
Enabling an Energy-Efficient Future Internet
Through Selectively Connected End Systems

Mark Allman†, Ken Christensen‡, Bruce Nordman¶, Vern Paxson†,¶

†International Computer Science Institute, ‡University of South Florida
¶Lawrence Berkeley National Laboratory

Abstract
The Internet’s architecture largely and implicitly assumes
full-time connectivity, a notion that is embodied in key
networking principles including fate sharing, soft state,
and the end-to-end principle. In contrast, efforts to allow
for more graceful operation in the presence of forced dis-
connectedness have recently been undertaken that change
the underlying style of networking used by applications
to accommodate both host-level and hop-by-hop discon-
nectedness (e.g., for deep space networks where connec-
tivity depends on orbital mechanics). In this paper, we
offer an initial exploration of the architectural constructs
required to support selective connectivity, whereby a host
can choose whether to be “connected” or “disconnected”.
While we keep our notion of selective connectivity gen-
eral, the driver behind our thinking is to allow hosts to
go to sleep to realize energy savings while not sacrific-
ing their standing in the network. Studies show that en-
abling such sleeping offers large potential energy savings.
Specifically, we explore ideas related to assistants, soft
state, host-based control, and application primitives.

1 Introduction
Many architectural elements of today’s Internet implicitly
assume that hosts remain attached to the network—i.e.,
maintain IP connectivity—over extended periods of time.
These assumptions manifest in the reliance upon such ba-
sic principles as:

Fate sharing. When possible, store state in the end sys-
tems that rely upon it so it is only lost if the system
itself is lost.

Soft state. Elsewhere, use ephemeral state that the end
systems must periodically refresh.

The end-to-end principle. When designing functional-
ity to place inside the network, consider the degree
to which such placement is unnecessary or at best a
performance optimization since the end systems will
themselves have to implement a version of the func-
tionality.

While some might take issue with how we specifically
frame these principles, clearly they all assume active end

systems that sustain network connectivity over the period
of use of the network. Although the network is designed
to accommodate failures that cause disruptions in connec-
tivity, these disruptions are viewed as problems to work
around, rather than routine operation.

An alternative architectural approach has been pursued
in the development of delay/disruption tolerant network-
ing (DTN) [6]. Here the assumption is that connectivity
is necessarily intermittent not only end-to-end but hop-
by-hop, requiring a switch to a fundamentally different
degree of store-and-forward operation. DTN-style opera-
tion opens up possibilities for networking in contexts pre-
viously prohibited by Internet-style assumptions of end-
to-end connectivity, but at the cost of major reworkings of
how applications use the network.

In between these two architectural styles lies a view of
connectivity that we term selectively-connected network-
ing. By “selectively-connected” we mean an end system
knowingly manages the extent of its network connectivity
in response to internal or exterior events. Here, “know-
ingly” refers to the end system anticipating changes in
connectivity (which might be voluntary, or instead about
to be imposed upon it) such that it can respond to them.
For example, end systems might anticipate losing connec-
tivity entirely because they are moving into a region that
lacks layer 2 connectivity (e.g., a cell tower signals that
the end system’s current trajectory has it soon reaching a
no-coverage zone), or their owner is powering them down
in some fashion (e.g., every time a user closes their note-
book).

One highly significant form of selective connectivity,
and one that is much richer than simply “no connectiv-
ity,” concerns placing end systems into some degree of
“sleep” in order to conserve energy. Clearly, such sleep-
ing yields major benefits for portable devices by greatly
extending their battery lifetime. Less widely appreciated,
however, is the degree to which energy savings at much
greater scales could be realized by employing sleep states
for regular desktop systems and other end systems pow-
ered directly by the electrical grid.

The past two decades have seen a significant rise in
energy consumption due to the accelerating use of com-
puting and networking. Today, in offices, desktop sys-
tems at a minimum remain powered up all day long—
whether being actively used or not. Further, field assess-
ments show two-thirds of such systems to be fully on after
work hours, with only 4% operating in sleep mode [14].
It appears plausible that network connectivity drives much
of this [12]. These systems remain available to facilitate
sporadic, occasional activity, such as:

• User remote access.

• Administrator access for maintenance (backups,
patch management).

• Service provider access, for (primarily home) sys-
tems that serve as the on-site access point for enter-
tainment and communication services, such as set-
top boxes or VOIP systems.

• Preservation of network state.

In the residential sector, the average desktop PC is on 34%
of the time and spends only 4% of the time in an some
form of “sleep” state [15]. Further, [15] notes that more
than half the time a PC is on no one is actively using the
machine.1 [5] quantifies the potential savings for just the
United States to be in the range of $0.8–2.7 billion per
year (based only on desktops and notebooks).

Of the reasons systems stay fully powered, preserving
network state has the greatest implications for network
architecture. When a system sleeps, it can recover its
local state upon waking, but its network peers—due to
their reliance upon architectural principles such as fate-
sharing and soft state—will often have discarded their as-
sociated state on the assumption that the system’s pro-
longed outage reflects a serious failure. For example, a
session can fail to function after the system reawakens
due to: (i) TCP reliability (remote peer sends new data
and eventually gives up in the absence of its acknowledg-
ment); (ii) TCP keep-alives, often enabled by default to
probe for liveness; (iii) session-layer activity (e.g., rou-
tine SSH key rollover); or (iv) management activity (e.g.,
DHCP lease expires in the absence of renewal). Thus,
idle hosts are often left fully powered because network
protocols and mechanisms fail when the host is not able
to conduct basic state-keeping operations.

What we desire for such hosts, however, is a degree
of selective connectivity such that they continue to have a
limited presence on the network, but with the semantics of
that presence under the control of the end system, so that it
can trade off on a fine-grained basis the utility of maintain-
ing connectivity versus the benefits of sacrificing it (e.g.,
to enable a range of power management decisions).

1Of course, this does not mean the machine is not doing useful work.

For today’s Internet, one can pursue a series of “one-
off” work-arounds for the various protocols and applica-
tions that most frequently thwart the sort of selective con-
nectivity necessary for energy efficiency (e.g., installing
a proxy to respond to TCP keep-alive probes on a host’s
behalf). In this paper we advocate a different approach
that starts an exploration of the basic network architecture
and abstractions required to allow a network to support
selective connectivity.

We emphasize that enabling energy efficiency serves as
a driver for our thinking, but does not limit the overall
scope. We anticipate that the architectural elements will
prove significantly more general, providing abstractions
for secure task-delegation, the evolution of soft state to a
notion of “proxyable state,” and a framework for network
elements such as middleboxes to aid absent end systems
while allowing those systems to secure their data commu-
nications end-to-end (more generally, layering security to
include more than the two ends of a conversation).

The remainder of this paper is organized as follows. In
§ 2 we discuss related work. In § 3 we present a quick
summary of naturally-occurring network traffic captured
in the middle of the night on an enterprise network as an
example of the “chatter” our current networking technolo-
gies produce. In § 4 we describe our initial designs of
new architectural components for supporting selectively-
connected networking. We conclude in § 5. We stress
that this is an initial foray into selective connectivity and
the ideas presented in this paper are not fully worked out
designs. A significant reason for writing this paper is to
solicit feedback from the community.

2 Related Work

First, we note that a number of efforts have been under-
taken to make hardware more energy efficient. For in-
stance, by using Dynamic Power Management for com-
ponents [3] and manufacturing computers that follow the
U.S. EPA Energy Star program [11].

Several efforts have also directly tackled the problems
imposed by networks on host energy consumption. [9]
highlights the potential for reducing the energy use of
the Internet by putting devices to sleep during idle pe-
riods, and proposed both uncoordinated and coordinated
sleeping. In uncoordinated sleeping, devices make their
own decision to go to sleep (e.g., during extended inter-
packet times). For coordinated sleeping, they proposed
a network-wide approach based on routing protocols that
aggregate traffic into fewer routes. [8] shows that a LAN
switch that can enter a sleep state and be woken from it
by packets queueing in a buffer that retains power can re-
sult in significant energy savings. The role of proxying of
connections for power management has been previously
studied (e.g., in [7]); we explore some of the findings and
implications below.

Additionally, many of today’s end systems have a
“Wake on LAN” functionality built into the NIC. Here,
a system’s NIC remains powered, and if a special packet
arrives, the NIC wakes the host to carry out a given task.
Such operation is suggestive for our purposes. However,
we stress that we do not intend to limit ourselves to only
this style of sleeping and wakeup. First, doing so would
presuppose too much of the architectural solution in terms
of where state can reside and what sort of processing goes
into the decision to awake the host. Wake-on-LAN tends
to result in either far too few or far too many wakeups.
Second, if we want our mechanisms to extend to other
selective-connectivity scenarios, such as a host anticipat-
ing its entrance into a region that lacks connectivity, then
clearly we cannot rely upon the NIC mediating on the end
system’s behalf.

In summary regarding energy efficiency, the literature
includes a number of efforts that touch on some of the
ideas we explore. However, to our knowledge there
has been little work on architectural components to fa-
cilitate selectively-connected networking. The main re-
lated architectural work of which we are aware concerns
the development of Delay/Disruption Tolerant Networks
(DTNs) [6, 1]. The general idea behind these networks
is that uncontrollable connectivity issues dictate when a
particular node will be able to access the network, and at
those points full end-to-end connectivity likely might not
exist; therefore, a store-and-forward architecture is used
to allow data to propagate opportunistically as connectiv-
ity subsequently allows.

One instance of such a network is a deep-space network
whereby orbital mechanics dictate when two nodes (say
on a planet and on an orbiting satellite) will have connec-
tivity. Therefore, during connected periods “bundles” are
pushed from one node to another, with the receiving node
taking the responsibility to further propagate the data to its
final destination. The situation we tackle is significantly
different in that (i) nodes can voluntarily alter their con-
nectivity to the network, (ii) conceptually, connectivity is
diminished (some forms still function) rather than absent,
(iii) nodes can re-establish full connectivity if needed for
a pressing task, and (iv) we don’t aim to facilitate com-
munication in the face of very large delays—when con-
nectivity exists, we presume it has the same sort of delays
as present in today’s Internet. With DTN networks, in
contrast, disconnected hosts are gone until the next con-
nected interval. The components to address each of these
situations are quite different.

Finally, a number of efforts within the wireless net-
working context are interested in developing techniques
to allow mobile devices to conserve battery power.
One theme of the work is to develop multiple tiers of
power consumption, with lower-power-level tiers han-
dling small, mundane tasks and higher-power tiers taking

on the more complicated functions. Examples of work in
this area include [16, 17, 2].

3 Ongoing Network Chatter

A major hurdle for end systems desiring to enter a sleep
state arises from the large degree of network activity that
more or less continuously seeks to engage the system.
Each such type of chatter has different implications for
the degree to which end systems can either ignore it or
partially engage in some fashion (e.g., via an agent acting
on their behalf).

Previous work assesses the packets received over a
12+ hour period by an idle PC connected to a campus
network [7]. Over the entire period, the system received
on average more than 6 packets each second. Within this
traffic, the activity is identified as reflecting more than
20 network protocols (e.g., ARP, service location, switch
and bridge maintenance, Windows name service, DHCP
broadcasts, routing protocols, port scans, network time,
network management). This data is quite suggestive at
the scope of the “chatter” problem, but offers only a single
vantage point, and reflects measurements over the bulk of
a day, during which some periods will naturally see much
more chatter activity than others.

To look a bit more deeply at the nature of such activ-
ity, we recently analyzed snippets from a large collection
of traces recorded internal to an enterprise, as follows.
The underlying datasets for our analysis are a collection
of 72 traces recorded off the ports of switches internal to
the Lawrence Berkeley National Laboratory, a medium-
sized enterprise (8,000 hosts) engaged primarily in basic
research and open science. Traces each generally span
23–24 hours and captured the traffic (400+ GB total) of
5 ports off of a given switch, with each trace monitoring a
different set of ports. Many of the ports are directly con-
nected to end systems, but some instead connect to other
switches, hubs, or broadcast Ethernets, so a single port
may include multiple end systems.

Detailed analysis of these traces remains for future
work. Here, we present a brief, phenomenological look
at the character of network “chatter” manifested within
them. To this end, we extracted a 60-second slice from
each trace, starting at 3:18 AM local time (selected ar-
bitrarily). Each slice shows significant chatter, with the
least busy containing 171 packets, and the median rate of
1,348 pkts/min reflecting an average per-port rate of 4.49
pkts/sec.

In terms of types of traffic, 20% of the packets are non-
IP, including ARP, Novell, Appletalk, IPX, and NetBEUI.
Interestingly, the site does not route these last three, and
attributes their presence to legacy equipment and/or de-
vices such as printers that enable numerous protocols to
facilitate turn-key operation [4]. Of the IP traffic, the
bulk consists of TCP (primarily backup services, SSH and

Windows NetBIOS, but a number of other services) and
UDP (NFS, SNMP, DHCP, DNS, NTP, and again quite
a few additional services). A small proportion of the
UDP traffic is multicast (service location, IGMP, PIM)
and broadcast (DHCP, printing).

Thus, the middle-of-the-night “chatter” reflects a wide
range of types of activity. To get a sense of the degree
to which chatter reflects established two-way communi-
cation (and therefore a fully powered on machine), and
thus necessarily involves an end system, we computed the
number of distinct, two-way flows present in each trace.
To do so, we defined a two-way flow as observing pack-
ets both from MAC address A transmitted to MAC ad-
dress B, and also from B to A. This definition allows
us to determine when a given host is engaged in bidirec-
tional communication even for unknown network-layer or
transport protocols. The definition also condenses multi-
ple transport connections between the same hosts into a
single instance, so our counts emphasize distinct commu-
nicating host-pairs rather than the size or structure of the
sessions between them.

Using this definition, we find the 66 of the 72 one-
minute snippets include two-way communication, with a
median of 3 two-way flows in a given trace. Our traces
span 5 switch ports, so the presence of typically 3 such
flows in a trace does not mean that every end system is
busy during our one-minute slices. However, it does indi-
cate that a non-negligible portion of the end systems are
indeed busy; and for traces with multiple two-way flows,
usually no one MAC address accounts for all of the flows,
indicating multiple busy end systems.

Thus, our brief assessment suggests that “chatter” both
comes in disparate forms and for many systems is an on-
going activity. Clearly, however, it will require much
more extensive analysis of our traces to adequately model
the different types of chatter in order to fully understand
their implications for enabling selective connectivity.

4 Architectural Elements

Before discussing some of our initial ideas for new archi-
tectural elements, let us first frame a perspective on poten-
tial architectural notions as seen from the viewpoint of en-
ergy efficiency. For purposes of power management, we
can view end systems as having three basic states: on, off,
and asleep. In networking terms, such systems: have con-
nectivity; have no connectivity; or operate in a selectively-
connected fashion, as we defined in § 1. The asleep state
is not as crisply defined as the other two states and can
manifest itself in varying degrees, depending on the end
system’s desired behavior and policies. For example, an
asleep host might request to be woken for certain “im-
portant” incoming activity, but shielded from “mundane”
activity. Therefore, while we informally discuss a single
asleep state, the specifics of such a state will vary by en-

vironment and user/operator policy decisions. The thrust
of our design is to allow end systems in the asleep state
to continue to have a presence (“standing”) in the overall
network, though this might require that they occasionally
return to a fully powered on state when certain tasks need
to be performed.

In addition to the state of a host we can classify activ-
ity as spanning a spectrum from low-power tasks to high-
power tasks, in terms of the resources they require: both
computing power, and what we might term network “pres-
ence,” i.e., the necessary forms of network interaction and
state. For example, responding to a keep-alive or renew-
ing a DHCP lease should require fairly modest resources
since the interaction is tightly scoped, and therefore does
not require a fully attached host to interact with the peer;
these are relatively low-power tasks. Even less demand-
ing would be tasks that the host can wholly delegate to
some form of “assistant” that handles these tasks while the
host itself sleeps (see below), such as responding to ARP
queries (though in this specific case these usually will be
followed by communication requiring more resources).

High-power tasks, on the other hand, are those which
likely require a host to be fully attached. For example, a
request for a file would be a high-power task if it entails
finding a file on disk, conducting reliable delivery across
the network, logging, reporting errors, and so forth.

We now discuss the architectural concepts and compo-
nents that are part of our initial thinking. We doubt this list
is complete and are interested in engaging with the com-
munity to discuss both the structures we describe below
and additional components and principles that would help
realize an architecture that supports selective connectivity.

Assistants. The first component we discuss is an assis-
tant, which is a general mechanism to help a host while
the host is in an asleep state.2 The assistant’s job is to
perform some of the routine and mundane operations that
an end system normally handles. For example, perhaps an
assistant keeps connections alive by responding to keep-
alives on the end system’s behalf. Or, as noted below,
an assistant might handle the maintenance of soft state of
some form. Also, an assistant could vet incoming traf-
fic to determine whether it is important enough to wake a
given host. Such a determination could be made based on
a policy that the host itself provides to the assistant (e.g.,
incoming messages from the enterprise’s backup process
are cause for wakeup). Assistants could also return “soft
errors”—such as “try again later”—so that a remote host
can understand that the resource they are seeking is only
temporarily unavailable.

2More speculatively we might allow assistants to aid systems in the
off state, as well, even though such systems cannot be awakened on
demand. For instance, an assistant could provide the rest of the network
with the notion that some device does in fact exist even if it cannot be
readily reached at the moment.

We note that we make no presumption of where an as-
sistant sits in the network. It may be on the powered-on
NIC of an asleep host; it might be an independent system
that sits in the network and acts on behalf of many end
hosts; or it might be built into the switch or wireless ac-
cess point from which end system’s get their connectivity
in the first place. In addition, a host may interact with
several assistants that handle different tasks.

Finally, we note that involving an assistant introduces
another point of potential failure. If the assistant simply
provides a performance gain, then its failure may not be
a large concern. However, to the extent that the assis-
tant takes over functionality from an end system and holds
state that the end system will ultimately require, the new
failure modes introduced by assistants will need to be an-
alyzed and taken into account.

Exposing Selective Connectivity. A foundational no-
tion in our architecture is that of exposing a host’s level
of connectivity across different layers of the local proto-
col stack and potentially to peers with which the host is
or might be communicating. Here, our use of energy effi-
ciency as a driver for the exploration immediately points
up some particular considerations: it can be valuable for
other systems to understand not only that a given sys-
tem is selectively-connected, but that it is in that state due
to power management decisions, because the underlying
reason of energy efficiency might alter how the peer re-
acts to the selective connectivity. For example, the peer’s
policy might be to encourage energy savings, and thus it
will also enter a reduced-power state rather than wake the
end system to get some low-priority work done. Thus, our
mechanisms for exposing selective connectivity will also
include some form of accompanying explanation for the
end system’s decision.

While we want to expose the reasons for a host’s se-
lective connectivity as broadly as useful, there is a tussle
in doing so. For example, identifying a host as in a low-
power state over a long period of time (or simply that it re-
mains only selectively-connected) may expose too much
information to would-be criminals, e.g., identifying possi-
ble targets to burglarize because computer inactivity sug-
gests that nobody is home. Our design therefore calls for
the ability to scope to whom the network provides a host’s
selective-connectivity status and explanation. For exam-
ple, to turn off a movie download service while away on
vacation a host does not need to publicly expose its state.
However, if a host is part of a public peer-to-peer net-
work and is exposing state within that context, then scop-
ing who receives the information is not as easy.3 It is also
tempting to consider some sort of “virtual lamp timer” to
stimulate some activity and perturb a long-running con-

3As discussed below, this may be a case where a host can delegate
certain tasks to an “assistant” and therefore does not need to expose its
asleep status to the entire peer-to-peer network.

nectivity state (again, at a user’s discretion); however, it is
not clear that this is a winnable arms race.

Evolving Soft State. As discussed in § 1 one of the ar-
chitectural successes of the Internet has been the use of
soft state, which provides major benefits in terms of ro-
bustness and flexibility. However, maintaining soft state
across end systems that may be asleep and not able to ac-
tively renew state poses a problem. We do not advocate
reverting to more hard state, rather we wish to evolve the
basic notion of soft state to a form that supports persis-
tence for selectively-connected end systems.

We offer two ways to evolve soft state:

• Proxyable State: This state calls for the maintenance
of soft state by an assistant. Such a system will nat-
urally have both pros and cons over traditional end-
host management of soft state. These pros and cons
will have to be fully explored for each delegated task.

• Limbo State: This state occupies the middle ground
between traditional soft state and statelessness.
While soft-state assumes a host or resource is no
longer available if the state times out before being re-
newed, a notion of “limbo state” would allow enough
information exchange so that participating machines
could recognize the distinction between being inex-
plicably “gone” and simply “asleep”.

Host-based Control. Another underpinning of our ar-
chitecture is leaving the end system in control of how
others in the network react to the system’s selective con-
nectivity. When designing new mechanisms, we want
these to remain flexible enough to support a range of
user/operator-designated policy decisions. Specifically,
when a host moves to a state of selective connectivity, how
that host then wishes to be treated by other actors in the
network, and which tasks should be delegated to others,
should be governed by the user/administrator.

As an example, one user’s policy might be to simply
drop off a peer-to-peer network at night and rejoin in the
morning. Another user, however, may wish to retain their
standing in such systems and continue to provide files that
are not available elsewhere to get “upload credit” of some
sort, while also not keeping the host fully powered be-
tween such transactions. This second approach may re-
quire both help from a third-party assistant and the host
going to sleep sharing some information about which files
are being provided across the peer-to-peer network with
that assistant. Therefore, users need control over the deci-
sion of whether or not to engage the third-party.

Application Primitives. As a way to empower assis-
tants over a range of network activity, our design calls for
the development of generic primitives that could be shared
across applications. For example, a generalized “keep-
alive” message would both convey the status of a host and

allow an assistant to act on a host’s behalf without explic-
itly understanding a myriad of protocols. Such a message
could go beyond the binary yes/no answer used by today’s
protocols by including specific information about a host’s
state, per the notion of exposing the reason behind a host’s
selective connectivity, as described above.

As briefly discussed above, another example primitive
might provide an assistant with an understanding of the
files a host exports across a peer-to-peer network. This in-
formation would allow the assistant to participate in peer-
to-peer searches and wake the end system only when an
actual file transfer is required. A version of this sort of
functionality has been developed for a Gnutella-like net-
work [10]; however, our goal here is a generalized prim-
itive that works across application types. Additionally,
we envision exploring how to use the redundancy built
into some applications (e.g., peer-to-peer applications) to
aid selective connectivity. For example, many times on
peer-to-peer networks a given file is available from multi-
ple places, and so a particular host would not necessarily
merit awakening to serve such a file. Of course, redun-
dancy is part of the power of such networks, and thus we
must take care not to remove all redundancy in the system.

We also note that resources may be replicated such that
when the primary source of some resource is unavailable
(e.g., due to a host sleeping), other trusted sources may
provide the resource. For example, we could use any-
cast [13, 18] for such a service (coupled with some new
primitives for a host to easily populate anycast servers).

A fundamental question, of course, is whether there are
in fact a set of primitives that we can use to cover a wide
variety of situations, or whether the primitive we actually
require is to provide a program to some assistant that en-
codes the needed functionality. If this latter, then a num-
ber of thorny questions about the allowed semantics of the
program come into play.

Security. As is often the case, issues relating to secure
operation cut across all of the architectural components
sketched above. Security concerns raise a myriad of ques-
tions: How can end systems securely delegate tasks to as-
sistants? How do remote hosts trust that an assistant in-
deed has authorization to act on behalf of an end system,
and is not an imposter? How do we layer our use of cryp-
tography mechanisms such that we can expose some por-
tions of communications to assistants, while not exposing
sensitive data to intermediaries? To what degree do our
generalized notions of soft state expose network elements
to denial-of-service state-holding attacks? If an adversary
wishes to undermine the use of selective connectivity to
conserve energy, to what degree will the resulting system
be vulnerable to such “denial-of-money” attacks?

We appreciate the import of raising such questions at
the forefront of our design efforts, to ensure that the mech-
anisms they call for become first-class elements of our de-

signs, rather than later attempting to fit them retroactively.

5 Final Remarks
Above we discuss how the current network architecture
embodies an underlying assumption that hosts retain IP
connectivity over long time periods. In addition, in § 3,
we illustrate that current networks do in fact experience
a large amount of “chatter” during periods when most
hosts are not being actively used by people. Studies have
shown that a great deal of energy savings can be realized
by putting these mostly-idle hosts in some sort of low-
powered sleep mode. To accomplish this while allowing
a host to retain its network standing—often the reason for
remaining fully powered in the first place—we describe
a number of new architectural components and abstrac-
tions. We stress that our designs are preliminary and quite
likely incomplete. Our goals in writing this paper are both
to generally increase the awareness of the issues surround-
ing so-called selective connectivity and to get feedback on
our initial architectural ideas.

6 Acknowledgments
Many thanks to Mike Bennett and Jason Lee for their ef-
forts in recording the traces analyzed in § 3, and Mike
for his help in understanding the menagerie of activity
contained within them. Discussions with Scott Shenker
helped this work, as did the comments from the anony-
mous HotNets reviewers. This work was funded in part by
NSF grants NSF-0721933, ITR/ANI-0205519 and NSF-
0520081 for which we are grateful. Any opinions, find-
ings, and conclusions or recommendations expressed in
this material are those of the authors or originators and do
not necessarily reflect the views of the National Science
Foundation.

References
[1] Delay tolerant networking research group, 2007.

http://www.dtnrg.org/wiki.

[2] N. Banerjee, J. Sorber, M. Corner, S. Rollins, and
D. Ganesan. Triage: Balancing Energy and Quality
of Service in a Microserver. In 5th International
Conference on Mobile Systems, 2007.

[3] L. Benini, A. Bogliolo, and G. D. Micheli. A Survey
of Design Techniques for System Level Dynamic
Power Management. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 8(3):299–
316, June 2000.

[4] M. Bennett. Personal communication, July 2007.

[5] K. Christensen, B. Nordman, and R. Brown. Power
Management in Networked Devices. IEEE Com-
puter, 37(8):91–93, Aug. 2004.

[6] S. Farrell. Delay- and disruption-tolerant network-
ing. Artech House, 2006.

[7] C. Gunaratne, K. Christensen, and B. Nordman.
Managing Energy Consumption Costs in Desktop
PCs and LAN Switches with Proxying, Split TCP
Connections, and Scaling of Link Speed. Interna-
tional Journal of Network Management, 15(5):297–
310, September/October 2005.

[8] M. Gupta, S. Grover, and S. Singh. A Feasibility
Study for Power Management in LAN Switches. In
Proceedings of the 12th IEEE International Confer-
ence on Network Protocols, Oct. 2004.

[9] M. Gupta and S. Singh. Greening of the Internet. In
ACM SIGCOMM, pages 19–26, Aug. 2003.

[10] M. Jimeno, K. Christensen, and A. Roginsky. A
Power Management Proxy with a New Best-of-
N Bloom Filter Design to Reduce False Positives.
In IEEE International Performance Computing and
Communications Conference, pages 125–133, 2007.

[11] B. Johnson and C. Zoi. EPA Energy Star Comput-
ers: The Next Generation of Office Equipment. In
Proc. of the American Council for an Energy Effi-
cient Economy Summer Study on Energy Efficiency
in Buildings, 1992.

[12] B. Nordman, A. Meier, and M. A. Piette. PC
and Monitor Night Status: Power Management En-
abling and Manual Turn-off. In Proceedings of
the American Council for an Energy Efficient Econ-
omy (ACEEE) Summer Study on Energy Efficiency
in Buildings, 2000.

[13] C. Partridge, T. Mendez, and W. Milliken. Host any-
cast service, Nov. 1993. RFC 1546.

[14] J. Roberson, C. Webber, M. McWhinney, R. Brown,
M. Pinckard, and J. Busch. After-hours Power Sta-
tus of Office Equipment and Inventory of Miscella-
neous Plug-Load Equipment, 2004. Technical Re-
port LBNL-53729-Revised, Lawrence Berkeley Na-
tional Laboratory.

[15] K. Roth and K. McKenney. Energy Consumption
by Consumer Electronics in U.S. Residences. Fi-
nal Report to the Consumer Electronics Association
(CEA), Jan. 2007.

[16] E. Shih, P. Bahl, and M. Sinclair. Wake on Wireless:
An Event Driven Energy Saving Strategy for Bat-
tery Operated Device. In 8th Annual International
Conference on Mobile Computing and Networking,
2002.

[17] J. Sorber, N. Banerjee, M. Corner, and S. Rollins.
Turducken: Hierarchical power management for
mobile devices. In 3rd International Conference on
Mobile Systems, Applications, and Services, 2005.

[18] E. Zegura, M. Ammar, Z. Fei, and S. Bhattacharjee.
Application-Layer Anycasting: A Server Selection
Architecture and Use in a Replicated Web Service.
IEEE/ACM Transactions on Networking, 8(4):455–
466, Aug. 2000.

