
Efficient Cross-Layer Negotiation

Bryan Ford
Max Planck Institute for Software Systems∗

baford@mpi-sws.org

Janardhan Iyengar
Franklin & Marshall College
jiyengar@fandm.edu

ABSTRACT

Internet evolution often depends on either inserting new

protocol layers or upgrading existing layers to new proto-

cols, but both of these evolutionary paths are obstructed

by the difficulty and inefficiency of determining which

protocols a pair of hosts mutually support and prefer. We

propose a novel cross-layer Negotiation Protocol that sets

up a complete stack of connection-oriented protocols at

once, concurrently performing handshaking for multiple

layers and choosing among alternative protocols for each

layer in as few round trips as possible, often just one.

The initiator proposes a protocol graph explicitly encod-

ing possible configurations along with protocol-specific

handshake data; the peers then prune, refine, and atom-

ically commit to a final configuration, exchanging mes-

sages over a specialized transport that can operate in-line

with the negotiated protocol stack. Although a practical

Negotiation Protocol presents many challenges, our ini-

tial exploration suggests that these challenges are solv-

able, and we believe addressing them is a necessary step

toward a more evolvable Internet.

1. INTRODUCTION

The Internet’s power and generality rests on its archi-

tectural use of layering [35], which enables diverse trans-

ports and applications to run atop IP, and IP in turn to run

atop diverse physical networks [6]. Internet extensions

often insert new layers, such as cryptographic security [8,

18] and addressing enhancements [22, 23]. Resolving ar-

chitectural conflicts created by middleboxes [1, 13, 15]

may entail further decomposing the Transport Layer [12],

and interim solutions already create deep layer cakes, such

as “IPsec-on-IPv6-on-HTTP-on-TLS-on-TCP-on-IPv4” in

Microsoft’s DirectAccess [7]. A key missing ingredient,

however, is a mechanism to decide efficiently which pro-

tocols implementing which layers to use between a given

pair of hosts. This absence is hampering the Internet’s

ability to evolve effectively, either by introducing new

layers or by upgrading existing ones cleanly.

More layers can increase processing costs on end hosts,

and methods of mitigating these costs are well-studied [4,

5, 16]. Layering connection-oriented protocols can also

increase connection setup delay, however. With TLS [8]

atop TCP [33], for example, each protocol’s setup re-

quires at least one round trip, and TLS’s handshake can-

∗at Yale University as of September 2009

not begin until TCP’s completes. More connection-oriented

layers stacked this way accumulate more setup delay, which

can quickly become noticeable when latency is high. Since

long-distance round trip delay is limited by the speed of

light, and does not decrease with technological advances,

the cumulative round trip costs of connection setup may

be the most important cost of layering in the long term.

Keeping new layers—and new implementations of old

layers—interoperable with legacy hosts also has costs.

If an application wishes to run atop SCTP [32] but fall

back to TCP for compatibility, for example, the applica-

tion cannot start its TCP handshake until it receives an

ICMP Protocol Unreachable [27] response to its SCTP

attempt—or until SCTP times out, in the common event

an intervening middlebox silently drops SCTP packets.

Speculatively opening alternative connections in paral-

lel wastes host and network resources, and these costs

compound with additional alternatives. A DNS extension

could allow querying supported protocols, but such “out-

of-band” negotiation incurs the administrative cost of up-

dating the DNS server whenever the host’s software stack

changes, and fails if a middlebox on the path blocks a pro-

tocol that both endpoints support. Even within a single

protocol such as TCP, version evolution becomes simpler

and cleaner given some negotiation meta-protocol [24].

Revitalizing the Internet’s evolution requires a system-

atic solution to these layering challenges. To this end we

propose a novel cross-layer Negotiation Protocol, which

can concurrently negotiate and initialize a complete stack

of connection-oriented protocols between a pair of hosts

in as few round trips as technically feasible. The key idea

underlying the Negotiation Protocol is for end hosts to ex-

press a set of possible protocol stack configurations they

support, along with protocol-specific handshaking data,

in an explicit protocol graph encoded in one message. A

connection initiator first sends an initial protocol graph

“proposal,” which the responder modifies by “pruning”

unsupported or undesired alternatives, and possibly elab-

orating the graph further before returning it to the ini-

tiator. The participants refine this protocol graph while

speculatively processing the initialization handshakes of

all protocols present in the graph at each stage, until all

alternatives are decided and the hosts commit to a config-

uration. As the example exchange in Figure 1 illustrates,

negotiating any number of layers and alternatives often

requires only one “3-way handshake.”



Figure 1: Example Negotiation Protocol exchange constructing a two-layer protocol stack (transport layer plus

security layer) in one “3-way handshake.”

Designing a practical Negotiation Protocol offers sev-

eral technical challenges, such as efficiently encoding the

protocol graph and protocol-specific data, packetization

and congestion control of large negotiation messages, throt-

tling of “speculative” communication on behalf of proto-

cols that may not be included in the final protocol graph,

handling situations in which parts of the negotiation pro-

cess need to be secured (authenticated and/or privacy pro-

tected), and allowing negotiation to fall back gracefully

to legacy protocols when a communication peer does not

support the Negotiation Protocol. We explore these chal-

lenges and tentative solutions in the context of a prototype

under development.

Section 2 presents our conceptual model for negotia-

tion, independent of protocol design details. Section 3

then describes our prototype Negotiation Protocol. Sec-

tion 4 outlines interactions between the Negotiation Pro-

tocol and other system components. Section 5 discusses

outstanding issues, Section 6 outlines related work, and

Section 7 concludes.

2. A MODEL FOR NEGOTIATION

This section describes our conceptual model for cross-

layer negotiation, independent of negotiation protocol de-

tails, which we defer to the next section.

2.1 Protocol Graphs

Inspired by modular networking architectures such as

the x-Kernel [16, 25], we model a running protocol stack

as a directed acyclic graph whose nodes represent pro-

tocol instances such as TCP connections, and whose di-

rected edges represent dependencies or “builds-upon” re-

lationships between these instances. For example, a TLS

session running atop a TCP session has an edge from the

TLS node to the TCP node. If a communicating sys-

tem’s “steady state” is conceptually a graph of protocol

instances represented by state in the end hosts, the Negoti-

ation Protocol’s purpose is to build and initialize that state

efficiently based on the capabilities and requirements of

the communicating hosts.

Since negotiation involves not only setting up protocols

but agreeing on which alternative protocols and options to

use, the Negotiation Protocol’s graph represents a union

of possible protocol stack configurations. For example,

if an application can run atop either TCP or SCTP, the

protocol graph contains nodes for both alternatives, and

one alternative is “pruned” during negotiation. Individual

protocols may negotiate protocol-specific options at the

same time, such as TCP’s SACK [20] and time stamp [17]

options, using the protocol’s existing header and option

formats. The Negotiation Protocol is thus a “container”

carrying handshake data for several protocols at once.

In the example protocol graph in Figure 1(a), the appli-

cation can run directly atop TCP, atop TLS over TCP (for

security), or atop DTLS over DCCP (for secure datagram-

oriented communication). Each protocol node is anno-

tated with any options and parameters specific to that pro-

tocol. This graph structure can represent a wide range of

configuration alternatives compactly: in a simplistic “list

of complete protocol suites” representation, for example,

the TCP node and its handshake option data would be du-

plicated in the alternatives with and without TLS.

2.2 Basic Negotiation

In a basic exchange, the connection initiator proposes

a protocol graph describing configurations supported by

the initiator, and the responder replies with a correspond-

ing graph from which it has pruned unsupported or un-

desired alternatives, leaving the representation of a “defi-

nite” protocol stack from which the hosts set up connec-

tion state. In Figure 1(b), the responder selects TLS over

TCP by pruning all other graph nodes, and selects certain

protocol options but prunes others. In (c), the initiator

acknowledges this negotiated graph and communication

commences using the configured protocols.

As long as the initiator can (and wishes to) express

its full configuration possibility space in the first mes-



sage, and all protocol-specific handshakes require only

one round trip, this basic exchange takes only one “3-way

handshake” regardless of protocol graph complexity.

For DDoS protection, the responder typically does not

set up long-term state at step (b) but returns a cookie

along with the revised protocol graph, which it later ver-

ifies upon receiving the initiator’s acknowledgment (c)

before initializing its state. The responder may however

maintain some quota of “cookie-free connections,” so that

if the responder is lightly loaded and a cookie-free slot

is available, the responder sets up its state immediately

without returning a cookie challenge. In this case, use-

ful communication may commence during the first round

trip, e.g., using handshake data embedded in the applica-

tion protocol’s graph node.

2.3 Extended Negotiation Scenarios

While we expect many common cases to fit the ba-

sic pattern above, some situations may require additional

graph revision steps possibly involving more round-trips.

We point out several such negotiation scenarios here.

Deferred Graph Elaboration.
If the initiator does not wish to reveal its entire fea-

sible protocol configuration space in its first negotiation

message, e.g., due to security or message size concerns,

it may replace protocol nodes or entire graph subcompo-

nents with “placeholders” in the initial message, allow the

responder to start pruning the incomplete graph in the first

round trip, and then elaborate the graph further by filling

in these placeholders in subsequent round trips.

Initiator Choice of Alternatives.
The initiator may wish to retain “the power of choice”:

instead of allowing the responder to choose among alter-

natives proposed by the initiator, the initiator may insert

placeholder nodes for the responder to elaborate with pro-

tocols and options the responder supports, among which

the initiator chooses by pruning the graph a half round

trip later. When and what types of placeholders are al-

lowed depends on the rules of the protocol(s) they repre-

sent: some protocols may require explicit representation

in the first message, others may require that the initiator

always sends an initial placeholder that the responder fills

in with its available alternatives, etc.

Protocol-Specific Information Dependencies.
If protocol B runs atop protocol A and B’s protocol-

specific handshake process requires information produced

by A’s handshake process, the protocols are inherently

serialized and B’s handshake must wait until A’s com-

pletes. The Negotiation Protocol still completes the ex-

change with the minimum latency possible given these

dependencies, however.

Peer-to-Peer Negotiation.
While the basic negotiation exchange assumes the hosts

have asymmetric “initiator” and “responder” roles, this

negotiation model might be extended to peer-to-peer sit-

uations in which both hosts act as “initiators,” e.g., as in

a TCP simultaneous open [33] or a NAT traversal ren-

dezvous [10]. In this case, each host independently cre-

ates and sends an initial protocol graph proposal; upon

receipt of its peer’s proposal, each host combines the two

proposals to create a final (or next stage) protocol graph.

In this case the two peers must use a convergent graph

pruning algorithm: not only pruning nodes that either peer

doesn’t support, but making the same choices among al-

ternatives they do support, ensuring convergence to the

same final protocol stack. Not all protocols need support

simultaneous initiation, and those that do must specify

choice rules that ensure convergence.

Recursive Negotiation.
An instance of the Negotiation Protocol may need to

run recursively “within” another instance: e.g., an “outer”

instance may negotiate cryptographic security protocols

and parameters in cleartext, while an “inner” instance pro-

vides security-protected negotiation of higher-level proto-

col configuration and parameters. With care, these nested

negotiation exchanges can run concurrently and incur no

additional round trips. If the initiator knows or has cached

the responder’s public encryption key, for example, the

initiator can encrypt the first message of the inner (se-

cured) Negotiation Protocol exchange, sign it with its own

private key, and embed it in the security protocol’s hand-

shake data in the outer (cleartext) Negotiation Protocol

exchange. If the initiator includes its own public encryp-

tion or Diffie-Hellman key in this first message, the re-

sponder can similarly embed its first inner (secured) re-

sponse message within its first outer (cleartext) response,

and so on. Such “zero-delay” nesting of Negotiation Pro-

tocol instances may require the initiator’s security proto-

col to know or guess an initial encryption algorithm that

will be acceptable to the responder (or else embed mul-

tiple encrypted versions of the inner request within the

outer request, which may be expensive). If the initiator

guesses wrong, the responder can simply ignore the em-

bedded inner message and force the initiator to re-encrypt

and re-send the inner message in the next round trip.

3. PROTOCOL DESIGN

We now examine our prototype Negotiation Protocol

design in detail. We do not claim this design to be the

“right” or “best” one, but merely use it to solidify the

concepts discussed above and make an initial attempt to

identify and address important technical challenges fac-

ing a practical Negotiation Protocol.

3.1 Negotiation Context

We assume that any negotiation exchange takes place

in some well-defined context, which uniquely identifies

the communication endpoints and the raw delivery chan-

nel atop which negotiation is to occur. For example, if



Figure 2: Negotiation Message Structure

a pair of hosts wish to run the Negotiation Protocol di-

rectly atop IP, then the context is defined by the two hosts’

IP addresses and an IP protocol number, and Negotiation

Protocol packets sit directly atop the IP header. If two

application endpoints wish to negotiate a user-level pro-

tocol stack via UDP sockets, then the negotiation context

is defined by the UDP session 5-tuple of IP addresses, IP

protocol, and UDP port numbers.

Negotiation may be in-band or out-of-band. After an

in-band negotiation, the negotiated protocol stack uses

the same communication context as the negotiation itself:

e.g., transmits packets over the same UDP session as the

negotiation packets. Protocol stacks negotiated in-band

must make their packets distinguishable from Negotiation

Protocol packets, as discussed below in Section 3.3.

After out-of-band negotiation, the resulting stack uses

some other context, such as endpoints agreed upon via

protocol-specific handshake data. Out-of-band negotia-

tion is consistent with architectures like NUTSS [14], in

which “control plane” and “data plane” communication

follow different routes. Out-of-band negotiation in to-

day’s Internet however carries the risk that information

learned via one path may not apply to the other: the end-

points might find only after negotiation has completed

and committed that the chosen data path is blocked by

a middlebox. Similarly, peer-to-peer NAT traversal typ-

ically requires in-band control signaling [10], leading us

to focus here on in-band negotiation.

3.2 Encoding the Graph

Each protocol node in the graph has a Node ID, which

is fixed within a negotiation exchange but otherwise ar-

bitrary. Each node also has a Protocol ID, a well-known

value indicating a specific (version of a) standardized or

experimental protocol defining the node’s meaning.

A negotiation exchange proceeds in one or more steps,

each party sending one message per step before waiting

for the other party’s next message. A message is a se-

quence of node descriptors, each describing one protocol

graph node, as illustrated in Figure 2. A node descriptor

consists of zero or more child node IDs pointing to other

nodes that (may) build on this protocol; a type-length-

value (TLV) field containing optional per-node parame-

ters defined by the Negotiation Protocol; and a payload

area containing protocol-specific handshake data.

Figure 3: Transport Header and Chunk Format

The first node in the message represents the negoti-

ation context atop which the entire negotiated protocol

stack will build, such as IP or UDP. Node descriptor or-

dering is otherwise arbitrary, allowing hosts to optimize

common cases. A host may for example first transmit all

nodes comprising the preferred protocol stack, followed

by other alternatives; the receiver may begin the next ne-

gotiation step as soon as “enough” of the previous step’s

message has arrived, as described below.

3.3 Negotiation Message Transport

Since a negotiation message could substantially exceed

the path MTU if it includes protocol-specific objects such

as cryptographic certificates, a special-purpose transport

illustrated in Figure 3 packetizes negotiation messages.

The negotiation transport outlined here is designed for in-

band negotiation in a best-effort delivery context such as

IP or UDP; other contexts might entail modifications.

Inspired by SCTP [32], a negotiation transport packet

consists of a fixed header followed by one or more chunks,

each chunk carrying data for a different graph node, al-

lowing several small node descriptors to share one packet.

The header includes a magic cookie following the con-

vention set by STUN [28], allowing in-band negotiation

packets to intermix safely with those of other conforming

protocols: particularly with those of the eventually nego-

tiated protocol, but also with NAT traversal packets [10]

atop peer-to-peer UDP sessions. The header’s Transac-

tion ID uniquely identifies a negotiation exchange initi-

ated by a given host, and the Step Number indicates the

relevant step within that exchange.

The sender assigns consecutive transmit sequence num-

bers to a message’s packets so the receiver can reconstruct

their original order. Node descriptors too large for one

packet receive consecutive sequence numbers; flags de-

mark the first (F) and last (L) chunks of a node, allowing

the receiver to reconstruct each node independently even

if packets for prior nodes are still missing. Every chunk

for a given node contains the node’s Protocol ID, so the

receiver can simply acknowledge and drop all packets for

protocols it does not support without ever storing them.

The receiver acknowledges packets by transmit sequence

number, enabling the sender to retransmit individual pack-

ets, and congestion control the sending of large messages.



Borrowing from SST [11], each packet acknowledges a

single contiguous, limited range of sequence numbers,

providing the benefits of selective acknowledgments with-

out the complexity of variable-length SACK headers.

4. INTERFACING WITH PROTOCOLS

The Negotiation Protocol could in theory be deployed

with no changes to the protocols being negotiated: an ap-

plication could simply run the Negotiation Protocol on

a “raw” graph of alternatives whose nodes contain little

or no protocol-specific data, and once negotiation com-

pletes, use the pruned protocol graph as a “plan” from

which to set up instances of the negotiated protocols us-

ing those protocols’ normal setup mechanisms. This ap-

proach might still derive benefit from selecting among al-

ternatives efficiently, but the setup of the negotiated pro-

tocols would require additional round trips, which might

be serialized as described in Section 1. For maximum ef-

ficiency, therefore, negotiated protocols must be modified

to interact with the Negotiation Protocol. This section

outlines the modifications and interfaces involved.

The Controller and Graph Setup.
We assume some entity within an end host, which we

call the Controller, is ultimately responsible for deciding

to run the Negotiation Protocol in some context and de-

termining the set of protocol configurations to allow. If

an application uses the Negotiation Protocol to build a

protocol stack from the transport “all the way up,” the

application is the Controller. A system-level component

may alternatively use the Negotiation Protocol to super-

vise the deployment of protocols below the networking

API, transparently to the application, such as by silently

substituting TCP with compatible but more efficient trans-

ports like SST, or even with multi-layer suites [12]. In this

case the operating system serves as the Controller.

To prepare for negotiation, the Controller first creates

a Negotiation Protocol instance for the appropriate com-

munication context, then requests that each of the rele-

vant protocols register itself with the negotiation instance

to form the nodes of the possible protocol graph. The

Controller similarly invokes the protocols to create graph

edges representing relationships between protocol nodes.

Negotiating as Initiator or Responder.
When the Controller invokes the Negotiation Protocol

to initiate a negotiation exchange, the Negotiation Proto-

col constructs the explicit encoding of the potential pro-

tocol graph, in the process invoking each protocol in the

graph to obtain that protocol’s initial handshake data and

embed it in the graph: e.g., TCP’s SYN header including

any relevant TCP options. The Negotiation Protocol then

sends this encoded graph to the responder.

As packets representing this graph arrive at the respon-

der, the responding Negotiation Protocol reconstructs the

node descriptors and handshake data for supported proto-

cols while discarding nodes for unsupported protocols, as

described above in Section 3.3. Once a node is complete

and its dependencies processed, the Negotiation Protocol

invokes the node’s protocol, passing the initiator’s hand-

shake data, to advance that node to the next handshaking

step. The protocol returns the handshake data to be sent

back to the initiator: e.g., SYN-ACK data and options

for TCP. The protocol may not allocate long-term state

outside the protocol graph until the Negotiation Protocol

commits. Both the Controller and individual protocols

may prune graph nodes deemed less desirable or nonfunc-

tional, such as due to errors in received handshake data.

The responder then sends the revised graph back to

the initiator, whose Controller either continues the back-

and-forth or commits if the graph has reached a suitable

state. Upon commit, the Negotiation Protocol sends an

acknowledgment of the final graph to the peer (usually the

responder), enabling the peer to commit as well. The Ne-

gotiation Protocol then invokes each protocol remaining

in the graph to set up its long-term state based on that pro-

tocol’s last handshake data. At this point the protocol may

explore the final graph and interact with other protocols

to optimize subsequent communication, e.g., by precom-

puting offsets and setting up data handling pipelines [6].

The Negotiation Protocol then becomes passive for the

rest of the communication session, except to retransmit

lost packets of the final commit message as necessary.

5. DISCUSSION

Designing and deploying a practical Negotiation Proto-

col will require further exploring several important issues,

of which we briefly discuss two: backward compatibility

and implementation complexity.

Backward Compatibility.
Since today’s Internet has no Negotiation Protocol, de-

ploying one incrementally may require enhancing exist-

ing protocols such as TCP to use the Negotiation Protocol

if both hosts support it, but fall back to the “raw” origi-

nal protocol if not. This problem may demand protocol-

specific solutions. For TCP, an upgraded host could trans-

mit an initial Negotiation Protocol packet, followed im-

mediately by a conventional TCP SYN containing the Ne-

gotiation Transaction ID in a TCP option. If the remote

host understands the Negotiation Protocol and receives

the negotiation packet first, it suppresses subsequently re-

ceived TCP SYNs from the source containing the match-

ing Negotiation Transaction ID; otherwise, the hosts fall

back to legacy TCP operation. (Suppressing SYNs purely

by source address and port may be risky due to NATs.)

Implementation Complexity.
Does a Negotiation Protocol’s benefits justify its imple-

mentation complexity? Our model’s basic protocol graph

structure and high-level message format are quite simple;

much of the complexity in Section 3 resides in the nego-

tiation transport, which may be (or might be made) simi-

lar enough to a “workhorse” transport like SCTP or SST



to reuse much of the implementation. Economics may

also justify this complexity: web site owners may wish

for site-wide SSL to protect against prevalent HTML in-

jection attacks [29], and cheap many-core processors and

crypto acceleration [34] can mitigate SSL’s computational

costs, but only cross-layer negotiation in some form will

address the risk that SSL’s extra round trips will make the

site take twice as long as its competitors to appear.

6. RELATED WORK

Modular network architectures have been studied for

decades, such as the OSI layering model [35], the Inter-

net [6], the x-Kernel [16, 25], and the Click router [21].

Previous work on optimizing layered protocol stacks has

focused primarily on the processing costs to end hosts, as

addressed by integrated layer processing [5] and protocol

compilation [4] for example. Our Negotiation Protocol

complements this prior work by addressing instead the

round trip costs of multi-layer negotiation and setup.

TCP [33] uses header options to negotiate extensions,

achieving backward compatibility within one protocol at

the cost of adding progressively more complexity, over-

head, and unpredictability to TCP header processing as

options accumulate [17, 20]. O’Malley and Peterson ar-

gue against this practice and in favor of simply switching

to new “fixed” TCP header formats as needed, via some

negotiation process [24]. We agree with the latter phi-

losophy, but feel that a solution is needed for negotiation

across as well as within layers. Meta-protocols like TCP-

MUX [19] and the RPC port mapper [31] offer naming

indirection but do not negotiate protocol configuration.

Ad hoc enhancements reduce round trip setup costs for

specific existing protocols. T/TCP [2] allows closed TCP

sessions to be recycled quickly, and persistent connec-

tions and pipelining in HTTP 1.1 [9] avoids TCP’s 3-way

handshake costs on successive requests [26]. TCP [33]

originally permitted piggybacking application data onto

SYN packets, a feature unsupported by most current TCP

stacks due to DDoS and other concerns. DCCP [33] also

allows piggybacking, less problematically due to DCCP’s

best-effort semantics. SST [11] can open lightweight TCP-

like streams with no 3-way handshake, after establish-

ing shared underlying association state between the two

hosts. The Bundle protocol [30] minimizes round trips

across DTNs at application level. These techniques, while

effective within a given protocol, do not address the broader

need to negotiate efficiently across multiple layers and al-

ternative protocols implementing each layer.

Protocols like RSVP [3] use explicit network layer ne-

gotiation to guarantee quality of service along a path. Our

focus in contrast is primarily on end-to-end negotiation of

transport and higher level services.

7. CONCLUSION

The evolvability of the Internet’s layered architecture is

currently limited by the difficulty and inefficiency of de-

ploying new layers and new implementations of existing

layers. A cross-layer Negotiation Protocol could not only

allow hosts to negotiate efficiently among a wide variety

of alternative protocol stacks in one round trip, but also

piggyback the handshaking of each protocol in the nego-

tiated stack onto that same round trip in common cases.

8. REFERENCES
[1] J. Border et al. Performance enhancing proxies intended to mitigate

link-related degradations, June 2001. RFC 3135.

[2] R. Braden. T/TCP – TCP extensions for transactions, July 1994. RFC 1644.

[3] R. Braden, Ed. Resource reservation protocol (RSVP) – version 1

functional specification, September 1997. RFC 2205.

[4] Claude Castelluccia and Walid Dabbous. Generating efficient protocol code

from an abstract specification. In SIGCOMM, August 1996.

[5] D. D. Clark and D. L. Tennenhouse. Architectural considerations for a new

generation of protocols. In SIGCOMM, pages 200–208, 1990.

[6] David D. Clark. The design philosophy of the DARPA Internet protocols. In

SIGCOMM, August 1988.

[7] Joseph Davies. DirectAccess and the thin edge network. Microsoft TechNet

Magazine, May 2009.

[8] T. Dierks and E. Rescorla. The transport layer security (TLS) protocol

version 1.2, August 2008. RFC 5246.

[9] R. Fielding et al. Hypertext transfer protocol — HTTP/1.1, June 1999. RFC

2616.

[10] Bryan Ford. Peer-to-peer communication across network address

translators. In USENIX, April 2005.

[11] Bryan Ford. Structured streams: a new transport abstraction. In SIGCOMM,

August 2007.

[12] Bryan Ford and Janardhan Iyengar. Breaking up the transport logjam. In

HotNets-VII, October 2008.

[13] N. Freed. Behavior of and requirements for Internet firewalls, October

2000. RFC 2979.

[14] Saikat Guha and Paul Francis. An End-Middle-End Approach to

Connection Establishment. In SIGCOMM 2007, August 2007.

[15] M. Holdrege and P. Srisuresh. Protocol complications with the IP network

address translator, January 2001. RFC 3027.

[16] Norman C. Hutchinson and Larry L. Peterson. The x-Kernel: An

architecture for implementing network protocols. IEEE Transactions on

Software Engineering, 17(1), January 1991.

[17] V. Jacobson, R. Braden, and D. Borman. TCP extensions for high

performance, May 1992. RFC 1323.

[18] S. Kent and K. Seo. Security architecture for the Internet protocol,

December 2005. RFC 4301.

[19] M. Lottor. TCP port service multiplexer (TCPMUX), November 1988. RFC

1078.

[20] M. Mathis, J. Mahdav, S. Floyd, and A. Romanow. TCP selective

acknowledgment options, October 1996. RFC 2018.

[21] Robert Morris, Eddie Kohler, John Jannotti, and M. Frans Kaashoek. The

Click modular router. In 17th SOSP, December 1999.

[22] R. Moskowitz and P. Nikander. Host identity protocol (HIP) architecture,

May 2006. RFC 4423.

[23] E. Nordmark and M. Bagnulo. Shim6: Level 3 multihoming shim protocol

for ipv6, June 2009. RFC 5533.

[24] S. O’Malley and L. Peterson. TCP extensions considered harmful, October

1991. RFC 1263.

[25] Sean W. O’Malley and Larry L. Peterson. A dynamic network architecture.

TOCS, 10(2):110–143, May 1992.

[26] Venkata N. Padmanabhan and Jeffrey C. Mogul. Improving HTTP latency.

Computer Networks and ISDN Systems, 28(1–2):25–35, December 1995.

[27] J. Postel. Internet control message protocol, September 1981. RFC 792.

[28] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing. Session traversal

utilities for NAT (STUN), October 2008. RFC 5389.

[29] Seth Schoen. Detecting packet injection: A guide to observing packet

spoofing by ISPs. Electronic Frontier Foundation whitepaper, November

2007.

[30] K. Scott and S. Burleigh. Bundle protocol specification, November 2007.

RFC 5050.

[31] R. Srinivasan. Binding protocols for ONC RPC version 2, August 1995.

RFC 1833.

[32] R. Stewart, ed. Stream control transmission protocol, September 2007. RFC

4960.

[33] Transmission control protocol, September 1981. RFC 793.

[34] VIA Technologies, Inc. VIA PadLock security engine, August 2005.

Technology Brief.

[35] Hubert Zimmermann. OSI reference model—the ISO model of architecture

for open systems interconnection. IEEE Transactions on Communications,

28(4):425–432, April 1980.


