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ABSTRACT
We present the wireless manifold, a 2-dimensional sur-
face whose geodesic distances accurately capture wire-
less signal propagation. As a result, the connectivity
graph of a wireless network can be viewed as a disk
graph on the manifold. A compact representation of
the manifold can be reconstructed from a sparse set
of signal measurements. The manifold distance sug-
gests a simple routing algorithm that avoids obstacles
and naturally handles mobile nodes without explicitly
maintaining the connectivity graph. It is more efficient
compared to using Euclidean distance as measured by
success rate, routing load and failure tolerance. Plac-
ing sensors to cover the manifold is more effective than
covering the underlying physical space.

1. Introduction
The connectivity graph of a wireless network is de-

termined by complex factors such as geographic layout,
physical obstacles, noise and electromagnetic interfer-
ence. Moreover, a principal feature of ad hoc networks
is the mobility afforded to the nodes and this implies
that the topology of the network could be frequently
changing.

A widely studied model for wireless connectivity is the
unit disk graph model [9]. Each node of the network is
represented as a point on the 2-dimensional plane and
two nodes are connected if their distance is at most
1, i.e., the range of a node is a unit circle centered at
its location. While this model is attractive and often
used for algorithm design or validation, it does not take
into account the many factors other than physical (Eu-
clidean) distance that affect connectivity; indeed the
disk assumption is typically violated in practice [3, 14,
13, 2].

In this paper, we define the wireless manifold using
the basic physical principle that signal strength decay
follows an inverse square law. The key property of the
wireless manifold is that the shortest path (geodesic)
distance along the manifold between any two points es-
timates the signal decay between them. Thus, the con-
nectivity graph is determined by disks on the manifold;
a disk of radius r on the manifold is the set of all points
within geodesic distance r. The contours of these disks
on the plane may be very different from circles depend-
ing on the structure of the manifold.
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We give an algorithm to construct a compact rep-
resentation of the manifold from a sparse set of signal
strength measurements. Without directly modeling any
physical factors, the representation captures and pre-
dicts signal decay to high accuracy and is vastly superior
to the best possible Euclidean representation, thus im-
proving on the disk model and its known refinements.
The manifold representation encodes obstructions im-
plicitly, making the model conceptually much simpler.
It is qualitatively different from previous work on as-
signing virtual coordinates to the nodes in a network [6,
22, 4] or modeling non-Euclidean features of network
connectivity by explicitly modeling obstructions [5].

Roughly speaking, the manifolds we consider are dis-
torted 2-dimensional grids. We imagine placing a grid
on the region of interest and choosing a length for each
grid edge so as to make the resulting shortest path dis-
tances as close as possible to a given set of distances.
This formulation, which we call the best manifold prob-
lem, appears quite general and unexplored. Most the-
oretical work in embeddings focusses on the minimum
distortion of mappings from one space to another. Here
we are asking a different question: given the mapping,
find the best target space from a given class. The for-
mulation is described more precisely in Section 2.

We note that the manifold size can be kept constant,
independent of the number of nodes in the network.
Each network node will be associated with its nearest
manifold grid node. Our representation decomposes the
connectivity graph of a wireless network into two parts
— the manifold itself which is not expected to change
often and the locations of nodes which might change
frequently but are easy to update. This can be used
in several scenarios; two important ones are (a) sensor
placement and (b) routing.

Placing sensors. A typical goal of sensor placement
is to provide coverage of a certain area or connectivity
for a given set of nodes (in the case of relays). Plac-
ing nodes uniformly on the underlying physical space
ignores obstacles and interference. On the other hand,
the wireless manifold incorporates these features and
maximizing coverage of the manifold should be more
efficient. Alternatively, the manifold can be used to
identify regions where the coverage needs to be boosted.

Routing. Unfortunately, over a decade of research
on wireless routing has not led to a viable and scal-
able system. Methods that work extremely well for
wired routing have not been successfully adapted to
wireless/mobine networks. The manifold representation
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suggests routing protocols that are fundamentally dif-
ferent. Before we describe the new ideas, it is perhaps
useful to discuss a method that might appear related,
viz., geographic routing [7, 15, 11, 17, 16]. The latter
is an elegant theoretical approach to wireless routing
that requires planarization of graphs [23, 8] and assign-
ing coordinates on the plane. It is guaranteed to work
in the unit-disk model. Kuhn et al.[18] have proposed
relaxations of unit-disk graphs to improve robustness of
planarization techniques which fail in case the underly-
ing graph violates the standard unit disk assumption.
Kim et al.[13] propose the cross-link detection proto-
col, which enables provably correct geographic routing
on arbitrary connectivity graphs. All these approaches
involve deleting certain links and then assigning coordi-
nates to guarantee success of routing algorithms. The
main idea for routing on the wireless manifold is that
between two points, there exists a path on the manifold
that is monotonically decreasing in distance. The man-
ifold representation makes it easy to maintain shortest
path distances. For routing, each packet could have a
header field indicating its current manifold distance to
the target node. Any node that receives the packet re-
transmits if and only if its distance to the target is less
than the current distance of the packet (in the header)
by a certain width parameter (which can be tuned to re-
duce network load) and updates the header. We present
experimental results demonstrating the main properties
of this protocol. We note that manifold distance can be
used in any of the known distance-vector routing pro-
tocols.

When a node moves to another location, it has to
update its location on the manifold and inform other
nodes that wish to send to it. We can implement known
location service methods such as [19] for this purpose.
The manifold representation is suited for mobility since
the manifold itself is not expected to change rapidly
(e.g., new buildings). All that needs to be updated are
the node locations. Unlike previous routing algorithms
manifold routing does not rely directly on the connec-
tivity graph. Even though the connectivity graph could
be rapidly changing in response to node movements, it
is implicitly known from the wireless manifold (which
is more stable) and the node locations. Further, when
the manifold does change, our algorithm for finding a
representation can also be used to refine it.

In contrast with ad hoc on-demand distance vector
(AODV) [21] routing or dynamic source routing (DSR) [10]
the manifold routing algorithm does not incur frequent
overheads of route discovery or of carrying the entire
route in the header. By tuning the width parameter,
we demonstrate that it is possible to ensure fairly low
routing load on the network, as is the case with these
algorithms.

2. The wireless manifold
In this section, we describe precisely a simplified dis-

crete model for manifolds that will suffice for our pur-
pose. Our manifolds are distorted 2-dimensional grids.

Let G = (V, E) represent the graph of a k×k grid where
V is the set of grid points with coordinates from the set
{1, . . . , k} and E is the set of all grid edges, i.e., pairs of
adjacent vertices on the grid. A manifold M is obtained
by assigning a nonnegative length, l(i, j), to each grid
edge (i, j) ∈ E. These lengths induce a metric on the
grid vertices where the distance M(u, v) between each
pair of grid points u, v is the length of the shortest path
between them. The set of all manifolds, M, is the set
of all such metrics induced by length assignments to the
grid edges.

We now define the best manifold problem. The input
is the set of locations of wireless nodes and the measured
signal strengths for some pairs of nodes, i.e., a subset W
of the grid vertices V and a subset F of pairs of points
from W along with nonnegative “distances” d(u, v) for
each pair in F . The problem is to find the manifold M ,
i.e., lengths l(i, j) for grid edges, so that the induced
shortest path metric is as close as possible to the given
distances for pairs in F in the following measure:

min
M∈M

∑

(u,v)∈F

(d(u, v) − M(u, v))2 . (I)

Alternative formulations are possible, e.g., one could re-
strict the final metric to be non-contracting, i.e., M(u, v) ≥
d(u, v), and then minimize the maximum distortion, i.e.,
minimize the maximum of M(u, v)/d(u, v) over pairs in
F . Another possibility is to minimize the average dis-
tortion.

Unfortunately, all these formulations are NP-hard,
even to approximate. This follows due to a reduction
from 3-SAT (we omit the proof in this paper). Thus, we
do not hope to find an efficient algorithm to solve the
best manifold problem in the worst case (for arbitrary
input distances).

On the other hand, the objective function (I) is dif-
ferentiable, and we use the following method to find a
local optimum.

1. Convert signal decay s(x, y) for each pair observed

to effective distance d(x, y) = 1/
√

s(x, y).

2. Complete d to a metric using the induced shortest
path distances

3. Set every edge to the same length (we use the value
that minimizes (I)).

4. Repeat:

• Compute the gradient y of (I) at the current
solution z.

• Move z in the direction of the y without mak-
ing any component of z (grid edge length) neg-
ative; if the gradient makes some edge nega-
tive, keep that edge length at zero.

One could impose other linear constraints, e.g., insist-
ing that some pairs have lower bounds on the manifold
distance.
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3. Sensor placement
Once we have identified a manifold, we can use it

to guide the placement of network resources such as
sensors or relays.

We place nodes so as to cover the wireless manifold
rather than the Euclidean plane on which the nodes lie.
In a random placement, we choose each grid point with
probability proportional to the sum of the lengths of
adjacent edges. In Section 5, we compare picking grid
nodes uniformly at random (which corresponds to sam-
pling the Euclidean plane) to picking them according to
the manifold, to see which method achieves connectivity
and coverage faster.

Besides connectivity, placing relays using the mani-
fold can also be advantageous for routing. We discuss
and evaluate that aspect in the context of routing.

4. Routing
The basic idea for routing is very simple. Imagine

each node has a table of the distances to every other
node in the network (we will shortly see that we do not
need an explicit table and distances can be computed
from a small representation). A packet P has two pieces
of information in its header: (1) the target node t and
(2) the manifold distance d to the target t from the loca-
tion of its most recent retransmission. Let R(v) denote
the radius of influence of node v. Here is a candidate
rule for forwarding packets:

When node v receives packet P ,
– if M(v, t) < d − αR(v),
– set d := M(v, t) and retransmit P .

We also allow nodes to broadcast. This is done by set-
ting the destination ID to a special character. Broad-
cast is useful when a node has to announce its new
location.

The width parameter α can be tuned for efficiency.
At α = 0, the algorithm is guaranteed to find a route
if one exists. It might use a larger number of nodes
than necessary for retransmission. As we increase α,
the set of nodes participating reduces. We propose that
α be adjusted dynamically. Figure 7 in the evaluation
illustrates contours of network load for different values
of α on a randomly generated instance. Moreover, each
node could have its own width setting, based on the
local structure of the manifold.

We view the size of the grid to represent the manifold
as a constant independent of the size of the network.
Each node keeps a copy of the grid. The distance be-
tween two network nodes is estimated by the distance
between their nearest grid points.

5. Evaluation
In this section, we present our preliminary evaluation

for (a) the quality and learnability of the manifold (b)
sensor placement and (c) routing efficiency.

We report experiments on the CRAWDAD data set
Rutgers-noise [12] as well as randomly generated in-

stances. The Rutgers-noise data sets contain RSSI (Re-
ceived Signal Strength Indication) measurements for some
pairs of nodes. The data set was collected by inject-
ing white Gaussian noise at multiple locations into the
ORBIT[1] indoor testbed, which consists of an 8 × 8
grid, with nodes placed at some locations. There are 29
nodes in the data sets we examined. Signal measure-
ments were collected at 3 noise levels: 0 dB(dbm0), -5
dB(dbm-5) and -20dB(dbm-20).

We also generated random manifolds for evaluation.
For this we used Gaussian distributions with randomly
chosen centers and random covariances. Each Gaus-
sian affects the lengths of manifold edges that are at
least some distance away from its center. The length
of an edge is proportional to the maximum density any
Gaussian places at the midpoint of the edge (see Fig. 4
for an example). We chose this model as it appears to
capture the effects of having steep barriers caused by
obstructions.

5.1 Learning the manifold
Manifold distance is a shortest path metric and so will

always satisfy the triangle inequality. As a preliminary
analysis, we checked whether the effective distance (in-
verse square root of signal decay) was approximately a
metric. We found an average violation of 1.07, a max-
imum violation of 1.83 and less than 25% showing any
violation at all (violation is the ratio of the direct ef-
fective distance between two points u, v to the shortest
alternative path with effective distances).

Next we turn to the central question of how well our
manifold can approximate effective distance (and there-
fore signal strength) and how well it generalizes. We
applied the algorithm described in Section 2 to each of
the Rutgers-noise data sets. We compared the manifold
distance to the original effective distance. To test gener-
alization, we randomly omitted a subset of the observed
measurements, computed the manifold on the rest and
then compared the manifold prediction with the omit-
ted measurements.

Figure 1 shows the manifold obtained by the algo-
rithm for the data set dbm0. The red dots are posi-
tions of network nodes. The shortest path between two
nodes is marked and is quite different from the shortest
path on the plane. The manifold also gives an idea of
barriers across which communication is harder and thus
suggests points to place relays.

To evaluate the accuracy of the manifolds obtained we
used several measures. Table 1 compares the manifold
with the best plane embedding in terms of (1) average
error: the ratio of the objective function value (I) to
the sum of squares of all the effective distances, (2) av-
erage expansion: the average expansion factor for pairs
whose distance went up compared to the original, (3)
average contraction: the average shrinking factor for
pairs whose distance went down and (4) maximum dis-
tortion: the product of maximum contraction (max fac-
tor by which some edge length was reduced) and maxi-
mum expansion (factor by which some edge length was
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Figure 1: : Manifold for dbm0

Data set Measure EuclideanManifold Manifold
prediction

Avg Error 0.185 0.017 0.07
dbm0 Avg Exp 2.33 1.13 1.25

Avg Contr 0.35 0.9 0.93
Max Dist 25.85 2.86 1.71

dbm-5 Avg Error 0.137 0.022 0.03
Avg Exp 1.83 1.15 1.36

Avg Contr 0.44 0.89 0.87
Max Dist 14.81 2.58 1.87
Avg Error 0.145 0.021 0.02

dbm-20 Avg Exp 1.72 1.11 1.12
Avg Contr 0.29 0.88 0.89
Max Dist 14 2.13 1.79

Table 1: Embedding data sets into manifolds

increased). From the first and second columns of the ta-
ble, we see that the manifold embedding typically has
a 5 to 10-fold advantage over Euclidean and further the
actual error values are quite small. Moreover, the av-
erage error of the rank-5 approximations for the three
data sets dbm0, dbm-5, dbm-20 were 0.093, 0.086 and
0.066 respectively. The matrix of specified distances
does not have a good low-rank approximation, imply-
ing that even using more coordinates does not help.
The curvature induced by the manifold is essential to
accurately recover signal propagation.

To test how well the learned manifold generalizes, we
dropped at random 8% of the measured effective dis-
tances (edges) from the data sets, computed the man-
ifold on the rest of the observations and made predic-
tions on the 8% not used in computing the manifold.
The last column in Table 1 shows that the manifold
prediction error is low on all the measures and is com-
parable to that on the full set of values. From this
we conclude that the manifold captures and generalizes
wireless connectivity accurately.

We also collected signal strength data ourselves by
placing wireless nodes at various positions on the first
floor of the Klaus Advanced Computing Building at
Georgia Tech. Figure 2 shows the floor plan of the
building with the placement of the nodes. Figure 3

shows the manifold obtained for this region. The aver-
age error, expansion and contraction were again signif-
icantly smaller for the manifold compared to the best
Euclidean scaling.

Figure 2: Placement of nodes in Klaus building at Geor-

gia Tech
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Tech

5.2 Sensor placement
We used randomly generated manifolds for evaluat-

ing sensor placement. Figure 4 gives an example. For a
fixed radius r (two grid points on the manifold can com-
municate directly if their manifold distance is at most
r) we chose node locations on the in two ways: (i) a uni-
formly random grid points (ii) random grid points each
with probability proportional to the sum of the incident
manifold edge lengths. We then report the number of
nodes required to be chosen to ensure that the network
is connected. Figure 5 show the plot of the number
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Figure 4: Randomly generated manifold

of nodes required to achieve connectivity vs the radius
of transmission for the two different ways of choosing
sensor locations.

Figure 5: Number of nodes required to achieve perfect

connectivity at different radii

We also measured the number of nodes for full cov-
erage vs the radius and separately, the fraction of pairs
connected vs number of nodes and fraction of the grid
covered vs number of nodes. In every case, manifold
sampling was significantly better.

5.3 Routing
We used the following measures for evaluating rout-

ing in simulations: (1) Success rate, i.e. fraction of node
pairs that can communicate (2) Routing load, i.e., the
average number of packets forwarded in the network
per node. We implement the forwarding rule described
in Section 4 using the manifold distance as well as Eu-
clidean distance. We first compared these methods on
each of the Rutgers-noise data sets by routing between
every pair of nodes.

On each of the three Rutgers-noise data sets, at every

Figure 6: Routing on dbm0

radius of transmission that we used, manifold routing
had a higher success rate and smaller load. The routing
load can be adjusted by varying the width parameter α
of the routing algorithm. Figure 6 plots the success rate
vs the average load for the dbm0 data set. We see that
to ensure 90% success rate, manifold routing incurs a
routing load of less than 4, where as Euclidean routing
incurs a routing load of 11.5, nearly 3 times as much.
We found similar plots for the other two data sets.

We also evaluated routing on randomly generated man-
ifolds. For these, we picked network node locations
in two ways. First, we picked every other grid point
vertically and horizontally and routed between random
pairs. Second, we picked N nodes, by picking N/2
random grid points and the other N/2 either at ran-
dom from the manifold (when using manifold distance
for forwarding) or uniformly from the grid (when us-
ing Euclidean distance). Messages were routed between
random pairs drawn from the common nodes (the first
N/2). The motivation for the last choice was to study
the effect on routing of choosing relay nodes in the two
different ways. Figure 7 shows the nodes retransmitting
packets while attempting to route between two points
(bottom left hand star and top right hand star). Man-
ifold routing is successful for α up to 0.5. In the figure,
the nodes marked in white circles are the only ones re-
transmitting at α = 0.5 and as α goes to zero, the darker
ones also start retransmitting and finally at α = 0.0,
all marked nodes are retransmitting. Euclidean routing
tends to flood almost the entire grid when it succeeds.

Figure 8 shows the trade-off between success rate and
routing load for the two routing methods on the first ex-
periment with random data using a subgrid of points as
node locations. We see that to ensure 95% success rate,
manifold routing incurs a routing load of 178, whereas
for the same success rate Euclidean routing incurs a
routing load of 485. In the second experiment, Figure 9
shows the same comparison for the randomly chosen
network node locations. To achieve 95% success rate
manifold routing incurs routing load of 265 whereas for
the same success rate, Euclidean routing incurs a rout-
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Figure 7: Manifold routing

Figure 8: Routing on a random manifold

ing load of 603. Thus by tuning the width parameter α,
we see that a large reduction in network load is possible
for manifold routing without reducing the success rate
significantly.

Figure 9: Routing with randomly chosen node locations

Finally, we also ran the routing experiments on ran-
dom manifolds after failing each node independently
with probability p ranging from 0 to 0.8. The success
rate using manifold distance was always higher than
that using Euclidean distance.

6. Discussion and Future Work
Our results on recovering the wireless manifold and

predicting signal strengths using it provide compelling
evidence that (a) the manifold captures wireless com-
munication with high accuracy without explicitly mod-
eling complex physical factors and (b) it can be recov-
ered using a simple algorithm. We plan to investigate
these findings more thoroughly in different test zones in-
cluding large buildings and urban landscapes. We will
also study the size of the manifold representation re-
quired to produce an accurate distance measure and
extensions such as directed grids and nonuniform grids,
e.g., allowing the grid to be finer in places. The idea
of using a manifold rather than a plane seems natural
for capturing other properties of a network besides con-
nectivity and we are eager to see if this representation
improves on earlier approaches assigning virtual coor-
dinates [20].

Our findings raise intriguing theoretical questions. Why
is the algorithm so effective in the face of the worst-case
hardness? One reason could be that the best manifold
is easy to find provided it has low distortion (as seems
to be in the wireless setting). Next, what graph met-
rics are embeddable in our manifolds? An extension of
Kuratowski’s characterization of planar graphs seems
natural.

From our preliminary experiments, routing on the
manifold is effective and can tuned for efficiency us-
ing the width parameter α. So far we have tested the
routing ideas only in simulation. We plan to fully eval-
uate the algorithm by setting up a multi-hop wireless
network and measure throughput, latency and recov-
ery time under failures and mobility. We expect that
using manifold distance will provide improvements for
existing distance-based routing algorithms.

An exciting scenario for multi-hop wireless networks
is providing connectivity in developing countries that
face the “last-mile” problem. Broadband access is ex-
pensive and while fiber is available it comes within a
mile of most users but not all the way. In ongoing
work with the TeNet group in Chennai, India, we are
studying manifold routing along with other known ap-
proaches in an urban area that we have already iden-
tified. This setting is particularly interesting because
other solutions such as building powerful antennas or
providing cable access are prohibitively expensive or
otherwise impractical. Moreover, power consumption
is one of the considerations and so multi-hop and low
network load can both play a useful role.
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