
Identifying Close Friends on the Internet

Randy Baden, Neil Spring, Bobby Bhattacharjee
University of Maryland

ABSTRACT
Online Social Networks (OSNs) encourage users to create
an online presence that reflects their offline identity. OSNs
create the illusion that these online accounts correspond to
the correct offline person, but in reality the OSN lacks the re-
sources to detect impersonation. We propose that OSN users
identify each other based on interaction and experience.

We believe that impersonation can be thwarted by users
who possess exclusive shared knowledge, secret informa-
tion shared only between a pair of OSN friends. We describe
existing protocols that use shared secrets to exchange public
keys without revealing those secrets to attackers. We present
results from a user study on Facebook to show that users do
share exclusive knowledge with their Facebook friends and
attackers are rarely able to guess that knowledge. Finally,
we show that friend identification can be extended using a
web of trust built on the OSN friend graph.

1. INTRODUCTION
Online Social Networks (OSNs) have persuaded mil-

lions of users [6] to give their offline identities an online
presence. While these OSN identities are convenient for
online communication, they risk impersonation [1] and
may provide personal information that threatens the se-
curity of other systems [10, 11]. Users, aware that their
personal information is valuable, may choose only to
allow their friends to see their information. However,
even correct privacy settings can be foiled if someone
has infiltrated their circle of friends. Users cannot trust
that the person behind an online account is actually
their offline friend, even if that account has the correct
picture and profile information [4]. Solving the problem
of OSN impersonation is critical to the future of privacy
and security in OSNs.

We are approaching a point at which OSNs will be-
come the bridge between offline identities and systems.
Authenticatr [12] shows that these identities can be a
valuable tool in system design. Unfortunately, an OSN
provider is not equipped to authenticate user identi-
ties since the provider knows almost nothing about its
users other than what they themselves supply, and that
supplied data can be easily forged. Though we, the
OSN users, are also not able to identify arbitrary OSN
users, we are actually well-equipped to detect when an
attacker is impersonating one of our friends.

Offline we have ways of identifying a friend—such as
recognizing her appearance or voice—that are either dif-
ficult or impossible in online communication. Instead
we can use exclusive shared knowledge for identification:
we can identify a friend (either online or offline) by ask-
ing questions that only she can answer.

Once we identify our friend, we can ask her to pro-
vide or verify a public encryption key associated with
her identity. By repeating this process with all of our
friends, we bootstrap a public key infrastructure (PKI)
that we can use on the OSN, a PKI that could be impor-
tant for emerging OSN applications that require secu-
rity or privacy. This distributed and decentralized PKI
could be a necessary component of future distributed
OSN research.

We face several challenges by verifying OSN identities
with shared knowledge. We must guarantee that shared
knowledge remains secret or we open ourselves up to
impersonation attacks. Users may not share exclusive
knowledge with all of their friends, so the PKI we create
may be limited in scope. Lastly, an impostor may be
able to guess the knowledge shared by a pair of users,
so we must limit and, if possible, detect such attacks.

Our contributions are the following. We show that
existing protocols can be used in an OSN to exchange
keys without revealing shared knowledge. We perform
a user study that shows that strangers have less than a
2% chance of guessing the answers to shared knowledge
questions; this compares favorably to web-based secu-
rity questions—another identification scheme based on
personal information—which can be guessed 17% of the
time by strangers [13]. We show that even when users
only exchange keys with a few friends, we can discover
the keys of many friends and friends-of-friends with a
web of trust [14]. Finally, we show that the same web
of trust detects 80% of all successful impersonation at-
tacks.

We organize this paper as follows. In Section 2 we
describe how to use exclusive shared knowledge to dis-
tribute public keys and show that we can avoid imper-
sonation attacks with existing protocols. We describe
our user study in Section 3 and show that shared knowl-
edge exists and can be used to identify friends. We
describe related work in Section 4 and conclude in Sec-
tion 5.

1

2. EXCLUSIVE SHARED KNOWLEDGE
The strength of exclusive shared knowledge lies in

its secrecy, so we must handle it delicately to prevent
attacks. We seek a key exchange protocol in which
one user can use shared knowledge to verify another
user’s offline identity, without either user revealing that
knowledge in the process.

2.1 Design
One user, the asker, wishes to verify the identity of

her friend, the askee. The users are communicating
over an insecure channel and we assume their messages
can be intercepted by a man-in-the-middle attacker, the
meddler. Key exchange is asymmetric: in one instance
of the protocol, the asker identifies the askee only. Sym-
metry is not required in OSNs that have directed friend
relationships, such as Twitter. For symmetric OSNs like
Facebook, we realize symmetry by repeating the asym-
metric protocol with the asker and askee roles reversed.

We will apply exclusive shared knowledge in our pro-
tocol as follows. The asker formulates a question Q
with answer A that relies on the exclusive knowledge
shared between the asker and askee. At the end of the
protocol, the asker will receive a public key PK with
the guarantee that the person who sent the key used
the answer A in the protocol, even though A is never
communicated in any way.

2.2 Attacks
We first consider the askee impersonation attack. The

meddler, though he does not know A, may make a guess
G that could be equal to A, especially if the set of possi-
ble answers to Q is small. The meddler will attempt to
use G to offer the fake key FK instead. If G = A, the
asker will receive FK and be convinced that it belongs
to the askee, meaning the impersonation is successful.
However, if G 6= A, the asker will be unable to ver-
ify the askee’s identity and may grow suspicious of an
impersonation attempt.

A meddler who can prevent messages from being de-
livered could also prevent successful verification of the
askee. The general problem of denial of service attacks
is outside of the scope of this paper.

Alternatively, the meddler could attempt to imper-
sonate an asker rather than the askee. The meddler
chooses a question Q′ and asks it of the askee. The as-
kee does not reveal A′ in the protocol, so the meddler
can only learn A′ if her guess G′ is correct. A′ is only
useful information in a subsequent askee impersonation
attack, and even then only if the asker chooses to use
Q′ as a question.

In either of these attacks, the meddler can imperson-
ate a person who is not actually a user of the OSN by
creating a fake account on the OSN with that person’s
information. The same attacks apply even when there

is not a “real” asker or askee for the meddler to imper-
sonate.

In order to maintain shared knowledge secrecy, the
meddler must be unable to recover A from the protocol
even with an offline dictionary attack. Therefore, any
attempt to test whether G = A must require the co-
operation of either the askee or the asker, to limit the
number of guesses a meddler may make.

2.3 Existing Protocols
Two existing protocols satisfy the requirements for

our problem. Jablon [8] describes SPEKE, a proto-
col designed to establish a secure channel between a
client and a server who share a common passphrase.
As Jablon suggests, this can also be used with shared
knowledge as the passphrase between two users. SPEKE
is specifically designed to preserve the secrecy and re-
quire online verification of the passphrase. The secure
channel in SPEKE can be trivially used to exchange a
public key once the protocol is complete.

SPEKE achieves these properties by modifying the
Diffie-Hellman protocol, replacing the ordinarily fixed
primitive base with a primitive base given by a well-
chosen function of the shared information. We omit
further details of SPEKE.

Ellison [5] describes a multi-question protocol that
also satisfies the properties we require. This protocol
allows the asker to ask several questions before decid-
ing that she is in fact communicating with the askee.
Although it may prevent some honest users from ex-
changing keys successfully, askers and askees must limit
the number of verifications they will perform to reduce
the number of guesses a meddler may make.

2.4 Embedding SPEKE in an OSN
Facebook is one of many web-based OSNs, and we

use it as an example of how one would augment an
existing OSN to support SPEKE. Facebook provides
private messages between users, which could be used as
the communication channel in SPEKE.

Several steps of the protocol require local crypto-
graphic operations that must not reveal certain infor-
mation such as private keys or the answer. One can per-
form the SPEKE protocol on an OSN by embedding the
protocol in a Firefox extension. SPEKE requires several
messages, so the asker and askee must either visit the
OSN simultaneously or they must interleave their vis-
its to the OSN several times to complete the exchange.
This solution is also appropriate for other OSNs; in par-
ticular, Persona [3] already relies on a Firefox extension
for cryptographic operations.

In addition to key exchange with SPEKE and exclu-
sive shared knowledge, we can increase a user’s view
of trusted public keys through a web of trust built on
the OSN friend graph. Although users might hesitate

2

to ascribe trust to all of their Facebook friends, they
might be more willing to trust the friends they know
well enough to identify through exclusive shared knowl-
edge. We consider the benefit of using a web of trust in
Section 3.2.2.

3. CAN USERS ASK GOOD QUESTIONS?
Since the security of our system relies on the abil-

ity of users to ask good questions, we perform a real-
world user study to determine whether users can do so.
This study presents a challenge that most user studies
do not face: the results depend on getting data about
both participants and their friends. Rather than bring
individual users in for interviews, we perform our study
directly on Facebook to take advantage of the existing
friendship information that Facebook provides. We de-
scribe our user study, Bond Breaker1, in this section.

Like many other viral Facebook applications, Bond
Breaker is a social game. We wanted to ensure that
users had the right goals while using Bond Breaker, so
scoring in the game reflects desirable behavior in an
actual system built for secure key exchange. We also
believed that if the game was fun, it would encourage
competition and convince users to invite their Facebook
friends to participate.

3.1 Bond Breaker Game Rules
We present the rules to the users before they begin

playing Bond Breaker. In Bond Breaker, users are re-
warded for establishing bonds. A user establishes a bond
by asking a question of a friend, providing an answer,
and getting the friend to provide the same answer; this
is analogous to successful (one-way) completion of the
key exchange protocol in Section 2. Both the asker
and the askee are rewarded for successfully establish-
ing a bond, and they are also rewarded for establishing
a bond in the other direction.

For example, Alice asks Bob, “Where did we meet for
the first time?”, and Alice and Bob answer, “a roller
disco”, forming a bond. Bob independently asks Al-
ice, “What color is my bike?”, and both answer “blue”,
forming another bond in the other direction.

As the name Bond Breaker suggests, we also encour-
age users to break bonds. A user is rewarded when she
guesses the correct answer to a question that was not
intended for her. A user may break a bond in this way
even if the intended askee is unable to answer the ques-
tion correctly, since this still corresponds to a success-
ful attack in the actual key exchange protocol. A given
asker and askee may establish only one bond at any
given time: if that bond is broken, they may try to use
a new question. Since we want to discourage users from

1Bond Breaker remains open and is available to use at
http://bondbreaker.cs.umd.edu/

Asker Askee Meddler
Creating a bond +1 (each) +1 (each) -
Breaking a bond -2 (once) -1 (once) +1 (each)

Table 1: Scoring in Bond Breaker. Askers and
askees earn points for each bond they create and
only lose points once per bond if the bond is
broken. Each meddler earns points for breaking
a bond, even if the bond was already broken by
another meddler.

asking and answering poor questions, we penalize the
asker and askee whenever a bond is broken.

Continuing our previous example, Eve guesses the an-
swers to Alice and Bob’s questions. To the first, she
guesses “high school”, and fails to break their bond.
To the second, she guesses “blue”, breaking the bond
from Bob to Alice. Unless Eve knows more information
about Alice and Bob, Alice’s question is good because
there are many places to choose from and the answer
is relatively obscure. Bob’s question is not as good be-
cause the answer is easily guessed.

We reward and punish users based on a point system
and include a leaderboard to give users incentive to earn
points. We present our scoring rules in Table 1. The
asker and askee are penalized once for having a bond
broken, but arbitrarily many meddlers can earn points
for breaking the same bond. We penalize the asker more
than the askee when a bond is broken since the asker
chose the question and has more at stake in the key
exchange protocol; if the bond is established and then
broken, the net result would be that the asker loses one
point and the askee breaks even.

In our study, each meddler only gets one guess per
question, corresponding to the requirement that askers
and askees limit the number of answer verifications they
will make. In practice, some users asked questions that
the askee was unable to answer only because of slight
formatting problems and then asked the same question
again, giving meddlers an extra chance to answer. We
used case-insensitive matching as the only transforma-
tion on answers and have not evaluated any other trans-
formations. Any transformation that makes matching
more lax will favor usability at the expense of security:
the easier it is for friends to identify each other, the eas-
ier it will be for an attacker to guess the correct answer.

The rules that we have described provide an effective
analogy between success in Bond Breaker and success in
an actual system. Users are rewarded for asking ques-
tions of as many users as possible, but punished when-
ever those questions can be answered by a meddler; in
a real system users would obtain benefit from learn-
ing many public keys and could incur substantial costs
when meddlers convince them to use false public keys.
By rewarding users for breaking bonds, we provide an

3

Figure 1: Friend graph for active users in Bond
Breaker.

incentive to do so, just as meddlers in an actual system
would have incentive to falsify public key information.
We believe that Bond Breaker measures well the usabil-
ity of shared knowledge for identity verification.

3.1.1 Data Collection
We opened Bond Breaker to the public on April 3rd,

2009 and collected data for three months. We primarily
advertised by word-of-mouth, but also with flyers and a
Facebook advertisement. In total, 171 people agreed to
participate in Bond Breaker, but 70 of the participants
did not ask, answer, or attempt to meddle in any of the
questions. Of the remaining 101 active users, 92 chose
to ask or answer at least one question while 9 chose only
to meddle. In total, there were 225 questions, 200 an-
swers from the askees, and 300 answers from meddlers.

The friend graph among participants in our study
is not as densely connected as we would expect in a
complete OSN friend graph. 41% of the active users
had only one or two friends actively participating in the
study. Through user feedback we found that this was
a combination of the following: users did not want to
bother their friends with what could be seen as spam in-
vitations, the signup process required reading a detailed
description of the rules, and users felt discouraged from
using the application if none of their friends had signed
up for it yet. In contrast, 14% of active users had ten
or more friends participating; many of these users were
connected to each other, forming the densely connected
core in Figure 1. Most of our results do not depend on
how densely connected the friend graph is, but we may
be able to obtain more accurate results about the web
of trust if we obtain a more complete friend graph in
the future.

3.2 Results
We use the results of our user study to answer the

following questions. Can users easily formulate answer-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F
 o

ve
r

us
er

s

Fraction of adjacent links

Bond Broken
Bond Made

Bond Attempted

Figure 2: Fraction of friends to whom users
asked questions, created bonds, and had bonds
broken.

Friend Stranger All
Unsuccessful 50% 44% 94%
Successful 5% 1% 6%

All 55% 45% 100%

Table 2: Breakdown of meddling attempts based
on whether the meddler was a stranger or a
friend and whether the meddler was successful
or unsuccessful.

able questions based on exclusive shared knowledge?
How likely is an attacker to guess the answer to those
questions? Finally, can we use these local verifications
to bootstrap a PKI, similar to the PGP web of trust?

3.2.1 Question Success Rate
We first consider whether the participants were able

to successfully use shared knowledge to establish bonds.
Figure 2 shows that users had varying degrees of success
in their ability to pose questions to friends: about a fifth
of the users did not ask questions of any of their friends,
another fifth asked questions of all of their friends, and
the remainder were distributed nearly evenly. However,
when users did pose a question, the friend answered
correctly 69% of the time.

Unlike askees, meddlers are rarely able to answer
questions, with only a 6% success rate. Table 2 shows
that strangers meddled with nearly as many questions
as friends. However, five out of six successful break
attempts were by a friend of either the asker or as-
kee. Though users may have spiteful friends who try to
interfere with their efforts, we expect most attacks in
practice to come from strangers. The ratio of successful
attacks to attempts is only 9% for friends and 2% for
strangers. To provide a point of comparison, web-based
security questions can be answered 28% of the time by
friends and 17% of the time by strangers [13]. Though
this is the only comparison we can draw to actual sys-
tems, there are significant differences between the prob-
lems being solved and the experimental methodologies

4

Figure 3: Bond graph in Bond Breaker; solid
lines with filled arrows represent successful
bonds and dashed lines with empty arrows rep-
resent broken bonds.

of these two studies, so this comparison is meant only
to put the results in context.

From these results we conclude that users are only
able to use shared knowledge with some of their friends,
and it is usually difficult for a meddler to guess the
answer to a shared knowledge question.

3.2.2 Web of Trust
Though we have demonstrated that many users only

formed bonds with only a small fraction of their friends,
we now show that users can learn the keys of other
users in the OSN. Figure 3 shows the bonds and broken
bonds between active users. Based on this graph, we
define a user U ’s web of trust to be the set of users
reached by breadth-first search on the directed bond
edges beginning at user U . The web of trust may also
be limited to a fixed number of hops away from U ; a web
of trust restricted to 2 hops would include U , any of U ’s
friends to which U has established a bond (hop 1), and
any user reachable from those users (hop 2). Restricting
the web of trust sacrifices graph coverage for the sake
of security. Our definition assumes that trust is related
to hops in the friend graph, but in practice we advocate
the use of explicit, user-defined trust information.

With a web of trust, the user can do two things: dis-
cover the identities of users she does not bond with
first-hand, and detect when an attacker has falsified an
identity. Since most OSN communication is between
friends or between friends-of-friends (FoFs), we focus
on learning the keys of those users.

We first show a CDF of the fraction of friends and
friends-of-friends reachable via a web of trust in Fig-
ure 4. If we restrict the web of trust to 2 hops, meaning
that the user trusts her friends to attest to keys belong-
ing to her FoFs, 18% of users can identify more than
half of their friends or FoFs in the OSN. However, if we

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F
 o

ve
r

us
er

s

Fraction of friends and FoFs covered by web of trust

1 Hop (Direct Verification)
2 Hop (Trust Friends)
3 Hops (Trust FoFs)

5 Hops
All Hops

Figure 4: CDF of the fraction of friends and
FoFs reachable through the web of trust, by web
of trust restriction. 36% of the users have no
outgoing bonds, so they gain nothing from the
web of trust.

Figure 5: Carl incorrectly believes that the ac-
count created by Ivy belongs to Alice, and his
web of trust does not detect his error.

do not restrict the web of trust, half of the users with at
least one outgoing bond can reach at least 73% of their
friends or FoFs. This suggests that the web of trust is
a powerful tool in creating a PKI for friends and FoFs
and that the study of trust in OSNs deserves further
research.

We also discovered that 12 of the 15 unique broken
bonds could be detected by the unrestricted web of
trust. That is, for 80% of the broken bonds, there is
a path of good bonds from the asker to the askee in the
unrestricted web of trust. We can use this feature of
the web of trust to reduce impersonation in an OSN.
Our results use Facebook account ids to identify nodes
in the web of trust, but an impostor could create a fake
account to thwart this. Figure 5 shows an example of
how the web of trust could fail: the path of good bonds
(Carl to Bob to Alice) points to a different node in the
friend graph than the broken bond (Carl to Ivy), so
Carl will be oblivious to Ivy’s attack if he cannot dis-
cover that the accounts created by Alice and Ivy refer
to the same offline identity. In order to use the web

5

of trust to detect impostors, bond edges must therefore
encode information about offline identity to be able to
match fake accounts to their real counterparts.

These results demonstrate that we can bootstrap a
PKI that provides the keys of friends and FoFs in an
OSN. This PKI is distributed and decentralized; we do
not require a centralized authority and we can exchange
keys entirely online, as opposed to the offline key signing
parties of PGP. This PKI could become a critical tool
for providing security and privacy in emerging OSN-
based applications.

4. RELATED WORK
Persona [3] is a distributed OSN that provides user-

defined privacy through cryptography, but relies on the
existence of a PKI even as it eschews a centralized OSN
provider. The distributed PKI we describe, in which
the local user identifies her own friends, is a natural
solution for the PKI in Persona as it is entirely online
and does not require a central authority.

Toomim et al. [16] show that shared knowledge could
be used as an alternative to group-based access control
in OSNs. In their work, users protect OSN content by
guarding it with a question; only users who can answer
the question can access the content. In contrast, we
use exclusive shared knowledge to verify identity rather
than group membership, and exchange cryptographic
keys on which access control can be built.

The third-party application My Public Key [9] pro-
vides mechanisms for encryption and signatures on Face-
book, but the application does not verify user identity
and keys could be falsified by a man-in-the-middle at-
tacker.

Studies of OSN security show that current methods
of identifying users are insufficient. Bilge et al. [4] de-
scribe an attack in which the attacker copies a victim’s
information from one OSN to another to impersonate
the victim on the new OSN. This allows the attacker to
befriend the victim’s friends, learn information about
them, and continue the attack on those new users. Key
exchange with shared knowledge could be used to pre-
vent such attacks; the attacker may have access to per-
sonal information, but not exclusive shared knowledge.
Felt [7] also describes an exploit for hijacking Facebook
accounts (which has since been patched). Our work
could be used to detect hijackings and repair them.

Alexander et al. [2] describe a modification to off-
the-record (OTR) instant messaging that allows users
to authenticate each other using shared secrets. Sted-
man et al. [15] study how a small group of users inter-
act with the modification. Our work instead considers
shared knowledge in the broader arena of OSNs and
quantitatively demonstrates the ability of users to em-
ploy shared knowledge.

5. CONCLUSION
Impersonation is a fundamental problem of OSNs.

We have described how to use exclusive shared knowl-
edge to allow users to take responsibility for identify-
ing their own friends in an OSN in a completely online
way. We have described a user study, Bond Breaker,
that takes takes advantage of existing Facebook friend
information to study our idea in a real setting. We
have demonstrated through Bond Breaker that exclu-
sive shared knowledge is a practical tool for identifying
friends in an OSN and that users can establish a PKI
among their friends and friends-of-friends with a web of
trust.

Though Bond Breaker reveals the potential of exclu-
sive shared knowledge, it does not test the extent of
its use. In both the feedback we received from par-
ticipating users and from our own experience with the
Bond Breaker application, we observed that (1) users
have trouble creating questions with difficult-to-guess
answers, but (2) users can come up with many weak
questions that collectively are a thorough test of the as-
kee’s shared knowledge. To facilitate the identification
of friends, we should take advantage of the weak shared
knowledge that users possess more abundantly. We be-
lieve that the use of multiple identifying questions may
be able to bridge the gap between the results we have
presented and a complete PKI, and leave this as a topic
of future research.

6. REFERENCES
[1] ABC News. http://www.abcnews.go.com/Technology/

Story?id=7960020.
[2] C. Alexander and I. Goldberg. Improved user

authentication in off-the-record messaging. In WPES, 2007.
[3] R. Baden, et al. Persona: An online social network with

user-defined privacy. In SIGCOMM, 2009.
[4] L. Bilge, et al. All your contacts are belong to us:

automated identity theft attacks on social networks. In
WWW. ACM, 2009.

[5] C. M. Ellison. Establishing identity without certification
authorities. In SSYM. USENIX Association, 1996.

[6] Facebook Statistics.
http://www.facebook.com/press/info.php?statistics.

[7] A. Felt. Defacing facebook: A security case study. White
paper, UC Berkeley, 2007.

[8] D. P. Jablon. Strong password-only authenticated key
exchange. SIGCOMM Comput. Commun. Rev., 1996.

[9] My Public Key Facebook Application.
http://apps.facebook.com/mypublickey/.

[10] PC World. http://www.pcworld.com/article/168462/.
[11] A. Rabkin. Personal knowledge questions for fallback

authentication: security questions in the era of facebook.
In SOUPS. ACM, 2008.

[12] A. V. Ramachandran and N. Feamster. Authenticated
out-of-band communication over social links. In WOSN.
ACM, 2008.

[13] S. Schechter, A. J. B. Brush, and S. Egelman. It’s no
secret: Measuring the security and reliability of
authentication via ’secret’ questions. In SOSP, 2009.

[14] W. Stallings. The pgp web of trust. BYTE, February 1995.
[15] R. Stedman, K. Yoshida, and I. Goldberg. A user study of

off-the-record messaging. In SOUPS, 2008.
[16] M. Toomim, et al. Access control by testing for shared

knowledge. In CHI. ACM, 2008.

6

