
Applying NOX to the Datacenter

Arsalan Tavakoli
UC Berkeley

Martin Casado and
Teemu Koponen

Nicira Networks

Scott Shenker
UC Berkeley, ICSI

1 Introduction
Internet datacenters offer unprecedented computing power
for a new generation of data-intensive computational tasks.
There is a rapidly growing literature on the operating and
distributed systems issues raised by these datacenters,
but only recently have researchers turned their attention
to the datacenter’s unique set of networking challenges.
In contrast to enterprise networks, which usually grow
organically over time, datacenter networks are carefully
and coherently architected, so they provide an isolated
setting in which new networking designs can be explored
and deployed.

The combination of interesting intellectual challenges
and lowered deployment barriers makes datacenters
a rich arena for network research and innovation, as
evinced by the recent flurry of research papers on
datacenter networks. Of particular interest are the network
designs proposed in [1, 5, 6, 9], which vary along many
design dimensions but are all specifically tailored to the
datacenter environment.

In the more general networking literature, in 2004 the
4D project [4] initiated a renaissance in the network man-
agement literature by advocating a logically centralized
view of the network. The goal of this approach was to
provide a general management plane, not specialized to
a particular context (such as the datacenter). A recent
development in this vein is the NOX network operating
system [7]. NOX gives logically centralized access to
high-level network abstractions such as users, topology,
and services, and exerts control over the network by
installing flow entries in switch forwarding tables. By
providing programmatic access (through Python or C++)
to network observation and control primitives, NOX
serves as a flexible and scalable platform for building
advanced network management functionality. Enterprise
network management systems built on NOX have been
in production use for over a year, and an early version
of NOX is freely available under the GPL license at
www.noxrepo.org.

This philosophical question behind this paper is whether
the general-purpose approach in networking, which has
served the Internet and enterprise so well, can be extended
to specialized environments like the datacenter, or if
special-case solutions will prevail. The more practical
instantiation of this question is: How well does a
general-purpose management system, like NOX, cope

with the highly specific and stringent requirements of the
datacenter? As we explain in this paper, we find that
not only can NOX provide reasonable management of
datacenter environments, it also offers operators a choice
of several points in the datacenter design spectrum, rather
than locking them into one specific solution.

Due to our familiarity with it, we use NOX throughout
the paper as a concrete instance of a general network
platform. However, the goal is to explore more broadly
whether a general approach can be used in place of point
solutions. Hence, this discussion should apply equally
well to similar systems such as 4D [4], or Maestro [2].
We also don’t make the claim that these systems are
better than any of these point solutions. Our only goal
is to demonstrate that there is still hope for the “general-
purpose” philosophy that has served networking so well.

In the rest of the paper, we first present background
material on datacenter networks and NOX (§2), and
then demonstrate NOX’s flexibility by describing imple-
mentations of existing architectures that can scale to a
hundred thousand servers and millions of VMs (§3). We
subsequently discuss how NOX provides basic datacenter
functionality (§4) and several additional capabilities (§5).
We end with a general discussion (§6).

2 Background
Before delving into how NOX can help datacenter
networks, we first review datacenters, describe their
networking requirements, present the VL2 and PortLand
proposals, and provide some background on NOX.

2.1 Overview of Datacenters
Large-scale Internet datacenters are typically comprised
of many racks of commodity PCs. Each rack has a top-of-
rack (ToR) switch, and the ToRs are typically connected to
an internal hierarchical network consisting of Aggregation
switches and Core routers [3]. Datacenters range in size
from hundreds of machines to hundreds of thousands of
machines, and are used for a wide variety of tasks. To
motivate our discussion of their networking requirements
we focus on three particular types of datacenters. First,
there is what we call bare-metal datacenters. These use
PCs running Linux without a hypervisor to process data
at large scale — various search engine datacenters are
examples in this category. Second, there are virtualized
datacenters: to provide more flexible management of



resources, these datacenters use hypervisors to support
multiple VMs per host. Third, multitenant datacenters
are a particular subset of virtualized datacenters where
the VMs belong to many different customers — cloud
computing datacenters (such as those that host Amazon’s
EC2 service) are representatives of this category.

2.2 Networking Requirements

We now briefly describe the set of networking require-
ments for these datacenters. Some of these requirements
were gathered from existing literature (see, for example,
[5, 9]), while others surfaced from discussions with
datacenter operators and cloud service providers.

Scaling: The most pressing requirement, shared by all
large datacenters, is to reach scales of hundreds of
thousands of servers and millions of VMs. Two aspects
that make scaling hard are forwarding table size and
broadcasts, since both typically increase linearly with
system size.

Location Independence: Dynamic resource provision-
ing in datacenters is much more efficient if resources can
be assigned independent of their network location and
VMs can migrate freely without interruption in service.

Service Quality: Unlike wide-area networks, datacen-
ters are expected to achieve high levels of performance.
This includes the ability to tolerate network failures,
enforce network isolation between tenants, and provide
load balancing to avoid network hotspots.

Additional Requirements: Two other features that are
often mentioned as requirements are the ability to support
middlebox interposition based on traffic classification and
a general monitoring and troubleshooting capability.

2.3 Two Recent Datacenter Networking Proposals

As benchmarks for NOX, we briefly review two recent
datacenter networking proposals. This is obviously not a
comprehensive list, but both represent some of the best
and most recent work in the research community.

PortLand: PortLand [9] uses a fat tree topology and
position-based MAC addresses (PMACs) to achieve very
compact routing state. ToR and Aggregation switches
are grouped together in pods, and every Core switch
is connected to every pod with a single link. Every
VM (or host, if virtualization is not used) is assigned
a PMAC of the form: pod.position.port.vmid. These
PMACs enable PortLand switches to use longest prefix-
match to reduce forwarding state. ToR switches perform
the rewriting between PMACs and real MACs, so hosts
and VMs need not be aware of this addressing structure.
All switches maintain a full link-connectivity matrix in
order to calculate routes locally. A centralized fabric

manager maintains all PMAC-to-MAC mappings, as well
as the full connectivity matrix.

VL2: VL2 [5] uses a Clos network topology with full
bandwidth available for server-to-server traffic. VL2
implements Valiant Load Balancing (VLB) by send-
ing traffic to random intermediate switches. This is
accomplished by giving every Core switch the same
anycast address and using ECMP, which randomly picks
one of the shortest paths. All switches are assigned a
location-specific IP address (LA), and use OSPF to build
forwarding tables. All physical servers and services have
application-specific IP addresses (AA). A centralized
address manager (AM) maintains the AA-to-LA address
mappings, and IP-in-IP encapsulation is used to route on
LAs, but deliver packets to AAs. To avoid hardware
modification, this encapsulation is implemented as a
layer 2.5 stack on hosts, which consults the AM for the
mappings before sending packets.

These designs use their topology, ECMP routing, and
address-rewriting to achieve small forwarding tables, load
balancing, and location-independence (however, seamless
VM migration requires additional mechanisms). They
deal with broadcasts by directly handling ARP and DHCP
traffic, and using multicast for other broadcasts. Failures
of any of the Aggregate and Core switches are handled by
using alternate paths.

2.4 Overview of NOX

Both of these aforementioned designs have a centralized
component to handle address mappings (and, in the case
of PortLand, the connectivity matrix). NOX extends these
centralized capabilities while still preserving scalability.
Whereas VL2 and PortLand provide a small set of
logically centralized primitives, NOX provides a logically
centralized programming environment with a powerful
set of abstractions.

A NOX-managed network consists of one or more con-
trollers running NOX and a set of controllable switches.
The controllable switches allow NOX to specify flow
entries in their forwarding table. These flow entries are
of the form < header , action >, where the second
item describes the action that should be applied to any
packet that matches the header fields listed in the first
item. Commonly used actions include: forward to port x,
forward to a controller, drop, and forward to port x with
the following header fields rewritten with y. Switches
that support the OpenFlow standard [11] are examples
of controllable switches, but NOX can use any similar
protocol for manipulating switch forwarding entries.

NOX is described in [7], and more documentation
is available at www.noxrepo.org, so we don’t describe
its operation in detail here. We note only the two
most salient features of NOX for our discussion here.
First, NOX provides complete visibility of the network



topology, including network links, network switches, and
the location of all hosts. Second, NOX can operate in
either pro-active or re-active mode. In the former, it uses
the topology information to pre-load forwarding tables in
the switches. In the latter, it has the switches send the first
packet from each new flow (i.e., a packet for which the
switch does not have a flow entry) to a controller, and the
controller, after consulting its topology information, then
installs the appropriate flow entries along the desired route.
The pro-active approach minimizes flow latency, while the
re-active approach allows the controller to make decisions
on a flow-by-flow basis, taking QoS requirements and
load conditions into account.

In larger networks, multiple NOX controllers act in
parallel: each new flow notification is sent to one of
the controllers, which installs the resulting flow entries
without coordinating with other controllers. The only
state for which NOX must maintain global consistency are
the network topology and host address mapping. These
change slowly enough that consistency is straightforward
to achieve. Recent benchmarks on currently deployed
NOX controllers [10] show an individual controller can
handle at least 30K new flow installs per second while
maintaining a sub-10ms flow install time. The controller’s
CPU is the bottleneck, and NOX’s overall capacity scales
roughly linearly with the number of controllers.

3 Scaling NOX to the Datacenter
The size of switch forwarding tables is the most vexing
scaling requirement, so we start by estimating the size
of the forwarding tables needed by NOX. Our analysis
is based on the topology and empirical data from [5].
We realize that other datacenters may have different
topologies and data characteristics, but our goal here is to
provide an initial estimate of NOX’s ability to cope with
datacenter scales.

Analytical Setup: We perform our analysis for datacen-
ters with 6K, 20K, and 100K servers, running in both
bare-metal (1 application/server) and highly virtualized
(20 VMs/server) mode. The network is a 3-layer Clos
topology: each rack has 20 servers connected by 1Gbps
links to a single ToR switch, which connects to two
Aggregation switches using 10Gbps ports, and each
Aggregation switch connects to all Core switches. The
network is designed with no over-subscription, so the
servers’ NICs are the bottleneck for server-to-server
traffic. As per [5], we assume each server instance has on
average 10 concurrent flows (5 incoming and 5 outgoing).

To provide context for our estimates of flow-table size,
we note that low-cost 1Gbps switches exist today with
ACLs of up to 4K entries which can utilize low-cost exter-
nal TCAMs that support roughly 250K source/destination
pair flow entries. Commoditization trends suggest that
low-cost 10Gbps equivalents may not be far behind

(currently, we are aware of ACL sizes on the order of
1K, but we do not know whether these low-cost 10Gbps
switches support external TCAMs).

NOX itself does not dictate any particular network
topology or routing algorithm; it is a network control
platform on which general routing algorithms can be
implemented. As an example of NOX’s flexibility, we
now show how NOX can implement the routing schemes
in VL2 and PortLand.

Implementing VL2: Recall that VL2 [5] achieves small
forwarding tables and VLB through IP-in-IP encapsula-
tion and ECMP. NOX can provide VLB without using
ECMP or encapsulation; it only requires access to a single
byte in the packet header. We take this byte from the
source IP address since the number of hosts in a datacenter
consumes only a tiny fraction of the IP address space.
We will refer to this byte as the coreID. When a packet
from a new flow arrives at the first-hop ToR switch, the
switch forwards the packet to a NOX controller. The
controller then installs the corresponding flow entry in
the ToR switch, directing the switch to: (a) rewrite the
flow’s packet headers by replacing the destination IP
with that of the last-hop ToR switch, and inserting the
identifier for a randomly selected Core switch into the
coreID, and (b) forward packets to one of its potential
Aggregate switches (the controller chooses which one).
The controller also installs a flow entry in the destination
ToR switch, instructing it to restore the correct destination
IP address and forward to the appropriate port. When the
Aggregate switch receives the packet from the source
ToR, it forwards the packet to the appropriate Core switch
based on the coreID. The Core switch maintains per-ToR
switch state (supplied to it by a controller pro-actively),
and forwards the packet to the destination Aggregate
switch for that destination ToR. This Aggregate switch
has per-ToR state and can forward the packet to the
appropriate ToR.

Figure 1 presents the results of our scalability analysis
for implementing this approach, comparing NOX and
VL2 [5] for similar setups. The Core switch state is
similar in NOX and VL2, while aggregation switch state
is far less in NOX. For ToR switches, NOX requires more
state in the smaller virtualized networks. This increased
state results from VL2 maintaining destination to last-
hop ToR mappings at the physical servers, rather than the
first-hop ToR.

Implementing PortLand: Recall that PortLand [9] uses
positional MAC addresses (PMACs) that embed pod,
position, port, and VM id. This enables compressed
forwarding tables that can use longest prefix matching.
The first and last-hop ToR switches handle the mapping
between MACs and PMACs and vice versa. NOX
can also maintain a similar PMAC mapping for all



Server Only 20 VMs per server
Physical Nodes 6000 20000 100000 6000 20000 100000

Racks 300 1000 5000 300 1000 5000
Agg. Switches 50 84 139 50 84 139
Core Switches 12 24 72 12 24 72

VL2 NOX VL2 NOX VL2 NOX VL2 NOX VL2 NOX VL2 NOX
Entries at ToR 382 120 1128 120 5231 120 762 2400 1508 2400 5611 2400
Entries at Agg. 362 24 1108 48 5211 144 362 24 1108 48 5211 144
Entries at Core 362 300 1108 834 5211 1389 362 300 1108 1000 5211 5000

Figure 1: Average number of flow entries installed at switches for VL2 and NOX.

registered hosts or VMs in the network, and preload the
compressed forwarding tables at each switch. Thus, the
state requirements of NOX and PortLand are the same.
These requirements are substantially less than those in
Figure 1, and so we omit this analysis for brevity.

These two examples show how NOX can easily support
multiple (at least two) scalable topology and addressing
schemes, without incurring significant additional flow-
table state. NOX thus allows operators to choose between
these, or other potential, designs by using the same basic
management framework. There are two other scaling
worries we must consider:

Controller Scalability: Since NOX is logically central-
ized, we must ask whether it can handle the rate of new
flows. In the largest topology considered in our routing
analysis, we had 2 million VMs. If we assume that each
flow lasts 1 second (100MB over a 1Gbps link), this
results in 20 million new flows per second (assuming a
new entry per flow). Such a workload would require 667
controllers, or only 0.03% of the number of end hosts.
Note that both VL2 and PortLand need a similar number
of centralized controllers to handle address mappings
(because they both use a mapping service with roughly
the same query capacity per server).

Broadcast: Any large network must scalably cope with
broadcast traffic. As with VL2 and PortLand, NOX
will handle all ARP and DHCP broadcasts itself (i.e.,
these broadcast packets are sent to a controller, which
then responds directly to the source with the appropriate
response). These two protocols represent the vast bulk
of broadcast usage, and for safety NOX will suppress
all other broadcast messages. However, in a multitenant
situation, customers may want a private L2 broadcast
domain. In this case, NOX establishes flow entries
for a spanning tree with broadcast rules. These entries
prevent any other source from sending packets on this
L2 broadcast domain. More generally, NOX can enforce
security isolation and general access controls within the
datacenter, since it sets up state for every new flow, and
can refuse to do so for prohibited communication pairs.

4 Providing Core Functionality
We have shown how NOX supports small forwarding
tables, broadcast, isolation, and aspects of location
independence and load balancing. We now discuss how
NOX enables other core datacenter capabilities.

Location Independence: The previous examples show
that NOX can support address remapping and per-flow
routing, making clear that NOX can support a general
addressing scheme (meaning that servers can be located
anywhere within the datacenter). We now address how
NOX supports live migration of VMs.

To demonstrate NOX’s ability to support live migration,
we use the topology portrayed in Figure 2. Server A is
sending traffic to a VM that is instantiated on Server B,
and during the course of this flow, the VM migrates to
Server C. We assume the proper flow entries are installed
in all switches along the path. Upon receiving notification

1

23

C B

A

4

VM

Figure 2: VM Migration Example

that the VM is moving, a NOX controller removes all flow
entries for that VM from its first hop switch (Switch 2 in
our topology). For all flows initiated after this removal,
the first packet is sent to a controller by the flow’s first-
hop switch, and the controller installs the appropriate path.
For any ongoing flow, which had a set of flow entries in



the network leading to Switch 2, when a packet from this
flow arrives at Switch 2, it will forward the packet to a
NOX controller (since the switch no longer has a flow
entry for flows destined for the VM). The controller can
identify the source of this flow from the packet’s 10-tuple
(Server A in this case) and the first-hop switch (Switch
1). It then deletes the stale flow entry from this first-hop
switch, and installs an updated entry on the next new flow
notification (i.e., the next time a packet from this flow
arrives at Switch 1). Stale state at switches disjoint from
the new path will time out, and state at other switches
(such as Switch 4 in our example), will be modified to
reflect the new path. As an optimization to prevent packet
loss for any existing packets in flight, an entry can be
installed that routes packets arriving at Switch 2, destined
for the VM, to Switch 3.

Service Quality: NOX can provide fault tolerance through
its ability to control routes. Existing switch mechanisms
can determine link failures and notify NOX. When
informed of a failed link by a switch, a NOX controller
then flushes all the flow entries at that switch which use
the failed link. When the next packet from each of these
affected flows arrives at the switch, the packet will be
forwarded to a controller which will then establish a set
of flow entries along a new path (avoiding the failed link).
In addition, OpenFlow provides the capability to install
a second flow entry of a lower priority, allowing NOX to
have previously calculated and installed back-up paths in
case of failures in order to minimize latency.

In addition, NOX can utilize any QoS mechanisms
provided by the network switches. NOX allows for
the specification of multiple traffic categories (e.g. http
traffic), and their associated QoS. When a packet from a
new flow is sent to a controller, it can identify the traffic
category and then reflect the category-specific QoS in the
flow entries it installs along the chosen route. If QoS
is not natively available to the switches, NOX provides
more coarse-grained mechanisms that operate at the flow
admission level. For example, NOX can rate-limit flow
establishment for particular categories depending on their
priority. We later discuss how NOX enables fine-grained
monitoring and visibility into network state and load,
enabling more accurate QoS provisioning.

NOX provides various options for achieving load
balancing. As demonstrated earlier, NOX can support
randomized schemes such as Valiant Load Balancing and
ECMP. Alternatively, NOX can utilize real-time informa-
tion about network load and the utilization of switches to
install flows on uncongested links. At the application
level, NOX can integrate with application-level load
balancers into the network by directing the appropriate
flows to them. NOX can also provide native application-
level load balancing support, by directing packets sent to
a particular virtual IP to one of corresponding servers.

5 Additional Capabilities
We now describe how NOX satisfies additional require-
ments consistently cited by operators as necessary func-
tionality but not included in most proposed architectures.

Middlebox Traversal: Many datacenter applications re-
quire the traversal of middleboxes, which provide custom
processing at layers 3-7. Similar to [8], NOX can support
their use by having operators specify classification-action
pairs, in which “classification” specifies the flow header
for each category and an “action” is an ordered middlebox
traversal sequence. For each new flow notification,
NOX determines whether it matches any of the traffic
categories, and if so, installs a path that explicitly routes
the flow through the necessary middleboxes. Not all
middleboxes are transparent, and some may modify the
packet header, often in a non-deterministic fashion. These
transformations can be predicted, as shown in [8], and
NOX can utilize such mechanisms.

Network Visibility: In addition, operators need mecha-
nisms to monitor and troubleshoot their network. NOX
and OpenFlow provide the basis for an integrated monitor-
ing architecture. OpenFlow switches maintain statistics
on a per flow, per port, and per switch basis, and these can
be polled by NOX and made available to the operator.
Trouble spots can be identified using more detailed
queries. For each ToR switch, NOX identifies entries that
correspond to flows originating from a host connected
to that switch. From the flow entry destination field,
NOX also identifies the last hop switch for the path and
examines that flow entry to ensure that the number of
processed packets reported by the two entries differs
by only a small number (such as could be due to the
difference in sampling times). If there is a significant
discrepancy, NOX then begins at the source, and traces
the path of the flow (using the output port specified in
the flow entry) to determine the switch(es) at which the
discrepancy arose. Using this technique, NOX can quickly
identify the location of packet losses.

Finer-grained control: We demonstrated in Section 3
that NOX can reproduce the routing and load-balancing
functionality of VL2 and PortLand, with roughly equiva-
lent state requirements. While desirable, small forwarding
tables only provide operators with coarse-grained control.
NOX can support finer granularities of control, all the
way to the extreme case of controlling every flow indepen-
dently, but at the cost of requiring larger forwarding tables.
To quantify this state-control tradeoff, we examine how
much state NOX would require to support two different
granularities of control.

First, we allow Aggregation and Core switches to
maintain a forwarding entry for each destination in the
network, eliminating the need to enforce a single routing



Server Only 20 VMs per server
Physical Nodes 6000 20000 100000 6000 20000 100000
Entries at ToR 120 120 120 2400 2400 2400
Entries at Agg. 840 1680 5040 16800 33600 100800
Entries at Core 500 834 1389 10000 16667 27778

Figure 3: Average # of flow entries installed when per-destination entries are installed at all switches.

Server Only 20 VMs per server
Physical Nodes 6000 20000 100000 6000 20000 100000
Entries at ToR 200 200 200 4000 4000 4000
Entries at Agg. 1200 2400 7200 24000 48000 144000
Entries at Core 5000 8400 13900 100000 168000 278000

Figure 4: Average # of flow entries installed when per-source/destination entries are installed at all switches.

scheme for all destinations within a rack. To keep the
state manageable, NOX enforces that all flows to a given
destination are routed through the same core switch.
Figure 3 details the number of forwarding table entries
needed to support this control granularity, assuming that
flow destinations are unique and randomly distributed.

The Server-only scenarios only require moderate state,
but the Aggregation and Core switches need significantly
more state in the large virtualized scenarios (though
even the largest state requirement can be handled with
a TCAM). Note that such numbers provide a worst-
case analysis in many respects. The data from [5]
indicated 10 concurrent flows per physical server; we
have extrapolated this to be 10 concurrent flows per
VM instance, leading to 200 concurrent flows per server,
with no assumption of flow locality. Communicating
VMs often share a common Aggregation switch, rack, or
even physical server, which would reduce the size of the
forwarding tables on Aggregation and Core switches.

Second, we consider the state requirements for con-
trolling traffic at the source-destination granularity. Our
estimates (Figure 4) assume that all source-destination
pairs are unique, and thus correspond to the worst-case
scenario of per-flow state. The number of entries is
manageable in smaller networks but becomes quite high in
the largest networks (again, though, even the largest state
requirements are close to what a TCAM could handle).

Deciding which granularity to use will depend on the
size and nature of the datacenter. In addition, a hybrid
of any of these schemes could be used. For example,
Valiant Load Balancing using per-ToR state can be used to
provide scalability, but individual flows that have special
needs, such as QoS or middlebox traversal, can have per-
flow granularity entries installed.

6 Discussion
The technical details of this paper are all about NOX,
but our point is far broader. NOX is merely one

instantiation of a larger movement (started by the 4D
project) towards software-based network management
systems that combine sophisticated control planes with
simple data planes. The goal of these management
systems is to provide network control that is flexible
enough to meet a wide range of needs. Moreover, in this
vision the network management capabilities appropriate
for specific settings are embodied in reusable software
modules, allowing the community to build up a growing
set of networking capabilities.

Demonstrating that NOX can address a variety of
datacenter requirements is only a tiny step forward
towards this broad vision. Our next step is to implement
the designs discussed here and analyze them more
thoroughly in practice.

7 References

[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity
data center network architecture. In SIGCOMM, 2008.

[2] Z. Cai, F. Dinu, J. Zheng, A. L. Cox, and T. E. Ng. Maestro: A
new architecture for realizing and managing networked controls.
In LISA, 2007.

[3] Cisco. Data center: Load balancing data center services.
[4] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford,

G. Xie, H. Yan, J. Zhan, and H. Zhang. A clean slate 4d approach
to network control and management. Computer Communication
Review, 2005.

[5] A. Greenberg, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz,
P. Patel, and S. Sengupta. Vl2: A scalable and flexible data center
network. In Sigcomm, 2009.

[6] A. Greenberg, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta.
Towards a next generation data center architecture: scalability and
commoditization. In PRESTO, 2008.

[7] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,
and S. Shenker. Nox: Towards and operating system for networks.
In Computer Communication Review, 2008.

[8] D. Joseph, A. Tavakoli, and I. Stoica. A policy-aware switching
layer for data centers. In Sigcomm, 2008.

[9] R. N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,
S. Radhakrishnan, V. Subramanya, and A. Vahdat. Portland: A
scalable fault-tolerant layer 2 data center network fabric. In
Sigcomm, 2009.

[10] Nicira Networks. private communication, 2009.
[11] OpenFlow Switch Consortium. Openflow switch specification.


