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Abstract—We conduct a statistical study of human mobility
using over 1000 hours of GPS traces of human walks involving
44 participants in five different locations, two university cam-
puses, state fair, New York City, and Disney World. Our data
reveals statistical features similar to those in what physists
have long called Levy random walks (or Levy walks). These
features include heavy-tail distributions of flight lengths and
super-diffusive nature of mobility. We find that these tende-
cies are likely caused by human intentions in deciding trave
destinations (and distance and sojourn time thereof), but at by
geographical constraints such as roads, buildings, boundis,
etc, and that geographical constraints, instead, cause tncations
of flight lengths and discontinuity in the statistical tendency of
mobility statistics. Based on these findings, we construct simple
Levy walk mobility model that emulates human walk patterns
expected in outdoor mobile networks carried by humans. Bask
on these findings, we construct a simple Levy walk mobility
model that emulates human walk patterns expected in outdoor
mobile network environments. We demonstrate that the Levy
walk model can be used to recreate the statistical patterns

(b)

Fig. 1. Sample trajectories of (a) BM, (b) Levy walk and (c) RW

This implies that the MSD of particles making Levy walks
is proportional tot” where~ > 1 — thus CLT does not
hold. Intuitively, Levy walks consist of many short flightach
exceptionally long flights that eliminate the effect of sstiort
flights in average flight lengths. The distribution of fligtits
in Levy walks is typically represented by an inverse power-
law distribution: p(l) ~ =,0 < « < 2 (note that BM has

commonly observed in previous mobility studies such as the @ = 2). Sample trajectories of an object undergoing BM, Levy

power-law distributions of human inter-contact times and that
the simulation performance of mobile network routing protocols
under the Levy walk model exhibits distinctive performance
features unexplored under existing mobility models.

I. INTRODUCTION

walks and RWP (random way point) are presented in Fig. 1
in which differences in the patterns are visually evident.

We study the statistical patterns of human walks observed
within a radius of tens of kilometers. We use mobility track
logs obtained from 44 participants carrying GPS receivers
from September 2006 to January 2007. The sample settings

Biologists [19], [4], [14] have found that the mobility pat-Wher_e traces are obtained are two unive_rsity campuses (one
terns of foraging animals such as spider monkey, albatsos&&ASia and one in the US), one metropolitan area (New York
(seabirds) and jackals can be commonly described in wifdY), one State fair and one theme park (Disney World). The
physicists have long calledevy Walks The term Levy walks part|C|pant§ walk most of times in these locations and may
was first coined by Schlesinger et al. [17] to explain atypicASC occasionally travel by bus, trolley, cars, or subwajng.
particle diffusion not governed by Brownian motion (BM). pmThese settings are selected because they are conducive to

characterizes the diffusion of tiny particles with a meagefr
path (or flight) and a mean pause time between flightlight
is defined to be a longest straight line trip from one locatmn

collecting GPS readings. Although the number of participan
is relatively small in our study, the total duration of track
taken over the five different sites are over 1000 hours, which

another that a particle makes without a directional charrge #1dS to the statistical significance of our findings.

pause. Einstein [8] first showed that the probability thathsu
a particle is at a distancefrom the initial position after time
t has a Gaussian distribution and thus is proportiona)/tp

i.e., the width or standard deviation of a Gaussian distigipu

The mean squared displacement (MSD), which is defined to
be the variance of the probability distribution, is propamal

to ¢. It is a manifestation of the central limit theorem (CLT)
as the sum of flight lengths follows a Gaussian distribution. ,
However, when flight lengths do not have a characteristilesca

- in other words, their second moment is not finite, the plasic

are making Levy walks and may undergo atypical diffusion.
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Research Foundation Grant funded by the Korean Governn@EHRD)
(KRF-2006-352-D00137).

From the data analysis of our traces, we find the followings:

The mobility patterns of the participants in these outdoor
settings have features similar to those defining Levy
walks; their flight distributions and pause time distri-
butions closely match truncated power-law distributions.
Their MSD also shows significant influence of these
mobility patterns.

There exist some deviations from pure Levy walks occur-
ring due to various factors specific to human mobility in-
cluding geographical constraints such as roads, builgdings
obstacles and traffic. These deviations are manifested in
our traces in the form of flight truncations which may
make the flight distribution appear like heavy-tailed or
even short-tailed at times.



Site (# of # of | Duration (hour) [ Radius (km) |

participants) traces | min [ avg [ max | min [ avg [ max |

Campus T (20) 35 [ 1.71] 1019 2169 046 | 1.82 | 5.84

Campus Il (4) 46 | 421 | 10.62 | 2237 | 043 | 1.26 | 4.16

NYC (8) 30 | 1.23 9.34 | 22,66 | 0.37 | 4.18 | 6.98

DW (4) 15 | 443 | 868 | 1320 | 0.39 | 1.67 | 4.43

SF (8) 8 | 181 ] 257 | 312 | 022 | 0.28 | 0.34

TABLE |
STATISTICS OF COLLECTED MOBILITY TRACES FROM FIVE SITES length

To the best of our knowledge, this is the first work that
studies the Levy walk nature of human walk mobility througﬁ
real walk trace data, and none of the existing mobility msdel . , , )
used for mobile network simulations captures the Levy WaH?at the GPS receivers produce three-dimensional posjtion
characteristics of human walk mobility. Based on the dfagis 21d t0 account for GPS errors, we clean the data as follows.
patterns obtained from the traces, we construct a simplg-LeyV& '€compute a position at every 30 seconds by averaging
walk model for use in mobile network simulations and sholf’€€ Samples over that 30 second period (note GPS samples
that the model can be used to create the power law int&f® taken at every 10 seconds). All the position mformafu.on
contact time distributions of human walks observed in [7§ \/\/j'SCUSSEd_b_eIOW is based on the 3Q—second a"efage positions
apply the Levy walk models to mobile network simulation AS Participants may move outside a line of sight from
and study the performance impact of Levy walks on rouB&tellites or run out of battery, daily traces may contain
ing performance in human-driven mobile networks includingiScontinuities in time. For instance, if a participantipears
DTN (delay-tolerant networks) and MANETS (mobile ad hoft imet (in seconds) at a positignfrom a trace and reappears
networks). Our study reveals that compared to RWP, Le@)j imet+ At at another positiop’, we use a similar method
walks induces much better MANET performance and mudfs€d in [12] to remove the discontinuity. If the next positio
worse DTN performance. Given that many existing studies u&Forded after the discontinuity is within a radius of 20 enst
RWP as the mobility model for the simulation of human-driveind the time to the next position is within a day boundaryythe
mobile networks, this result indicates that they have bedff assume that the participant walks to the next positiom fro
greatly under-estimating MANET performance while greatifositionp at a walking speed of 1 m/s from timtet At —k
over-estimating DTN performance. k is the dlstar_lce betw_e_qn a_ndp’ in meters) just befor(_e he

In this paper, we discuss these problems in more details a{{PWS UP @gain at positiopl in the trace and the remaining

present some preliminary results. Our trace data and a mipae (At —k) is recorded as a pause at the location where he
complete technical report will be available on-line. disappeared. Otherwise, it is assumed that the trace haslend

at timet and a new trace starts at time- At.

We consider that a participant has a pause if the distante tha
he has moved during a 30 second period is less thaeters.
A. Data collection It is not straightforward to extract flight information from

Five sites are chosen for collecting human mobility traceace because people hardly move in a straight line. Cordbine
These are two university campuses (Campus | and CampusWith GPS errors, this human “errors” make it difficult to
New York City, Disney World (Orlando), and North Caroling@nalyze flight data. To reduce noise due to these factorsseve u
state fair. Garmin GPS 60CSx handheld receivers are usedtfyee different methods, nametgctangular angleandpause-
data collection which are WAAS (Wide Area Augmentatio@sedmodels. In the rectangular model, given two sampled
System) capable with a position accuracy of better tharethri@ositionsz, and z. taken at timest and ¢ + At (At > 0)
meters 95 percent of the time, in North America [1]. The GP!§ the trace, we define the straight line betwegrand z. to
receivers take reading of their current positions at eveyy Pe a flight if and only if the following conditions are met: (a)
seconds and record them into a daily track log. The summdRg distance between any two consecutively sampled positio
of daily traces is shown in Table I. The radius of each trad€tweenz, and z. is larger thanr meters (i.e., no pause
is a half of the maximum distance that a participant travefiring a flight), (b) when we draw a straight line frar to
during a day. ze, the sampled positions between these two end points are

All participants in the five scenarios are different individat & distance less than meters from the line (the distance
uals. We perform our analysis separately for each scendpween the line and a position is the length of a perpenaticul
and we do not aggregate traces from different scenario i€ from that position to the line) and (c) for the next saeapl
our analysis. Nonetheless, as can be seen in the ensdifgitionz, afterz., positions and the straight line between

analysis, many statistical similarities are found amorages <s andz; does not satisfy conditions (a) and (b). An example
from different scenarios. of the rectangular model is shown in Fig. 2. In that figure, the

straight line movement between positions sampled at times
. t(1) andt(4) is regarded as one single flight between the two
B. Trace analysis positions because all the sampled positions between them ar
From the traces, we extract the following data: flight lengtlinside of the rectangle formed by the two end points. In this
pause time, direction, and velocity. To get these data fiwen texample, the flight time is 90 seconds because each sample is
traces, we map the traces into a two dimensional area (ntaken at every 30 seconds. Batlandw are model parameters.

ig. 2. The rectangular model used to extract flight infoforafrom traces.

Il. MEASUREMENT METHODOLOGY



The angle model allows more flexibility in defining flights.

In the rectangular model, a trip can be broken into small fligh _
even though consecutive flights have similar directiondgs Thi e«
implies even a small curvature on the road may cause muItipelem, i

short flights. To remedy this, the angle model merges meltipl )
successive flights acquired from the rectangular modelanto ~ ° * moaso =0 = :
single long flight if the following two conditions are satesfi (a) Campus |
(8) no pause occurs between consecutive flights and (b) : —
the relative angled as shown in Fig. 2) between any two | = ]
consecutive flights is less thanp degree. A merged flight is z _ s
considered to be a straight line from the starting position ¢ | whaertase % sy
the first flight to the ending position of the last flight and its °=¢ ‘
flight length is the length of that liney is @ model parameter.

The pause-based model can be viewed as an extreme case
of the angle model. The pause-based model merges all the
successive flights from the rectangular model into a single
flight if there is no pause between the flights. A merged flight ¢

is defined in the same way as in the angle model. This model oo} sope:07s %
8 e Y gy =0—

produces significantly different trajectories from theuatt ~ .|
GPS trajectories, due to the abstraction. However, it sspes
more faithfully human intentions to travel from one positio

to another without much deviation caused by geographical (e) State fair () DW using various angle models
features such as roads, buildings and traffic.
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Fig. 3. The CCDF of flight lengthsag = 30). Various known distributions
are fitted using maximum likelihood estimation.

Il. HUMAN MOBILITY

A power-law distribution of flight lengths is a hallmarksuffer from truncations of flights longer than a few kilontste
of Levy walks. In this section, we study the distributions ofvhose effects are shown as sharp drops in the frequency of
flight lengths from our traces. In generating its distribati very long flights. This effect show up evidently with Staté fa
for each scenario, flight length samples from all the trades twaces shown in Fig.3(e) where even short-tail distrimgitit
the same site, regardless of their participants, are agggég well. The State fair traces are obtained from a highly cowfine
together and used in the same distribution. This “aggregéti area of less than 350 meter radius (it is smallest among the
is reasonable because every trace obtained from the saenefsie sites). Thus, it is subject to more truncations.
is subject to the same or similar geographical constraires (  The sharp drops at the tails give rise to a possibility that th
roads, obstacles, traffic, and buildings). The same teclenis flight distributions have heavy-tails but not power tailacs
used in other studies of Levy walks (e.g., [14]). truncated power law distributions can be also fitted with non

Fig. 3 shows the CCDF (complementary cumulative densipower-law heavy-tail distributions such as Weibull [9].h{3
function) of flight lengths from each scenario. CCDF is knowtruncation problem also appears in earlier studies of anima
to show the tail patterns of a distribution better than log-I mobility, e.g., [14]. ) Our data is inconclusive in disprogi
binned PDF plots. The PDF plots can also be found in othis. However, there are some hints that this may not be the
full report. We apply Maximum Likelihood Estimation (MLE) case. Fig. 3(f) shows the CCDF of flights as we increase the
to fit three known distributions, exponential, log-normeatd flight angle in the flight model. We find that as the angle
truncated Pareto distributions [3] to the CCDF. The MLEncreases, the distribution becomes flatter with a heasiér t
of the truncated Pareto is performed over the x-axis rangader the pause-based model (i€, = 180), it shows the
between 50 meter and the 99.9% quantile of each distributibeaviest tail. This phenomenon reveals an important featur
to isolate only the tail behavior. We observe that truncatéal human mobility patterns: if we accept that humans tend
Pareto has the best fit among the three distributions in &l pause for a non-zero period of time when they get to
cases with truncation points over three-orders of mageuda destination, the heavier-tail distribution of flights fthre
(i.e., 1000 meters), which is a rule of thumb for power-laywause-based model implies that it is human intention cgusin
distributions. To reduce the sensitivity on particulartisgs the heavy-tail tendency, not the geographical constraks
of our flight models, we vary the values ef w and ay force humans to make short flights with no pause (otherwise,
from 2.5 meters to 10 meters and from 15 degrees to &k pause-based model should show almost the same tail
degrees, respectively. We performed line fitting on thestaitlistribution). This also implies the scale-free tendendy o
of the resulting CCDF over several ranges. the flight distribution: as we increase the scale by removing

Flight truncations are natural consequences of geographiconstraints and boundaries or increasing the observatEm a
constraints including boundaries and physical obstrastio size, we are expected to see longer flights. It does not make
and observation artifacts (e.g., we do not consider thogetfli sense that human intention to move to a destination is balinde
that leave the area boundary). All the distributions in Fg. by some invisible boundaries as in Weibull (even thougheher



exists no physical bounds, e.g., building and campus). TAe Routing in Delay Tolerant Networks
power-law tendency of human mobility over a larger scale [6] )
also provides hints for this scale-freedom and self-siigjla ' delay tolerant networks (DTN), mobile nodes may es-
From the perspective of network simulations, power laf@blish on and off connectivity with their nelghbors anld the
distributions are easy to scale because simulation setdpgt Of the network. Therefore, store-and-forward is thénma
including geographical constraints may always change; fBradigm of routing in such networks where communication
instance, simulation can run in a small area as well as a laf§SPires only when two devices are in a radio range. We
area. It would be impossible to pick a different distribatior  ¢@ll the time period that two nodes are in a radio range the
different setups. Using power-law distributions whileurgihg  COntact timeof the two nodes. One of the most widely studied
truncations as the natural consequence of adaptations t&°4ling algorithmsin DTN iswo-hop relay routind18] where
given set of geographical constraints offers a much maofeSCUrce node sends a message (or a sequence of data packets)
convenient way of mobility simulation. Our data implie§° the first node it contacts and then that first node acts as a
that although geographical constraints may vary in difiererelay and delivers the message When_ it contacts the de_ennat
scenarios, this scale-free tendency is invariant. For oritw N0de Of the message. Here the period between the time that
simulations involving human-assisted mobile networksilavh e message has originated and the time that the message is

human navigation around obstacles and road shapes is fglivered to the relay node is callduist contact time(FCT)
atively easy to program, the heavy-tail tendency of humd&d the period after that to the time the message is delitered

intentions must be inherent in the mobility model to accelsat the destination is callecemaining inter-contact tim¢RICT).
depict human walk patterns. In a dense network, FCT is typically negligible and RICT

dominates the message delay. One way to characterize RICT
IV. LEVY-WALK MOBILITY MODEL is to measure thénter-contact time(ICT), the time period

In this section, we discuss a simple Levy-walk mobilit (_atween two successive contact times of the same two nodes.

model for simulating human carried mobile networks thfi\ ince it is difficult to measure RICT from real mobility trace

generates synthetic mobility tracks reflecting the siatbt T-has been used to characterize RICT [71. .
patterns of human mobility that we find in our study. We use It is known that the ICT of human mobility exhibits a strong

the same random walk model discussed in the section 2.PRWer-law tendency [7]. The result is interesting because
step is represented by four variables, flight leng}hdirection [16] showed by simulation that RWP produces exponentially
(9), flight time (At;), and pause time/t,). Our model picks decaying ICT, ,|mply|ng humap mobility cannot .b_e modeled
flight lengths and pause times randomly from their PRHS by RWP' Whats not obvious is the type of mob|I|_ty pattgrns
and(At,) which are Levy distributions with coefficients that gives rise to the power-law tendency of ICT distribogio
and 3, respectively. The following defines a Levy distributiod” this section, we explore this problem using the mobility
with a scale factor: and exponent: in terms of a fourier Model from Section IV.

transformation, The earlier measurement studies on ICT (e.g., [7]) report
| [t power-law distributions of ICT with human mobility with
fx(z) = _/ e~ ttz—|ct|” gy (1) slopes in the range of [0.3,0.4]. By varying the parameters
27 J oo of a and 5 of our mobility model, we are able to generate

For o = 1, it reduces to a Cauchy distribution and ter= 2, ICT distributions with the similar characteristics as irj p¥
a Gaussian witlr = v/2c. Asymptotically, fora < 2, fx(z) MATLAB simulation. [7] reports power-law slopes of 0.3 from
can be approximately byﬂllﬁ. We allowe, o and 3 to be the INFOCOM trace [10] and 0.4 from the UCSD trace [13].
simulation parameters. Fig. 4(a) shows the result. In the UCSD simulation, we fix
Based on the above model, we generate synthetic Lewlie simulation area to 3.5 km by 3.5 km, to 3 km and
walk mobility tracks with truncation factors, and 7, for 7, to 28 hours. These values are chosen based on the data
flight lengths and pause times respectively in a confindédm [13]. The transmission range of each node is set to
area as follows. First, the initial location of a walker i250 meter radius (which is typical for IEEE 802.11b). For
picked randomly from a uniform distribution in the area. Athe INFOCOM simulation, we set the area to 1.5 km by 1.5
every step, an instance of tup{é 6, Aty, At,) is generated km, 7, to 200 m,7, to 1 hour and the transmission range of
randomly from their corresponding distributions/léind At, each node to 100 m — the maximum transmission range for
are negative of > 7; or At, > 7,, then we discard the stepthe Bluetooth devices used for taking the original tracés. 4
and regenerate another step. We repeat this process aftemibdes are simulated in both scenarios for 300 hours. For all
step time Aty + At,. Until the end of the simulation, we the simulations, we assume infinite buffer and that message

generate the tuples repeatedly. transfers occur instantaneously. These assumptions a us
to isolate the effect of mobility patterns on the performanc
V. ROUTING PERFORMANCE of DTN routing.

In this section, we apply the mobility model developed We also simulate RWP and BM in the same setup as
in Section IV to the simulation of DTN and MANETs andthe UCSD environment to compare the results. BM's ICT
measure routing performance in these networks and compdigribution shows 0.45 power-law slope while RWP’s shows
resulting routing patterns with those generated from grgst an exponential decay. Although there could be other types
models such as RWP and BM. of mobility patterns that could generate the same ICT distri
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Fig. 4. The ICT distributions of mobility models. Levy walkscreate the Fig. 5. ICT and DTN routing delays under various models iditlg those
ICT distributions seen in the INFOCOM and UCSD traces. constructed based on the statistics from our traces.

butions as INFOCOM's and UCSD's, this result allows us '*"
to conjecture that the actual mobility that generates these

characteristics in these settings might have been Levyawvalk 41 \ . zzj ]

The more diffusive the mobility is, the shorter tail its ICT; | tewoosp=t © | & “?‘ 081 T

distribution becomes. To confirm this pattern, we run Lewy | teyotpr | | ¢ 50| Lewy, 05 Bl e ]

walks with different values of while fixing 3 to one. Fig. 4(b)  "°°F Lewartobt % \ﬁ 91 Tos|

shows that ase gets smaller, the tail distribution of ICT S oou 2oz

becomes shorter. B D R B S
ICT directly impacts routing delays in DTN. To see their @ ° . @ L bt

relation, we measure the ICT and routing delays from simula- (a) One relay (b) Multiple relays

tion setups that mimic the environments of our five scenarios
In this simulation, we setx and 5 to the average valuesFig- 6.  The DTN delay distributions of various mobility mdsleand

. normalized 9% quantile delay with multiple relays. The numbers in the
extracted from the angle model (Wlth’ =30 andr = 5)' parenthesis represent the actual delays in minutes at #tec@@ntile of the
set the scale factors for flight lengths and pause times ditributions.
10 and 1, respectively, and match the simulation areas to

the same as those of the five sites and the flight length and ] )
pause time truncation points are set to those measured frbfiyy walk models show their patterns in between the two

the traces. The routing delays of RWP which uses the safidrémes: as we increase their delays get closer to BM's
environment as Campus Il are also measured for comparisBRd @ we reduca, they get closer to RWP.

In all scenarios, we simulate 40 nodes. The resulting rgutin The heavy tail distribution of routing delays may intuitive
delay distributions along with their ICT’s are shown in Fig. imply that many nodes experience similar long routing delay
The figure shows that all the ICT distributions from ouand that use of more relays (or copies of messages) may not
models, except that from State fair, follow strong powemnrecessarily improve the performance drastically. In a gne
law for the duration up to several hours. The truncations ired relaying algorithm, the source distributes the messag
the ICT distributions occur because the simulation is ciit ahe firstm relays that it contacts. The routing delay is the time
around 300 hours and we consider only those contacts maileany copy of the message is delivered to the destination.
within the simulation time. The ICT distribution from StateFig. 6 (a) shows the DTN routing delays of various models
fair exhibits exponential decay. This is because the areawdfien one relay is used, and Fig. 6 (b) shows the 99% quantile
State fair (a radius of 340 m) is much smaller than the othedglays of the same models normalized by their corresponding
and given the transmission range of 250 m, nodes can makes-relay delays as we add more relays. As expected, BM
contacts with each other without traveling a long distafitee hardly achieves this goal; the delay does not improve so much
routing delays of the corresponding Levy walk models tend &s the number of relays increases, since every relay takgs lo
have high delays because, among many factors influencing tinee to meet the destination. However, we are surprised to
delays, the simulation area of our models is particulanigda find that all our Levy walk models including the one with
on average, our models have at least four times larger an atea 1.5 which shows fairly similar delay patterns as BM for
than the UCSD simulation area. However, the routing delagse relay case, show almost the same improvement ratio as
of RWP still show a short tail distribution. To see the effeEt RWP as we add more relays. This implies that while in RWP,
flight length distributions on routing delays more clearie most nodes travel long distances frequently, in Levy walks,
measure routing delays in the simulation runs used for Fig. afthough not all nodes make such long trips, there exist with
(b). Figure 6 (a) shows the result from which the followindnigh probability some nodes within the mobility range of the
can be observed. BM tends to have much larger delays thaource nodes that make such long trips. This contributes to
any other models while RWP, as expected, shows the smallis great reduction of the delays even with a small number of
delays because its probability of long flights is higheste Threlays.



s To see the effects of the above-discussed factors on routing
— - —Lew.a=10 performance, we simulate DSR [11], a source-based MANET
=7 Bowin routing, in the same simulation setup as the above using Glo-
; R MoSim [2]. In this simulation, we measure the data throughpu
W of FTP connections over 300 node pairs randomly selected.
Y The link bandwidth in these simulations is set to 2 Mbps.
o Figs. 8 (a) and (b) show the CCDF of throughput measured in
low and high node density network environments for various
oo s 0 e oot 10 mobility models. For the high density environment, we use
@ ®) 100 nodes in 1 km by 1 km area with = 500 m and for

the low density environment, 2 km by 2 km area with= 1

Fig. 7. (a) The hop count distributions of the shortest pattwben two km. We use the same values for the other parameters as in the
randomly selected nodes undergoing various mobility pateThe numbers gimulation run for Fig. 7.

inside the parenthesis represent the average hop countee(8CDF of their

corresponding path durations.

— -- — Levy,0=0.5 (
— - — Levy,a=1.0 (10.70)
— — Lewy,o=15 (10.51)
————— Brownian  (12.53)
— RWP (

7.76)
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o
]
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o In general, both hop counts and path durations have sig-
B. Routing in MANETSs nificant impact on routing throughput. Typically, the inflee

In this section, we examine the impact of Levy walks on th%f hop counts itself on data throughput gets less emphatic

performance of MANET routings. There exist many MANET®S hop coun_ts increase be_cause each_ simulation run contains
protocols in the literature. It is impractical to evaluatethe one connect!on_sc_) there is iny self-interference, and S?If
protocols, but instead, we first focus on the features of fitpbi !nterference is limited only within a few hops. However, 't.
that affects the performance of MANET routing such as hd clear th_at as t_he number of hops of a path Increases, its
counts and path durations. These features strongly infiue @th_ gluratlon IS I|kely to reduce. Path durat_lons seem to _be a
the routing performance of MANETSs. For instance, us}lg_nlflcant determinant of da_ta_thr_oughpl_Jt in our simulatio
shows that data throughput is proportional to path duratio his can be seen from the similarity of Figs. 7(b) and 8(a).
within the limit of link capacity in the network.

Fig. 7 shows the hop count distributions of the shortestin the low density simulation, the node pairs with the
path between two randomly picked nodes in the simulation bést throughput around the tail of the throughput CCDF
various mobility models, and the CCDF of their correspogdirtend to have long path durations. In the simulation BM and
path durations. We use the same simulation setup as distudsevy walks have an order of magnitude higher maximum
in Section IV. The radio range of each mobile is set to 2508roughput than RWP. However, around the top of the CCDF
meter. We run the simulation for 3000 seconds. 400 pairs iof the figure, BM and Levy walks show a significantly
nodes are selected and the hop count of each pair is measleed number of node pairs. This is because the number of
and sampled once at each time they establish a new path. Mastcessful path connections is much less for BM and Levy
of RWP hop counts are less than 15 hops and their distributimalks. In Fig. 8(c), we plot the connection probability of
is peaked around 7 hops. This occurs because RWP nodede pairs, the probability that two randomly selected sode
tend to cluster around the center of the simulation area [Sluccessfully establish a routing path between them, in our
The hop count samples of RWP are also much larger theimulation runs. The connection probabilities of BM and y.ev
those of the other models because as we can see in Fig. Aiglks are around 30% and 60%, respectively. This is because
RWP tends to maintain much shorter routing paths than ttiee difference in the diffusion rates of mobility has infleed
other models because of its high mobility. On the other hanitheir clustering behavior. As mentioned above, BM and Levy
Levy walks tend to have longer paths than RWP. Becausew#lk nodes tend to be more spread out, likely incurring more
the less diffusive nature of Levy walks, Levy walk nodes tendisconnected islands. On the other hand, while RWP nodes
to stay longer in one location than RWP. Therefore, noddse not have any connectivity problem, their throughput gend
are more spread out in the simulation area than RWP. Sirtoebe much lower than that of BM and Levy walks. These
the path durations of Levy walks are longer than those €dctors collectively cause BM and Levy walks to have heavier
RWP, the numbers of hop count samples of these models ¢ throughput distributions while causing RWP to have a
much smaller. BM shows an extreme case of inactivity as ishort tail. Thus, when examining network performance under
average hop count is longest. However, its path durationrisalistic mobility models, we need to examine the entire
the second longest to the Levy walks model with= 1.5. distribution of performance instead of single numbers such
This is because most paths with long durations are from shag average or median values which are much less meaningful
paths, and BM nodes are more spread out and tend to haveler power-law distributions of performance metrics of
less chance of short paths as we can see from Fig. 7(a).ifterest. Under the high density network simulation, all
addition, because BM has = 2, it has more occurrences ofmobility models achieve 100% connection probability. Even
short pause times than the Levy walk models. These factamsthis environment, the data throughput under BM and Levy
collectively contribute to reducing the path durations ofl B walks is much higher than that of RWP because of their
below that of the Levy walk model witln = 1.5 although longer path durations.

BM is slightly less diffusive than the Levy walk model.
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VI. CONCLUSION [18] K. F. Sushant Jain and R. Patra. Routing in a delay totenatwork.

— . In SIGCOMM SIGCOMM, 2004.
Levy walks are commonly observed in biology and physuﬁg] G. M. Viswanathan, V. Afanasyev, S. V. Buldyrev, E. J. iy, P. A.

and they are also optimal ways for foraging animals to find Prince, and H. E. Stanley. Levy flights search patterns ofdefing
randomly dispersed food sources in optimal ways. If we can abatrossesNature 381:413-415, 1996.

leverage these lessons learned from nature for DTN routing

problems, good strategies to evaluate the performance of

routing and also to route messages as well are likely oldaine
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