
Holding the Internet Accountable

David Andersen, Hari Balakrishnan, Nick Feamster,
Teemu Koponen, Daekyeong Moon, Scott Shenker

Abstract
Today’s IP network layer provides little to no protection
against misconfiguration or malice. Despite some progress
in improving the robustness and security of the IP layer,
misconfigurations and attacks still occur frequently. We
show how a network layer that provides accountability, i.e.,
the ability to associate each action with the responsible
entity, provides a firm foundation for defenses against
misconfiguration and malice. We present the design of
a network layer that incorporates accountability called
AIP (Accountable Internet Protocol) and show how its
features—notably, its use of self-certifying addresses—
can improve both source accountability (the ability to trace
actions to a particular end host and stop that host from
misbehaving) and control-plane accountability (the ability
to pinpoint and prevent attacks on routing).

1 Introduction
The Internet architecture is elegant and simple; it has been
a tremendous success. When judged from the perspective
of security, however, the architecture has several serious
shortcomings. The IP layer, in particular, is riddled with
vulnerabilities. Denial-of-service (DoS) attacks occur daily
and are launched with impunity because attackers are con-
fident they will neither be identified nor thwarted easily.
Misconfigurations can cause massive Internet outages (as
in the infamous AS 7007 incident [4] and similar occur-
rences in recent years [26]). Route hijacking is used to
send untraceable spam [23].

Our goal is to develop a network architecture to address
these IP layer vulnerabilities. Our work does not enter a
vacuum, as there is a profusion of network security solu-
tions addressing the set of problems discussed in this paper.
However, these solutions tend to be narrowly focused, and
their union does not form a coherent architecture. We can
be fairly certain that if these solutions were implemented
and deployed, IP would be more secure. Unfortunately, it
is also clear that IP would have lost much of its simplicity,
elegance, and coherence.

To achieve both practical security and architectural co-
herence, we need to develop a simple foundation upon
which security solutions can be easily built. In searching

for a unifying principle, we turn to daily experience. In the
real world, security relies on accountability.1 In a just and
secure society, one ought to be able to prove that a guilty
party did in fact commit a crime. Equally importantly,
framing an innocent party should be difficult. Having such
a framework for accountability, together with suitable laws
and punishment, is important to provide adequate incen-
tives for crime prevention.

We believe the same holds true for computer systems. In
order to identify, isolate, prevent, and possibly punish bad
behavior (e.g., by not providing service to wrong-doers), a
computer system must have some notion of accountability.
Indeed, one of the reasons it has been so hard to secure
the Internet is that the IP architecture provides very little
accountability. For instance, IP addresses do not always
map one-to-one to Internet end points because of NATs,
firewalls, and proxies. More dangerously, IP addresses
are trivial to forge, so attempting to use IP addresses to
identify or ignore wrong-doers opens up another attack
vector.

This paper presents AIP (Accountable Internet Proto-
col), a network architecture that provides accountability
as a first-order principle and serves as a building block for
simple, elegant improvements to Internet security. AIP’s
cornerstone is self-certifying addressing. AIP addresses
are of the form AD:EID, where AD is the identifier for the
autonomous domain that the host belongs to, and EID is a
globally unique host identifier. Both address components
are derived from public keys held by the domain and host,
respectively. The structure of these addresses allows other
entities to verify the authenticity of routing messages and
the provenance of data packets.

AIP addresses enable protocols to (i) detect and prevent
spoofing or forgery of source addresses (source account-
ability); (ii) throttle certain forms of unwanted traffic us-
ing a simple “shut-off message”, taking advantage of the
source accountability property to ensure authenticity; and
(iii) detect misleading route advertisements (control-plane
accountability). AIP aims to add accountability with only
small changes (and minimum additional complexity) to the
network architecture; it therefore can, and should, co-exist

1. We focus on accountability in the sense that we wish to attribute
actions to the responsible party; we do not mean accounting, and have no
intention of providing facilities for resource allocation.

1



with mechanisms that provide other important features
(mobility, higher availability, etc.).

In the next section, we describe these two forms of ac-
countability. We then give an overview of the AIP architec-
ture in Section 3. We discuss control plane accountability
and source accountability in Sections 4 and 5. In Section 6
we discuss three design challenges raised by AIP: scaling,
traffic engineering, and key compromise.

2 Why Accountability?

AIP makes accountability a first-order design goal. By
doing so, it improves the security, trustworthiness, and
robustness of both the IP layer and of the systems built
atop it. Accountability makes certain types of attacks
either more traceable or simply more difficult to mount.
AIP provides two types of accountability: control-plane
accountability and source accountability. For each, we
briefly discuss how the absence of accountability leads to
insecurity and how its presence might provide a foundation
upon which robust security measures could be built.2

Control-plane accountability: If routers and ASes
were accountable for their routing messages, then their
peers would be able to more easily discover forgeries or
errors. Ultimately, securing a protocol like BGP (as in
S-BGP [14]) relies on ensuring that no entity can unde-
tectably forge routing messages, which is actually a state-
ment about accountability.

Securing routing is difficult in part because today’s IP
addressing structure does not securely bind addresses to
the networks that are allowed to announce them. S-BGP
provides mechanisms to do so, but we believe that such a
binding should be inherent to the network architecture.

Source accountability: Today’s Internet architecture
lacks source accountability: hosts can easily forge the
source IP address of data traffic, which makes attacks dif-
ficult to track and makes it nearly impossible for network
operators to filter traffic based on the source address—the
most logical identifier for doing so.

If sources were accountable, then any element in the
network that saw a packet could verify that packet’s ori-
gin. This property eliminates undetectable source address
forgery. As a result of preventing such forgery, defenses
against DoS could profile using source addresses, routers
could implement packet filters or rate limiters using source
addresses as a robust handle, spam filters could more eas-
ily blacklist on IP addresses, and intrusion detection and
prevention systems could use source addresses as a handle
to their state without worrying about adversaries forging
source addresses and exhausting their state.3

In this paper, we do not address data-plane accountabil-
ity (i.e., ways to identify network elements that are not
forwarding packets appropriately). Several aspects of AIP,
however, do facilitate solutions to this problem. First, all
elements in the architecture have strong, verifiable identi-
ties that can serve as a basis for attestations about behavior.
Second, hosts’ globally unique identifiers (Section 3.2)
facilitate avoiding data-plane failures through multihom-
ing or by continuing connections through different ADs
or interfaces. Finally, AIP’s self-certifying address struc-
ture makes it possible to give cryptographic assurance to
mechanisms that attribute packet loss, delay, or misrouting
to a network element; one logical candidate mechanism is
AS-level packet obituaries [1].

3 Accountable Internet Protocol

This section outlines AIP, starting with the structure and
function of AIP addresses. We then explain how making
AIP addresses self-certifying (i.e., derived from public
keys) infuses accountability into the network layer.

3.1 Basic Structure and Function

The Internet’s original addressing structure was a simple
two-level hierarchy. Each address had a network and a
host component, and routers inspected only the network
portion until the packet reached the destination network.
The network and host components were both implicitly
assumed to be flat: there was little correlation between
topological and numerical proximity. Unfortunately, ad-
dressing has become more complicated with the advent of
autonomous systems (used in BGP routing) and classless
routing (CIDR); these changes have made it hard to add
accountability to the existing infrastructure.

Address structure: AIP returns to simple two-level hier-
archical addresses. We assume that there are some number
of independently administered networks (as is the case
today) which we call autonomous domains (ADs), and
that each possesses a unique identifier. We avoid the term
“AS” because we envision that current large ASes would be
broken up into several smaller ADs for traffic engineering
(Section 6.2). Each host is assigned a unique endpoint iden-
tifier (EID). Analogous to the original Internet addressing
structure, the AIP address of a host currently homed in

2. Accountability, as we have defined it, does not preclude anonymity
for end-to-end applications (such as anonymous email), which can be
provided using approaches such as onion routing and mix-nets.

3. The simplicity of profiling and filtering is in stark contrast to the
more radical architectural designs needed to deal with DoS in the presence
of spoofing, such as [15, 11, 27, 32].

2



some AD would have an address of the form AD:EID.4

The EID is a globally unique endpoint identifier, and it is
part of the internetwork address (as in IPv6 CGA [2]).

Name lookup: The domain name system would include
an AIP-record, which would contain the AIP address(es)
for a hostname. A host might have multiple addresses if
it had direct upstream connectivity to multiple domains
ADi; the host would then have addresses ADi:EID in its
AIP-record for each domain. In addition, to allow even
more fine-grained control of traffic for the host, EIDs could
be augmented with interface bits that give each interface
a unique identifier: EIDif1, EIDif2, etc. Each of these
identifiers would appear in the host’s AIP-record.

Interdomain routing: In AIP, interdomain routing oc-
curs in much the same way that it does today (and can
benefit from improvements to BGP). Rather than involving
IP prefixes, however, interdomain routing occurs entirely
at the AD granularity, so the only advertisements will
be for ADs themselves. Interior and border routers in
an AD maintain routing information on a per-AD basis
for destinations in other ADs; i.e., an AIP routing table
maps AD numbers to “next hop” locations but does not
maintain any information about EIDs in other ADs. Each
router also participates in an interior routing protocol (e.g.,
OSPF [20]) to maintain routing information to the EIDs
within the AD. Although AIP changes the granularity of
routing, it does not specify or mandate any particular inter-
or intra-domain routing protocol.

Packet forwarding: Packets contain the destination’s
AD:EID. Until the packet reaches the destination AD,
routers use only the destination AD to forward the packet.
Upon reaching the destination AD, routers forward the
packet using only its EID.

3.2 Self-Certifying Addresses
Eliminating structure in the AD and EID allows us to make
them self-certifying. The notion of a self-certifying name
is straightforward: the name of an object is the public
key (or, for convenience, the hash of the public key) that
corresponds to that object. In AIP, the AD is the hash of
the public key of the domain, while the EID is the hash of
the public key of the corresponding host. Although higher
layers have used self-certifying naming (e.g., hosts, data,
and services) [18, 30], and HIP [19] uses such addresses
in a shim layer between the IP and transport layer, AIP
is the first architecture to our knowledge that uses fully
self-certifying addresses at the internetwork layer itself.

Security should not rely on extensive manual configura-
tion or globally trusted authorities. Thus, we believe that

self-certification is an indispensable aspect of providing ac-
countability at the network layer. Accountability requires
a verifiable identity, and in these settings the only practical
method of verification uses cryptographic signatures. Thus,
identifiers must be bound to their public key.

Existing schemes (e.g., S-BGP [14]) implement this
binding using registries that map identifiers to their pub-
lic keys (a PKI). Unfortunately, these registries must be
both up-to-date (via manual configuration5) and globally
trusted. Self-certifying addressing frees security mecha-
nisms from undesirable trust relationships or manual con-
figuration. Existing IP and transport security mechanisms
(e.g., IPsec [13]) could also use AIP’s self-certifying ad-
dress structure to securely establish the identity of a remote
host, rather than relying on an external infrastructure.

4 Control-Plane Accountability
Today’s Internet routing infrastructure provides almost
no accountability. A malicious or misconfigured AS can
“hijack” IP address space (i.e., advertise IP prefixes that
it does not own), because there is no intrinsic association
between an autonomous system number and its part of
the IP address space. It is also possible to forge routing
announcements with false AS paths, causing traffic to be
redirected in unexpected and undesirable ways.

Securing routing involves fixing both of these problems:
the infrastructure should provide origin authentication (en-
suring that the AS that originated the route actually owns
the block of IP addresses being advertised) and path au-
thentication (ensuring the accuracy of the AS path). Solv-
ing these problems involves holding an AS accountable for
its routing announcements.

Recent proposals retrofit cryptographic mechanisms
onto BGP to address these shortcomings [14, 31]. Unfor-
tunately, the deployment of such secure routing schemes
is hindered by the Internet’s simultaneous use of two logi-
cally distinct and unrelated name spaces: AS numbers and
IP prefixes. This independence forces routing security to
depend on two external infrastructures: a “routing registry”
(a database recording which AS owns each prefix) and a
PKI for ASes. Even if a PKI for ASes’ public keys came
to pass, experience has shown that such types of registries
are disappointingly inaccurate [10].

Self-certifying ADs make secure BGP routing intrinsic
to the architecture, not dependent on external registries
or operator vigilance. Origin and path authentication are
natural by-products of this design, as we now show.

Origin authentication, which is particularly lacking in
the current routing system, becomes automatic because

4. We expect that each field would be at least 128 bits in size.
5. Experience with Internet address registries suggests that keeping

these registries accurate and up-to-date will be difficult [10, 12, 25].

3



AD numbers are derived from public keys. ADs can ex-
change public keys using separate BGP messages or us-
ing a lookup service [31]. Verifying AD announcements
appears practical, given current cryptographic speeds: a
router that learns several hundred thousand ADs and two
or three routes per AD could verify an entire routing ta-
ble’s worth of signatures on the order of minutes with
manageable computational overhead.6

Path authentication proceeds as in S-BGP [14]: some
router in ADi signs the AD path [ADi+1 ADi . . . AD0]. A
router receiving an announcement with this AD path veri-
fies every signature in the route update before installing the
route in its routing table. Thus, each route advertisement
must be signed once by each AD along the AD path; a
router that receives a route must verify N−1 signatures,
where N is the number of labels on the AD path. The
significant advantage over the status quo is that because
AD identifiers are self-certifying, path authentication does
not need a PKI. One disadvantage to this approach is that
revoking a public key requires the AD number to change.
Section 6 considers this shortcoming in more detail.

5 Source Accountability
AIP provides an automatic mechanism for source account-
ability, ensuring that hosts cannot spoof the source address
of their packets. This mechanism enhances the effective-
ness of some current schemes to combat DoS attacks (e.g.,
by filtering [11] or simply by contacting the ISP responsi-
ble for the offending traffic) and also enables new defenses,
as we discuss later in this section. The inability to trust
the source address of packets has caused numerous other
security vulnerabilities, such as those due to using trusted
IP addresses for authentication in “.rhosts” files. In general,
we believe that many other aspects of the network architec-
ture pertaining to security will be improved or simplified if
they need not deal with address spoofing.

5.1 Preventing Spoofing

The limited success of ingress filtering [3, 7] has shown
that mechanisms that depend on correct operator action
are often only marginally effective. AIP’s source account-
ability, in contrast, makes use of self-certifying addressing
to develop simple mechanisms that verify the source of
packets—and drop the packets if the sources are spoofed.
AIP’s source accountability mechanism requires no config-
uration by operators and no interaction from operators or
end-users.

AIP’s source accountability mechanism extends (and
makes feasible) “unicast reverse path forwarding”
(uRPF) [8]. uRPF is an automatic filtering mechanism
that only accepts packets if the route to the packet’s source

packet
AcceptY

cache?
In accept

Trust N
Local AD? N

Y

Y Y

Nverify?

Y

accept cache

Drop
packet

source AD:X

Receive Nonce

N
Ignore

Send 
NonceAdd to

Receive Packet 

AD?
neighboring Pass uRPF?

Figure 1: Process for verifying a packet’s source address.

address points to the same interface on which the packet
arrived. uRPF is extremely useful at the edge for automati-
cally preventing spoofing by single-homed clients, but it
cannot cope with multi-homed customers and, because of
route asymmetry, it does not work in the core. AIP’s source
accountability mechanism essentially combines uRPF with
a second mechanism to automatically verify if packets are
valid even if they arrived on an interface other than the
reverse route to the destination.

Recall that the AD and EID components of an address
are hashes of public keys. We use these public keys to
validate the source address of a packet in two places. First,
each first-hop router verifies that its directly-connected
hosts are not spoofing. Next, each AD through which a
packet passes verifies that the previous hop is a “valid”
previous-hop for the specified source address. The process
for verifying a packet’s source address, AD:EID, summa-
rized in Figure 1, is as follows:

EID verification: If the first-hop router, R, has not re-
cently verified the source host, it drops the packet and
sends a nonce to the source. To prevent the router R from
needing to keep state for each nonce it sends, this nonce is
a function of the source’s EID, a coarse timestamp, and a
secret known only to R. The sender must prove that it has
identity EID by signing the nonce with the private key asso-
ciated with EID. If the host produces the correct signature,
R caches this information and allows subsequent packets
to pass. The host must re-send (“reflect”) the packet that
generated the nonce to the router, to avoid having any
router maintain state for unverified packets. For complete
protection, this mechanism might need to be implemented
in network switches, or would need to be linked to some
switch-level ARP security mechanism. In fact, this process

6. Cryptographic hardware could, of course, reduce this time consider-
ably, but even with only commodity processors the time is not excessive.
Route processors are getting faster (Cisco’s CRS-1 route processor is
1.2GHz); signature verification can be performed offline; and fast cryp-
tosystems such as ESIGN [22] running on a 3 GHz processor can create
and verify 2048-bit signatures in 150 and 100 microseconds, respec-
tively [17, §7.2.2].

4



is analogous to a “verifiable ARP” check, and can also be
used to prevent sources from forging ARP replies.

AD verification: When a packet crosses an AD bound-
ary, the incoming AD must decide if the source address
is valid. For a packet entering AD A from AD B, AD A
performs the following checks:

1. If A trusts B to have performed the appropriate set of
checks on the packet’s source address (as might be
the case between pairs of tier-1 or mutually trusted
ISPs), then A forwards the packet.

2. If A does not trust B, then A performs uRPF checks,
which determine whether it arrived on an interface
leading back to that source. If the packet’s source
address passes uRPF, A forwards the packet.

3. If these tests fail (e.g., in the case of route asymmetry),
A drops the packet and sends a nonce to AD:EID,
asking EID to produce a signature. If EID does so,
it proves two things: First, that EID originated the
packet that triggered the nonce exchange. Second,
that EID is legitimately contained in AD (or in one
of AD’s upstream networks, which is in a position to
spoof packets on behalf of EID in any case) and so
should be allowed to transmit packets as AD:EID.

To avoid keeping state, A generates the nonce in a man-
ner similar to a “SYN cookie”, hashing a coarse time
counter t, the source address AD:EID, and a secret s
known only to A. A can then verify that the returned nonce
is correct, using the timestamp to prevent replay attacks.
If it is, then A temporarily inserts AD:EID into its accept
cache, allowing subsequent packets through.7

Preventing address “minting”: While the mechanisms
above prevent an attacker from spoofing its AD or using
the EID of another host, an attacker could mint new ad-
dresses at will. This minting could be used to circumvent
EID-based filtering. By preventing AD-level spoofing,
however, AIP creates an incentive for ADs themselves to
prevent or limit minting. A victim facing an attack from
an inordinately large number of (apparently) unique EIDs
from one domain would simply filter all traffic from that
domain, stopping the attack but potentially causing collat-
eral damage. ADs can easily limit the number of EIDs a
host can claim using techniques similar to MAC-address
limiting in Ethernet, or prevent EID forgery by having
internal mechanisms to authorize EIDs to use particular
ports.

5.2 “Shutting-Off” Unwanted Traffic
While the techniques above directly eliminate some classes
of DoS attacks, such as “reflector” attacks that forge re-
quests to appear to originate from the victim, other at-

tacks remain unaffected, such as flooding a victim with
traffic from compromised hosts. AIP’s self-verifying ad-
dresses enable a new approach to throttling unwanted traf-
fic whereby a victim host sends an explicit “shut-off” mes-
sage to a host sending it traffic that it doesn’t want to
receive. Self-verification ensures the authenticity of these
messages.

Most compromised machines are owned by well-
intentioned users or businesses [24]. Although the vulnera-
bilities caused by the complexity of modern software make
it difficult for the owners to prevent compromises, they do
not launch attacks of their own volition. We therefore en-
vision equipping end hosts with a smart network interface
card (“smart-NIC”) that aids in controlling the network
behavior of the end host by selectively suppressing or rate-
limiting packet transmission. The suppression mechanism
of the smart-NIC would be beyond the reach of the host
OS and thus wouldn’t be subject to compromise. The only
way to modify the NIC’s firmware or configuration would
be by having physical access to it, e.g., by plugging it into
a USB or serial interface. In normal operation, it would be
unmodifiable from the host.

The smart-NIC would record the hashes of recently sent
packets and respond to a special class of packets called
shut-off packets (SOPs). A SOP sent from host X to host Y
would include X’s public key, a hash of a recent packet sent
to X from Y , and a TTL, all signed by X . Upon receiving
such a packet, the smart-NIC would first check to see if it
indeed had any record of such a packet. If not, it would
disregard the SOP; if so it would install a filter in the NIC
suppressing further packets from Y to X for the duration
of the TTL.

AIP’s combination of self-certifying addresses and
spoof detection makes this approach feasible. X’s sig-
nature and its key (which can be verified as belonging to
X) assures Y that X (or at least someone with X’s private
key) has sent the request. The hash of a recent packet
proves that Y has recently sent a packet to X . This proof
is necessary to prevent replay attacks, and to prevent an
attacker from exhausting the filter state in the NIC to allow
them to continue attacking a chosen victim. It is important
that this process not require a three-way handshake, as a
host under attack may not receive the return packets. This
approach can also be extended to filtering packets sent to
an AD, not just an individual host.

7. We depict the accept cache as examining both AD and EID, so that
one rogue host cannot give outsiders the ability to spoof other nodes in
its AD. For efficiency, of course, a router might choose to weaken this
property by keying the accept cache on a per-AD basis.

5



6 Challenges
AIP’s structure is conceptually simple, but significant re-
search will be needed to ensure that it will work in practice.
We outline three specific questions about AIP with regard
to practical issues of scaling, traffic engineering, and key
management.

6.1 Routing Scalability
Only 15 years after the Internet moved away from classful
routing, why do we suspect that flat addressing can scale as
well or better than current Internet routing? We examine
this question along two axes: the amount of routing state
and the volume of routing updates.

The routing state that AIP must cope should be man-
ageable. Modern routers handle one million or more rout-
ing table entries [29], and with sufficient incentive, vendors
could scale this number without too much difficulty. Fur-
thermore, routing on ADs requires a flat table look-up,
not the more complex longest-prefix match required under
today’s IP architecture. AIP might increase routing table
state, because we do propose splitting some large ASes
into several ADs. On the flip side, however, it reduces ta-
ble entries because organizations would not face arbitrary
allocation limits on the number of hosts (EIDs) they could
maintain in their AD. Interior routing would only need
to scale to tens of thousands of nodes, a number already
quite reasonable [21]. Further study is clearly required to
answer this question, but we believe there is reason to be
optimistic.

Update volume is a greater concern. Volume would
likely increase linearly with the number of ADs, but a
more serious possibility is that path length could grow if
large ASes were split into several ADs. BGP’s convergence
time and update volume can grow with path length [16],
so understanding the effects of such a change is a critical
question to address. Fortunately, if update volume be-
comes unbearable, next-generation routing proposals such
as HLP [28] successfully borrow techniques from link-
state routing to improve the scalability and convergence
time of wide-area routing.

6.2 Traffic Engineering
ISPs require control over routing to meet their traffic engi-
neering goals; today, network operators typically manipu-
late traffic on the granularity of IP prefixes [6, 9]. AIP faces
two challenges: ADs may be too large to permit effective
traffic engineering (e.g., if ADs are like today’s ASes), or
ADs may be too small (e.g., if ADs were assigned at the
granularity of today’s prefixes). Which of these presents
the major problem depends on how AIP is used; lacking a
crystal ball, we outline solutions to each:

1. Aggregating ADs for TE: To perform traffic engi-
neering at a more coarse granularity, AIP could use a LISP-
like [5] tunneling approach, similar to proposals already
under consideration by the IETF:

1. ADs prepend packets with a new address header con-
taining an outer destination and source address. The
outer addresses represent aggregates to ADs.

2. Operators configure IP layer TE policies using the
less numerous outer addresses.

3. ADs discover a mapping from original destination to
the outer tunnel address. These mappings must be
maintained using an (unspecified) mechanism, but the
process need not be complex because the mappings
are relatively static.

2. De-aggregating ADs for finer-grained TE: The ad-
dresses contained inside an AD are also flat. To flexibly
de-aggregate an AD, the routing announcements for the
AD could be augmented with a “range” indicator that told
other providers which EIDs to apply to this route. Such a
mechanism would permit operators more fine-grained con-
trol at the cost of more expensive route lookups. Whether
such an approach is better or worse than simply splitting
an AD into smaller components is a question for future
work.

6.3 Key Management

Keys will inevitably be compromised. The architecture
must minimize both the chances of this event occurring
and the pain involved in recovering from such an event.

Reducing the chance of compromise: We believe that
in practice, domains would have a two-level key hierarchy.
The self-generated domain key would be held very tightly
and used to sign certificates for individual routers. This
approach allows the administrators of an AD to choose
between slightly increased complexity (though they still
generate and maintain all of their keys completely indepen-
dently of other entities) and resilience to key compromise.
The question remains open whether this approach is better
dealt with by revocation or short certificate lifetimes, who
should maintain revocation lists, and so on.

Reducing the pain of recovery: Many questions re-
main in this area. Does this two-level key hierarchy lend
itself better to revocation or to short certificate lifetimes?
If an actual domain key is compromised, the domain must
“re-number”, since its very identity is compromised. What
mechanisms (akin, perhaps, to today’s DHCP and related
protocols) can be used to make re-numbering an entire
domain a relatively painless process? We note that solu-
tions to this problem would benefit today’s stub ASes and
customers who switch providers. The problem, of course,
touches upon router and peering configurations, host ad-
dressing, and name service, at a minimum. Because of the

6



complexity involved, not only would we need tools to deal
with re-numbering, but careful thought must be put into
the architectural dependencies to minimize the number and
scope of the services that must be so updated.

7 Conclusion
It is high time that Internet entities be held accountable.
No longer should hosts be able to forge addresses with
impunity, nor attackers be able to hijack routes without
fear of consequences. By basing Internet addressing on
a simple principle—a flat, two-level hierarchy in which
both address components are self-certifying—AIP brings
new and needed accountability to the Internet architecture.
While significant challenges must be surmounted to bring
its ideas to fruition, we believe that the potential benefits
of the proposal make it worthy of serious consideration by
the community.

Acknowledgments
We thank Amar Phanishayee, Anirudh Ramachandran, Vi-
jay Vasudevan, Mythili Vutukuru, Michael Walfish, and
Dan Wendlandt for their contributions to some of the ideas
in this paper. This work was supported by the National
Science Foundation under awards CNS-0716278 and CNS-
0520241.

References
[1] K. Argyraki, P. Maniatis, D. Cheriton, and S. Shenker. Providing

packet obituaries. In Proc. 3nd ACM Workshop on Hot Topics in
Networks (Hotnets-III), Nov. 2004.

[2] T. Aura. Cryptographically Generated Addresses (CGA). Internet
Engineering Task Force, Mar. 2005. RFC 3972.

[3] R. Beverly and S. Bauer. The Spoofer project: Inferring the extent
of source address filtering on the Internet. In Proc. SRUTI Workshop,
July 2005.

[4] CNET News.com. Router Glitch Cuts Net Access. http://
news.com.com/2100-1033-279235.html, Apr. 1997.

[5] D. Farinacci, V. Fuller, D. Oran, and D. Meyer. Locator/ID
Separation Protocol (LISP). Internet Engineering Task Force,
July 2007. http://www.ietf.org/internet-drafts/
draft-farinacci-lisp-02.txt Work in progress, ex-
pires January 18, 2008.

[6] N. Feamster, J. Borkenhagen, and J. Rexford. Guidelines for in-
terdomain traffic engineering. ACM Computer Communications
Review, 33(5), Oct. 2003.

[7] P. Ferguson and D. Senie. Network Ingress Filtering: Defeating
Denial of Service Attacks which employ IP Source Address Spoofing.
Internet Engineering Task Force, Jan. 1998. RFC 2267.

[8] P. Ferguson and D. Senie. Network Ingress Filtering. Internet
Engineering Task Force, May 2000. BCP 38, RFC 2827.

[9] B. Fortz and M. Thorup. Optimizing OSPF/IS-IS weights in a
changing world. IEEE JSAC, 20(4):756–767, May 2002.

[10] G. Goodell, W. Aiello, T. Griffin, J. Ioannidis, P. McDaniel, and
A. Rubin. Working around BGP: An incremental approach to

improving security and accuracy in interdomain routing. In Proc.
NDSS, Feb. 2003.

[11] J. Ioannidis and S. M. Bellovin. Implementing Pushback: Router-
Based Defense Against DDoS Attacks. In Proc. Network and
Distributed System Security Symposium (NDSS), Feb. 2002.

[12] J. Karlin, S. Forrest, and J. Rexford. Pretty Good BGP: Protecting
BGP by cautiously selecting routes. Technical report, University of
New Mexico, Oct. 2005. TR-CS-2005-37.

[13] S. Kent and R. Atkinson. Security Architecture for the Internet
Protocol. Internet Engineering Task Force, Nov. 1998. RFC 2401.

[14] S. Kent, C. Lynn, and K. Seo. Secure border gateway protocol
(S-BGP). IEEE JSAC, 18(4):582–592, Apr. 2000.

[15] A. D. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure overlay
services. In Proc. ACM SIGCOMM, pages 61–72, Aug. 2002.

[16] C. Labovitz, A. Ahuja, R. Wattenhofer, and S. Venkatachary. The
impact of Internet policy and topology on delayed routing conver-
gence. In Proc. IEEE INFOCOM, Apr. 2001.

[17] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure untrusted data
repository (SUNDR). In Proc. 6th USENIX OSDI, Dec. 2004.

[18] D. Mazières, M. Kaminsky, M. F. Kaashoek, and E. Witchel. Sep-
arating key management from file system security. In Proc. 17th
ACM Symposium on Operating Systems Principles (SOSP), pages
124–139, Dec. 1999.

[19] R. Moskowitz and P. Nikander. Host Identity Protocol (HIP) Ar-
chitecture. Internet Engineering Task Force, May 2006. RFC
4432.

[20] J. Moy. OSPF Version 2, Mar. 1994. RFC 1583.
[21] A. Myers, T. E. Ng, and H. Zhang. Rethining the service model:

Scaling ethernet to a million nodes. In Proc. 3nd ACM Workshop
on Hot Topics in Networks (Hotnets-III), Nov. 2004.

[22] T. Okamoto and J. Stern. Almost uniform density of power residues
and the provable security of ESIGN. In ASIACRYPT, pages 287–
301, 2003.

[23] A. Ramachandran and N. Feamster. Understanding the Network-
Level Behavior of Spammers. In Proc. ACM SIGCOMM, Aug.
2006. An earlier version appeared as Georgia Tech TR GT-CSS-
2006-001.

[24] M. Shaw. Leveraging good intentions to reduce unwanted network
traffic. In Proc. USENIX Steps to Reduce Unwanted Traffic on the
Internet workshop, July 2006.

[25] G. Siganos and M. Faloutsos. Analyzing BGP Policies: Methodol-
ogy and Tool. In Proc. IEEE INFOCOM, Mar. 2004.

[26] T. L. Simon. oof. panix sidelined by incompetence...
again. http://merit.edu/mail.archives/nanog/
2006-01/msg00483.html, Jan. 2006.

[27] I. Stoica, D. Adkins, S. Zhaung, S. Shenker, and S. Surana. Internet
indirection infrastructure. In Proc. ACM SIGCOMM, pages 73–86,
Aug. 2002.

[28] L. Subramanian, M. Caesar, C. T. Ee, M. Handley, M. Mao,
S. Shenker, and I. Stoica. HLP: A next generation inter-domain
routing protocol. In Proc. ACM SIGCOMM, Aug. 2005.

[29] G. Varghese. Network Algorithmics. Morgan Kaufmann, 2007.
[30] M. Walfish, J. Stribling, M. Krohn, H. Balakrishnan, R. Morris, and

S. Shenker. Middleboxes no longer considered harmful. In Proc.
6th USENIX OSDI, Dec. 2004.

[31] R. White. Securing BGP through secure origin
BGP. The Internet Protocol Journal, 6(3), Sept. 2003.
http://www.cisco.com/web/about/ac123/ac147/
archived_issues/ipj_6-3/ipj_6-3.pdf.

[32] X. Yang, D. Wetherall, and T. Anderson. A DoS-limiting network
architecture. In Proc. ACM SIGCOMM, Aug. 2005.

7

http://news.com.com/2100-1033-279235.html
http://news.com.com/2100-1033-279235.html
http://www.ietf.org/internet-drafts/draft-farinacci-lisp-02.txt
http://www.ietf.org/internet-drafts/draft-farinacci-lisp-02.txt
http://merit.edu/mail.archives/nanog/2006-01/msg00483.html
http://merit.edu/mail.archives/nanog/2006-01/msg00483.html
http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_6-3/ipj_6-3.pdf
http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_6-3/ipj_6-3.pdf

	Introduction
	Why Accountability?
	Accountable Internet Protocol
	Basic Structure and Function
	Self-Certifying Addresses

	Control-Plane Accountability
	Source Accountability
	Preventing Spoofing
	``Shutting-Off'' Unwanted Traffic

	Challenges
	Routing Scalability
	Traffic Engineering
	Key Management

	Conclusion

