distribution. This “aggregation”
is reasonable because every trace obtained from the same site
is subject to the same or similar geographical constraints (i.e.,
roads, obstacles, traffic, and buildings). The same technique is
used in other studies of Levy walks (e.g., [14]).

Fig. 3 shows the CCDF (complementary cumulative density
function) of flight lengths from each scenario. CCDF is known
to show the tail patterns of a distribution better than log-log
binned PDF plots. The PDF plots can also be found in our
full report. We apply Maximum Likelihood Estimation (MLE)
to fit three known distributions, exponential, log-normal,and
truncated Pareto distributions [3] to the CCDF. The MLE
of the truncated Pareto is performed over the x-axis range
between 50 meter and the 99.9% quantile of each distribution
to isolate only the tail behavior. We observe that truncated
Pareto has the best fit among the three distributions in all
cases with truncation points over three-orders of magnitudes
(i.e., 1000 meters), which is a rule of thumb for power-law
distributions. To reduce the sensitivity on particular settings
of our flight models, we vary the values ofr, w and aθ

from 2.5 meters to 10 meters and from 15 degrees to 90
degrees, respectively. We performed line fitting on the tails
of the resulting CCDF over several ranges.

Flight truncations are natural consequences of geographical
constraints including boundaries and physical obstructions,
and observation artifacts (e.g., we do not consider those flights
that leave the area boundary). All the distributions in Fig.3
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Fig. 3. The CCDF of flight lengths (aθ = 30). Various known distributions
are fitted using maximum likelihood estimation.

suffer from truncations of flights longer than a few kilometers
whose effects are shown as sharp drops in the frequency of
very long flights. This effect show up evidently with State fair
traces shown in Fig.3(e) where even short-tail distributions fit
well. The State fair traces are obtained from a highly confined
area of less than 350 meter radius (it is smallest among the
five sites). Thus, it is subject to more truncations.

The sharp drops at the tails give rise to a possibility that the
flight distributions have heavy-tails but not power tails since
truncated power law distributions can be also fitted with non
power-law heavy-tail distributions such as Weibull [9]. (This
truncation problem also appears in earlier studies of animal
mobility, e.g., [14]. ) Our data is inconclusive in disproving
this. However, there are some hints that this may not be the
case. Fig. 3(f) shows the CCDF of flights as we increase the
flight angle in the flight model. We find that as the angle
increases, the distribution becomes flatter with a heavier tail.
Under the pause-based model (i.e.,aθ = 180), it shows the
heaviest tail. This phenomenon reveals an important feature
in human mobility patterns: if we accept that humans tend
to pause for a non-zero period of time when they get to
a destination, the heavier-tail distribution of flights forthe
pause-based model implies that it is human intention causing
the heavy-tail tendency, not the geographical constraintsthat
force humans to make short flights with no pause (otherwise,
the pause-based model should show almost the same tail
distribution). This also implies the scale-free tendency of
the flight distribution: as we increase the scale by removing
constraints and boundaries or increasing the observation area
size, we are expected to see longer flights. It does not make
sense that human intention to move to a destination is bounded
by some invisible boundaries as in Weibull (even though there



exists no physical bounds, e.g., building and campus). The
power-law tendency of human mobility over a larger scale [6]
also provides hints for this scale-freedom and self-similarity.

From the perspective of network simulations, power law
distributions are easy to scale because simulation setups
including geographical constraints may always change; for
instance, simulation can run in a small area as well as a large
area. It would be impossible to pick a different distribution for
different setups. Using power-law distributions while inducing
truncations as the natural consequence of adaptations to a
given set of geographical constraints offers a much more
convenient way of mobility simulation. Our data implies
that although geographical constraints may vary in different
scenarios, this scale-free tendency is invariant. For network
simulations involving human-assisted mobile networks, while
human navigation around obstacles and road shapes is rel-
atively easy to program, the heavy-tail tendency of human
intentions must be inherent in the mobility model to accurately
depict human walk patterns.

IV. L EVY-WALK MOBILITY MODEL

In this section, we discuss a simple Levy-walk mobility
model for simulating human carried mobile networks that
generates synthetic mobility tracks reflecting the statistical
patterns of human mobility that we find in our study. We use
the same random walk model discussed in the section 2. A
step is represented by four variables, flight length (l), direction
(θ), flight time (∆tf ), and pause time (∆tp). Our model picks
flight lengths and pause times randomly from their PDFsp(l)
andψ(∆tp) which are Levy distributions with coefficientsα
andβ, respectively. The following defines a Levy distribution
with a scale factorc and exponentα in terms of a fourier
transformation,

fX(x) =
1

2π

∫ +∞

−∞

e−itx−|ct|αdt (1)

For α = 1, it reduces to a Cauchy distribution and forα = 2,
a Gaussian withσ =

√
2c. Asymptotically, forα < 2, fX(x)

can be approximately by 1
|x|1+α

. We allow c, α andβ to be
simulation parameters.

Based on the above model, we generate synthetic Levy-
walk mobility tracks with truncation factorsτl and τp for
flight lengths and pause times respectively in a confined
area as follows. First, the initial location of a walker is
picked randomly from a uniform distribution in the area. At
every step, an instance of tuple(l, θ,∆tf ,∆tp) is generated
randomly from their corresponding distributions. Ifl and∆tp
are negative orl > τl or ∆tp > τp, then we discard the step
and regenerate another step. We repeat this process after the
step time∆tf + ∆tp. Until the end of the simulation, we
generate the tuples repeatedly.

V. ROUTING PERFORMANCE

In this section, we apply the mobility model developed
in Section IV to the simulation of DTN and MANETs and
measure routing performance in these networks and compare
resulting routing patterns with those generated from existing
models such as RWP and BM.

A. Routing in Delay Tolerant Networks

In delay tolerant networks (DTN), mobile nodes may es-
tablish on and off connectivity with their neighbors and the
rest of the network. Therefore, store-and-forward is the main
paradigm of routing in such networks where communication
transpires only when two devices are in a radio range. We
call the time period that two nodes are in a radio range the
contact timeof the two nodes. One of the most widely studied
routing algorithms in DTN istwo-hop relay routing[18] where
a source node sends a message (or a sequence of data packets)
to the first node it contacts and then that first node acts as a
relay and delivers the message when it contacts the destination
node of the message. Here the period between the time that
the message has originated and the time that the message is
delivered to the relay node is calledfirst contact time(FCT)
and the period after that to the time the message is deliveredto
the destination is calledremaining inter-contact time(RICT).
In a dense network, FCT is typically negligible and RICT
dominates the message delay. One way to characterize RICT
is to measure theinter-contact time(ICT), the time period
between two successive contact times of the same two nodes.
Since it is difficult to measure RICT from real mobility traces,
ICT has been used to characterize RICT [7].

It is known that the ICT of human mobility exhibits a strong
power-law tendency [7]. The result is interesting because
[16] showed by simulation that RWP produces exponentially
decaying ICT, implying human mobility cannot be modeled
by RWP. What’s not obvious is the type of mobility patterns
that gives rise to the power-law tendency of ICT distributions.
In this section, we explore this problem using the mobility
model from Section IV.

The earlier measurement studies on ICT (e.g., [7]) report
power-law distributions of ICT with human mobility with
slopes in the range of [0.3,0.4]. By varying the parameters
of α and β of our mobility model, we are able to generate
ICT distributions with the similar characteristics as in [7] by
MATLAB simulation. [7] reports power-law slopes of 0.3 from
the INFOCOM trace [10] and 0.4 from the UCSD trace [13].
Fig. 4(a) shows the result. In the UCSD simulation, we fix
the simulation area to 3.5 km by 3.5 km,τl to 3 km and
τp to 28 hours. These values are chosen based on the data
from [13]. The transmission range of each node is set to
250 meter radius (which is typical for IEEE 802.11b). For
the INFOCOM simulation, we set the area to 1.5 km by 1.5
km, τl to 200 m,τp to 1 hour and the transmission range of
each node to 100 m – the maximum transmission range for
the Bluetooth devices used for taking the original traces. 40
nodes are simulated in both scenarios for 300 hours. For all
the simulations, we assume infinite buffer and that message
transfers occur instantaneously. These assumptions are used
to isolate the effect of mobility patterns on the performance
of DTN routing.

We also simulate RWP and BM in the same setup as
the UCSD environment to compare the results. BM’s ICT
distribution shows 0.45 power-law slope while RWP’s shows
an exponential decay. Although there could be other types
of mobility patterns that could generate the same ICT distri-
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Fig. 4. The ICT distributions of mobility models. Levy walksrecreate the
ICT distributions seen in the INFOCOM and UCSD traces.

butions as INFOCOM’s and UCSD’s, this result allows us
to conjecture that the actual mobility that generates these
characteristics in these settings might have been Levy walks.
The more diffusive the mobility is, the shorter tail its ICT
distribution becomes. To confirm this pattern, we run Levy
walks with different values ofα while fixingβ to one. Fig. 4(b)
shows that asα gets smaller, the tail distribution of ICT
becomes shorter.

ICT directly impacts routing delays in DTN. To see their
relation, we measure the ICT and routing delays from simula-
tion setups that mimic the environments of our five scenarios.
In this simulation, we setα and β to the average values
extracted from the angle model (withaθ = 30 and r = 5),
set the scale factors for flight lengths and pause times to
10 and 1, respectively, and match the simulation areas to
the same as those of the five sites and the flight length and
pause time truncation points are set to those measured from
the traces. The routing delays of RWP which uses the same
environment as Campus II are also measured for comparison.
In all scenarios, we simulate 40 nodes. The resulting routing
delay distributions along with their ICT’s are shown in Fig.5.
The figure shows that all the ICT distributions from our
models, except that from State fair, follow strong power-
law for the duration up to several hours. The truncations in
the ICT distributions occur because the simulation is cut off
around 300 hours and we consider only those contacts made
within the simulation time. The ICT distribution from State
fair exhibits exponential decay. This is because the area of
State fair (a radius of 340 m) is much smaller than the others,
and given the transmission range of 250 m, nodes can make
contacts with each other without traveling a long distance.The
routing delays of the corresponding Levy walk models tend to
have high delays because, among many factors influencing the
delays, the simulation area of our models is particularly large:
on average, our models have at least four times larger an area
than the UCSD simulation area. However, the routing delays
of RWP still show a short tail distribution. To see the effectof
flight length distributions on routing delays more clearly,we
measure routing delays in the simulation runs used for Fig. 4
(b). Figure 6 (a) shows the result from which the following
can be observed. BM tends to have much larger delays than
any other models while RWP, as expected, shows the smallest
delays because its probability of long flights is highest. The
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normalized 99% quantile delay with multiple relays. The numbers in the
parenthesis represent the actual delays in minutes at the 99% quantile of the
distributions.

Levy walk models show their patterns in between the two
extremes: as we increaseα, their delays get closer to BM’s
and as we reduceα, they get closer to RWP.

The heavy tail distribution of routing delays may intuitively
imply that many nodes experience similar long routing delays
and that use of more relays (or copies of messages) may not
necessarily improve the performance drastically. In a general-
ized relaying algorithm, the source distributes the message to
the firstm relays that it contacts. The routing delay is the time
till any copy of the message is delivered to the destination.
Fig. 6 (a) shows the DTN routing delays of various models
when one relay is used, and Fig. 6 (b) shows the 99% quantile
delays of the same models normalized by their corresponding
one-relay delays as we add more relays. As expected, BM
hardly achieves this goal; the delay does not improve so much
as the number of relays increases, since every relay takes long
time to meet the destination. However, we are surprised to
find that all our Levy walk models including the one with
α = 1.5 which shows fairly similar delay patterns as BM for
one relay case, show almost the same improvement ratio as
RWP as we add more relays. This implies that while in RWP,
most nodes travel long distances frequently, in Levy walks,
although not all nodes make such long trips, there exist with
high probability some nodes within the mobility range of the
source nodes that make such long trips. This contributes to
the great reduction of the delays even with a small number of
relays.
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Fig. 7. (a) The hop count distributions of the shortest path between two
randomly selected nodes undergoing various mobility patterns. The numbers
inside the parenthesis represent the average hop counts. (b) the CCDF of their
corresponding path durations.

B. Routing in MANETs

In this section, we examine the impact of Levy walks on the
performance of MANET routings. There exist many MANET
protocols in the literature. It is impractical to evaluate all the
protocols, but instead, we first focus on the features of mobility
that affects the performance of MANET routing such as hop
counts and path durations. These features strongly influence
the routing performance of MANETs. For instance, [15]
shows that data throughput is proportional to path durations
within the limit of link capacity in the network.

Fig. 7 shows the hop count distributions of the shortest
path between two randomly picked nodes in the simulation of
various mobility models, and the CCDF of their corresponding
path durations. We use the same simulation setup as discussed
in Section IV. The radio range of each mobile is set to 250
meter. We run the simulation for 3000 seconds. 400 pairs of
nodes are selected and the hop count of each pair is measured
and sampled once at each time they establish a new path. Most
of RWP hop counts are less than 15 hops and their distribution
is peaked around 7 hops. This occurs because RWP nodes
tend to cluster around the center of the simulation area [5].
The hop count samples of RWP are also much larger than
those of the other models because as we can see in Fig. 7(b),
RWP tends to maintain much shorter routing paths than the
other models because of its high mobility. On the other hand,
Levy walks tend to have longer paths than RWP. Because of
the less diffusive nature of Levy walks, Levy walk nodes tend
to stay longer in one location than RWP. Therefore, nodes
are more spread out in the simulation area than RWP. Since
the path durations of Levy walks are longer than those of
RWP, the numbers of hop count samples of these models are
much smaller. BM shows an extreme case of inactivity as its
average hop count is longest. However, its path duration is
the second longest to the Levy walks model withα = 1.5.
This is because most paths with long durations are from short
paths, and BM nodes are more spread out and tend to have
less chance of short paths as we can see from Fig. 7(a). In
addition, because BM hasβ = 2, it has more occurrences of
short pause times than the Levy walk models. These factors
collectively contribute to reducing the path durations of BM
below that of the Levy walk model withα = 1.5 although
BM is slightly less diffusive than the Levy walk model.

To see the effects of the above-discussed factors on routing
performance, we simulate DSR [11], a source-based MANET
routing, in the same simulation setup as the above using Glo-
MoSim [2]. In this simulation, we measure the data throughput
of FTP connections over 300 node pairs randomly selected.
The link bandwidth in these simulations is set to 2 Mbps.
Figs. 8 (a) and (b) show the CCDF of throughput measured in
low and high node density network environments for various
mobility models. For the high density environment, we use
100 nodes in 1 km by 1 km area withτl = 500 m and for
the low density environment, 2 km by 2 km area withτl = 1
km. We use the same values for the other parameters as in the
simulation run for Fig. 7.

In general, both hop counts and path durations have sig-
nificant impact on routing throughput. Typically, the influence
of hop counts itself on data throughput gets less emphatic
as hop counts increase because each simulation run contains
one connection so there is only self-interference, and self-
interference is limited only within a few hops. However, it
is clear that as the number of hops of a path increases, its
path duration is likely to reduce. Path durations seem to be a
significant determinant of data throughput in our simulation.
This can be seen from the similarity of Figs. 7(b) and 8(a).

In the low density simulation, the node pairs with the
best throughput around the tail of the throughput CCDF
tend to have long path durations. In the simulation BM and
Levy walks have an order of magnitude higher maximum
throughput than RWP. However, around the top of the CCDF
in the figure, BM and Levy walks show a significantly
less number of node pairs. This is because the number of
successful path connections is much less for BM and Levy
walks. In Fig. 8(c), we plot the connection probability of
node pairs, the probability that two randomly selected nodes
successfully establish a routing path between them, in our
simulation runs. The connection probabilities of BM and Levy
walks are around 30% and 60%, respectively. This is because
the difference in the diffusion rates of mobility has influenced
their clustering behavior. As mentioned above, BM and Levy
walk nodes tend to be more spread out, likely incurring more
disconnected islands. On the other hand, while RWP nodes
do not have any connectivity problem, their throughput tends
to be much lower than that of BM and Levy walks. These
factors collectively cause BM and Levy walks to have heavier
tail throughput distributions while causing RWP to have a
short tail. Thus, when examining network performance under
realistic mobility models, we need to examine the entire
distribution of performance instead of single numbers such
as average or median values which are much less meaningful
under power-law distributions of performance metrics of
interest. Under the high density network simulation, all
mobility models achieve 100% connection probability. Even
in this environment, the data throughput under BM and Levy
walks is much higher than that of RWP because of their
longer path durations.
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Fig. 8. (a) CCDF of FTP throughput in a low node density simulation (b) CCDF of FTP throughput in a high node density simulation (c) the probability
of establishing a route between two randomly selected nodesunder the low and high node density simulations

VI. CONCLUSION

Levy walks are commonly observed in biology and physics
and they are also optimal ways for foraging animals to find
randomly dispersed food sources in optimal ways. If we can
leverage these lessons learned from nature for DTN routing
problems, good strategies to evaluate the performance of
routing and also to route messages as well are likely obtained.
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