Securing Mediated Trace Access Using Black-box
Permutation Analysis

Prateek Mittal Vern Paxson Robin Sommer Mark Winterrowd
uluc UC Berkeley / ICSI ICSI/LBNL UC Berkeley
1. INTRODUCTION nearly arbitrary analysis programs while imposing only

The lack of public access to current, real-world modest requirements on researchers and data providers.

datasets significantly hinders the progress of network re- 1 1€ key observation we leverage is that thS: data provider
search as a scientific pursduit. It is often not possible to 10lds the researcher’s program “captive,” so to speak:
robustly validate a proposed mechanism, enhancement,the provider can run it multiple t|m§s on different inputs
or new service without understanding how it will inter- and observe the program’s behavior in each case.
act with real networks and real users. Yet obtaining the ~Having captive programs creates an opportunity for
necessary raw measurement data—in particular, packeP&rmutation analysis As a simple example, suppose
traces including payload—can prove exceedingly diffi- that a r_esearcher gs_kmg for mediated analysis asserts
cult, and not having appropriate traces for a study can that their program is indifferent to IP addresses—other
stall the most promising research. th_an that they remain dlstln(_:t in a one-to-one mapping
There have been extensive efforts by the community with end systems—nbut that in fact the res.earcher's' pro-
at large to change the status quo by providing collec- 9ram searches for the presence of a single particular
tions of public network traces. However, the commu- P address in a packet trace and flags its presence in a
nity’s major push to encourage institutions to release SUrreptitious fashion in the output. Conceptually, the
anonymized data has achieved only very limited suc- provider can detect thls_lgakage as follows. Thgy first
cess. The risks involved with any release still outweigh '€€d the program the original trace and capture its out-
the potential benefits in almost all environments. The Put. They then permute the trace, consistently alter-
lack of significant progress in this direction—despite N9 its embedded addresses, atiffl the resulting out-
extensive efforts—is an undeniable indication that the PUt with that from the first run. If the sensitive address
community needs a new approach. indeed appeared in the orlglnal_ trace but not in the per-
An alternative paradigm for enabling network re- mutpd trace, then the ogtputswnlngcessanlydﬁer (oth-
search ismediated trace analysisather than bringing ~ €"Wise, the program failed to leak its presence). If the
the data to the experimenter, bring the experiment to address did not in fact appear in the o_r|g|nal trace, then
the data, i.e., researchers send their analysis programdN€ outputs may agree (they might notif the permutation
to data providers who then run them on their behalf and aPpened to accidentally introduce the address), which
return the output. The community has been using this ©"€ Might view as “no harm, no foul.”
approach on aad hocbasis for a number of years, butin e term such an approach atack-box permuta-
that form itfails to scale providers only undertake such ~ tion analysissince it can secure mediated trace analysis
mediation based on a great deal of trust that the request-Without requiring any visibility into the internals of the
ing researcher is acting in good faith and that data re- '€S€archer's program, and thus withoutimposing any re-
leased via the mediation will not pose any privacy risks. Stictions on how the researcher must code it. However,
If as a community we find that for effectively con- While the above example is appealing in its conceptual
ducting our science we must increasingly rely upon me- Simplicity, applying such analysis in a secure, system-
diated trace analysis, then we must address in a system-?‘t'c fashion requires careful consldergtlon of numerous
atic fashion the crucial technical hurdle of ensuring that 1SSues. Our work endeavors to illuminate these issues
mediated analysis programs do not leak sensitive infor- 1d develop sound approaches for attending to them. In
mation from the data they process. The two frameworks Particular, we develop an analytic framework for per-
previously proposed for preventing such leaks have the Mutation analysis and e_mpI,oy it to show how to detect
significant limitation of requiring researchers to code Violations of a data provider's privacy policy using only
their analysis programs in terms of pre-approved mod- & relatlvely modest number of b_Iack—box permutatlon.s.
ules [6] or a specific language [5]. In this paper we pro- We also discuss ho_w our technique can account_ for_ in-
pose a powerful alternative approach that can work with NOCUOUS changes in program output via canonicaliza-

tion. Finally, we present experimental results validating sume that a researcher and a trace provider first negotiate
the accuracy of our analytic model and the canonicaliza- the kind of analysis that the researcher can undertake, to
tion mechanism’s robustness. enable the trace provider to evaluate the risks and assess
the possible information leaks of concern. We assume
2. RELATED-WORK that the analysis program runs in a deterministic fashion
For brevity we omit discussion of trace anonymiza- (if it uses pseudo-random numbers, then it provides a
tion techniques and known attacks upon some of them mechanism to set the generator’s initial seed), and that
as discussed, e.g., in[3, 10, 2]. Mogul and Arlitt firstex- the provider runs it in a sandboxed environment that has
plored mediated trace analysis with the though$iGRD no Internet connectivity. Thus, the only channel for con-
design [6]. However, SC2D never proceeded beyond veying information back to the researcher is an output
a proof of prototype, leaving many research challenges file. We assume further that the time scale for verifying
unaddressed. In particular, its security guarantees de-that the analysis program does not leak information can
pend on the use of pre-approved analysis modules, arange from days to even several weeks, allowing ample
specialized language, and independent expert review.time for assessing multiple runs of the program.
Regarding this latter, it is not clear what techniques ex- We also assume that researchers provide the trace
perts would employ to check for information leaks. provider withoutput templatethat describe the format
Mirkovic [5] proposed that data providers publish a of the agreed-upon output files, and that the programs
query language and allow researchers to submit sets ofgenerateaudit trails that define how elements of the
queries expressed using it to run over data. Dependinginput map to positions in the output. These annota-
on the provider’s privacy policy, the framework allows tions allow the permutation analysis to soundly assess
the use of certain queries on some packet fields in a par-whether a permuted input generates the same output as
ticular context. The query results however consist@f the original data. We discuss the properties of the out-
gregate informationsuch as counts or histograms, im- put template and audit trail in Section 5. The researchers
posing a significant limitation on the range of analysis needn't restrict their analysis as long as they ensure that
that the system can support. the final results are free of concern. Provider however
An alternative approach is to dynamically detect in- can decline to release the output if unconvinced of its
formation leaks usingaint trackingto follow informa- safety. Our overarching goal is to reduce how much trust

tion flow during dynamic execution [8]. However, taint-
tracking suffers from both false positives (taint prop-

providers require when mediating analysis of their data.
Threat model. The primary threat the framework

agates excessively) as well as false negatives (failuremust address is leakage of information undesired by

to track implicit flows, such as control flow dependen-
cies), and traditionally only checks for a binary attribute
(tainted/untainted), which does not fit well for allowing

the trace provider. The framework must protect against
both unintentional leakage due to errors and deliberate
attempts to exfiltrate data. In practice, providers will

partial information use (declassification of data). likely assign levels of trust to different researchers in an
Recent work by Backest al. [1] presents an ap- informal fashion, based primarily on reputation, but we
proach to automatically discover and quantify informa- can bracket this range by considering two threat models.
tion leaks. While their assessment procedure is exact, First, honest-but-curiousesearchers intend to comply
their analysis does not scale to real world programs, with the provider's privacy policy, but may misimple-
since its computational complexity is proportional to the ment elements of it, and cannot be prevented from ex-
square of program execution paths. We pursue a simi- amining the results they get back for artifacts outside
lar notion but from a different angle, by making proba- the negotiated scope. Tlalversarialmodel, on the
bilistic assertions about information leakage using only other hand, makes no assumptions about the legitimacy
a modest number of experiments. of a researcher’s actions. They may include in their
Junget al. [4] present a technique called “differen- analysis surreptitious elements that compromise sensi-
tial fuzz testing” in which changes in input are mapped tive provider information.
to output changes to infer likely leaks of information. Policy and risk management In our framework
Their system relies on the hypothesis that any output it is incumbent upon the data provider to determine
difference generated from two different inputs indicates theirpolicyfor what information they consider sensitive.
dependency on a sensitive input parameter, rather thanClearly, there is great value in tools for assisting with
possibly arising (as will often be the case for typical these determinations, but experience to date has shown
network analysis tools) from benign sources such as the that such assessments can be quite subtle [10]. Informa-
order in which a program reports per-flow statistics. tion correlation from external sources of data also poses
3 FRAMEWORK a challenge. A significant advantage that our approach

offers over trace anonymization in this regard is that the
For a given instance of mediated trace analysis we as-

class of deanonymization attacks is smaller: when re- mation leaks by tryingll possible input values (thereby
leasing anonymized traces, one must deternmainthe exercising all execution paths), but that clearly imposes
time of releasehe full scope of possible future attacks, an intolerable computational burden. In this section we
while for black box permutation analysis we can prevent examine the degree to which we can detect leaks in a
any direct leaksit the time of analysis probabilistic fashion, and develop an analytic model for
In general, policies that aim to hide user identity must understanding the confidence level gained by conduct-
consider a wide range of trace information, including ing a given number of permutation trials.
IP/Ethernet addresses, timestamps, packet header “fin- Consider the analysis program as a mapping from the
gerprints,” etc., and providers face a fundamental trade- input to the output; the output of the program may thus
off in terms of conservative policies vs. utility for re- reveal some information about the input. For example, if
search [10]. Examination of the range of possible poli- the program is a one-to-one mapping, the output may re-
cies is beyond the scope of this work. For purposes of vealall information about the input. On the other hand,
illustration, we will mainly consider the notion of sensi- if the output of the program does not depend on the in-
tive IP addresses. put at all, then the output reveals no information about
We can consider a partial ordering of use cases the input. In general, a prografminduces a set of input
based on risk. For example, for IP addresses we equivalence classe®;, R, ... Ry, such that all inputs
might consider entire addresses as sensitive, or allowwithin a particular equivalence clagg yield the same
prefix-preserving comparisons across addresses. We camutput. Now, an observatiomof the program’s output
keep addresses consistent only within flows, or per-host reduces the attacker’s uncertainty about the value of the
across flows or not even within flows (addresses in ev- input, I, to the members of the corresponding equiva-
ery packet are renumbered). For timing, we can retain lence class, which we denote Bg,,. Let us denote the
global time; relative time since the start of the trace; rel- attacker’s uncertainty at this point B(I|o), which we
ative time on a per-flow basis; or relative time consistent quantify using the information theoretic metric of en-
for individual hosts (though we must then select which tropy. In general, if the attacker knows that some values
host of the pair in a flow to use). in the equivalence class are more likely to appear than
Our framework can accommodate any of the above others, then we havB (I|o) = —)" ¢;log, ¢;, where
policies—the provider expresses which they want to use ¢; is the probability of thej’th element in the equiva-
by selecting the specific mechanisms used to generatelence classi;, being the value of the input. However,
permutations of the original trace data. In principle, the because of the deterministic nature of the program, all
privacy policy that drives permutation can be quite ex- members of the equivalence claBg, yield the same
pressive; for example, we can restrict the range of per- outputo with certainty, and the attacker cannot distin-
muted values to a specific set of values éaronymity guish amongst the members &f . Thus, their un-
sel, a particularly attractive feature for preserving dif- certainty about the input is uniform over all elements of
fering classes of machines in the network (e.g., end R;), which gives usH (I|o) = log, | R;(,)|-
hosts vs. servers). Privacy policies can also make use of We then can express the net information leakeds
domain information, such as restricting the range of per- the change in uncertainty, i..,= H(I|®)— H(I|o) =
muted addresses to the data provider’s IP address rangelog, 2° — log, |Ri(0)|, where® is simply the null obser-
4. ANALYTIC MODEL vation andb |s.the length of.the sensitive v_alue in bits.
_ _ _ Observe that it is computationally expensive to exactly
A key question for permuta_tlon analy3|§ concerns.the computeR;), since doing so may require up2b per-
number of permutation experiments required to achieve mutation experiments. Thus we endeavor to probabilis-
a given confidence level about the results. Just running tically estimate the size dki(,) using only a small num-
the program on the original trace and a permuted version per of permutation experiments;. There is an impor-
of it does not suffice to guarant@ebits of information tant tradeoff in the choice ofi: increasing it yields bet-
leakage. For instance, a program taking a 32-bit IP ad- ter estimates of information leakage, but at the expense
dress as input may have 2 execution paths. Suppose thapf increased processing. At the endmafpermutation
the program travels the first execution path if the host ad- experiments, suppose we obsenvpermuted inputs to
dress ranges betwe@8 and127/8 , and the second Jie in the equivalence clasg;,. Let X be the random
path otherwise. If both the original and permuted values variable indicating the total number of test inputs be-
bOth fall within or outside o0/8 e 127/8 s then we |0nging to equiva|ence C|as§i(o), andZi(o) the prob-
will not observe any changes in the program’s behav- apility of a random input falling intaR;(,). We wish
ior, despite the program leakirighit of information. In to estimateZ;,), since from it we can then compute
some ways the question of how many permutations are the sjze of the equivalence class| &) | = Zi(o) - 2".

required lies at the heart of the viability of our approach. rjrst we compute the probability of observing a given
One can in principle comprehensively discover all infor-

sizeX = z, as follows: sponding echo reply, or IP address and IP checksum),
then if the privacy policy specifies one of these, we need
)zi(o)’”(l — Zi)) " " to permute the other one accordingly in order to keep the
1) semantics of communication intact. If we are unaware
We now use Bayes' rule to compute the probabify, of coupling between two fields, and permute only one of
given the observation: o) them, then the output may change drastically (due to the
violated semantics) even if the program does not leak

m
P(X = ZC|ZZ(0) = Z’i(o)) = (

T

P(Zi(o) = 2i(o)| X = z) = any info_rmation—_a failure that is conservative in terms
PIX — 2170« — P — of flagging a possible leak where one does not occur.
(X = 2|Zio) = 2io) P(Zigo) = 2it0) @) Extension to multiple packets We have framed the
Zm(o) P(X = 2|Zi(o) = 2i(0)) discussion in this section in terms of a single sensitive

input, such as an address in a given packet header. In
. :) _ practice, traces may of course contain millions of sen-
code knowledge about information leak: for the honest sitive inputs (e.g., each distinct address), and our tech-

but-curious model, we can use a Gaussian centered_.
i . . nigues need to accommodate such scale. To do so, we
around the negotiated information leak value, whereas . ; .
. o . introduce the notion ofvholesale permutatigrwhere
for the adversarial model, a distribution uniform over

.) in m permutation experiments, we permute each sensi-
the range of possible values. We can finally compute .. . : .

. . : tive inputm times, and thus the number of permutation
H(I|o) as the weighted sum of conditional entropies,

N o2) experiments does not increase. To illustrate, suppose we
giving us a quantitative measure of the attacker’s uncer- . o))
. : . i have a policy to reveal only the firgtbits of information
tainty afterm permutation experiments: .
per address. Then we can simply perfarmwholesale
H(Ilo) = Z P(Zit) = 2i(0)| X =) -10gy (i) -2"). permutations on the remaining bits, and ensure that out-
puts reside in the same equivalence class. The problem
_ . becomes slightly more complex if the program wishes to
Note that so far we have tried to estimaig,, | only usediffering & bits for each IP, determined dynamically
from the inputS that fall into that equivalence class. We at run time. To handle this case, the program needs to
can improve upon the above uncertainty estimate if we reveal a meta-file specifying whidhbits per IP it used,
assume that all equivalence classes are of uniform Size.so that we can permute the remaining bits and check for
We can justify this assumption for both non-malicious equivalence, as discussed in the next section.

adversaries (accidental mistakes) and some malicious
adversaries (as this is their best attack strategy, given5' EXPERIMENTAL VALIDATION

uniform a priori uncertainty about the inputs). To do For a first evaluation in a real-world setting, we as-
so, assume thaf;,) has the formg;, given N equiva- sess our framework’s performance with three packet
lence classes. Suppose that at enthqfermutation ex- analysis tools borrowed from past measurement stud-
periments, we observedistinct outputs with frequency ies: (i) a script that examines TCP sessions for not-
x1,%2,...,2-. We can readily generalize Eqn (1) and yet-acknowledged payload chunks [11], implemented in
Eqgn (2) to consider these observations as a randgon the language of the Bro network intrusion detection sys-
tor X, gaining additional diagnostic power by using the tem, which we calBroAckStat (ii) GraphSplicer[7],
corresponding multinomial. a tool for identifying structures in network communica-
Extension to multiple fields So far we considered tion patterns; andii) TCPTrace a tool deriving com-
only a single sensitive-bit input. Now suppose we have prehensive flow-level statistics. We assume the position
two sensitive fields of lengthl; andb,. A naive ap- of a data provider who is handed each of these tools for
proach might consider this scenario as a single sensitiveprocessing a local packet trace. For our experiments,
input of sizeb; + by, but doing so increases the num- we consider a simple privacy policy: the analysis tools
ber of required permutations for accurate results expo- must not lealanyinformation about IP addresses in the
nentially. However, if the two sensitive fields are inde- trace. Before we can proceed, however, we first need
pendent (for example, IP addresses and packet-capturea mechanism for assessing the equivalence of outputs
timestamps), then we can simply apply permutation to from multiple executions of each tool.
one field first, keeping the other fixed, and then vice Output Canonicalization. Comparing the outputs
versa. For the general caseldhdependent fields, we from two different executions of a tool is not straight-
permute one field at a time, keeping the remairiirgl forward. A simple character-leveliff will typically not
fields fixed. In this way, the number of experiments in- suffice, as an output might contain fields that, while de-
creases only linearly in the number of sensitive fields. pending on the sensitive input, will not be passed on to
On the other hand, observe that if two fields ao# the researcher. In particular, this will often be the case if
independent (e.g., TCP timestamp option and the corre-the researchers are relying on third-party analysis tools

We can use the prior distributid(Z;,) = z;(,) to en-

Zi(o0)

633 Ié% :fg’ _'fg :‘1% :1‘15 :ig §§ output is “.33", with a dep(_andency i_n the audit_ trail of
16 25 .41 .16 |.33 33 .33 0 the formaa. Our permutation mapping determines the
16 .25 16 4% [.16 .16 .0 .66 corresponding dependency to look for in the permuted
(a) Secret run (b) Permuted run. run’s audit trail, i.e.@’a’ . We find it in row 3 / col-
umn 3, and match the output element located at that
aa ab ac ad cc¢ cd ca cb position to the secret run's output. Both output ele-
ba bb bc bd |dc dd da db « mon o
ca cb co cd |ac ad aa ab ments are “.33", and thus they match. Similarly, for
da db dc dd |bc bd ba bb all other fields, we determine whether the two outputs
(c) Secret run (d) Permuted run are indeed isomorphic. A crucial observation here is

.) .) o that audit trails strictly help us with establishing equiva-
Figure 1: GraphSpliceroutput (a/b); audit trail (c/d). lence across runs; any imprecision (or intentional error)

producing output they cannot contr@ICPTrace for ex- in their specifications will lead to overestimates of infor-
ample, outputs IP addresses in clear text as part of a flowmation leaks rather than underestimates.

identifier. If not part of the output that is shipped back, validating canonicalization. To assess the correct-
such fields need to be excluded for OUtpUt Comparison. ness of canonicalization, we wrote Output temp|ates
We note that with some tools innocuous output changes for TCPTrace BroAckStatand GraphSplicer masking

can be very subtle. For example, a change in the com- any information about IP addresses. We also modified
putational order might affect just the lower order bits of GraphSplicerto leave an audit trail annotating its out-
some output variables, such as when recording times- pyt. Note that only tens of lines of code were required to
tamps of certain activity. Furthermore, often threler- modify GraphSplicer With these output templates and
ing within an output can change when permuting an in- audit trails in place, none of the three tools leaks infor-
put, even though its semantic meaning remains the samemation about IP addresses, and therefore any “permuted
(e.g.,BroAckSta output gets rearranged when permut- outputs” produced from permuted inputs should be iso-
ing IP addresses as its order depends on flow identifiers.)morphic to the original result. To verify this, we used a
Finally, even if a client fully controls the output format puplic packet trace recorded inside the Lawrence Berke-
(such as for analysis specifically written for the pursued |ey National Laboratory (LBNL) [9], consisting afL69
study), it can still be quite challenging to come up with ynique IP addresses and ab2.t6 million packets. We

a canonical format suitable for determining the equiva- ran the ana|ysis tools on this trace, us'"ng: 50 per-
lence of two outputs directlyGraphSplicer for exam- mutation rounds. Indeed, for each tool our framework
ple, prints out a matrix of probabilities indexed by host correctly classified alb0 permuted outputs as equiva-
pairs. Permuting input IP addresses changes the order ofent to the original ones.

these matrix entries in non-predictable ways, as depicted Focusing orGraphSplicer we then instrumented ma-

in the examples shown in Figure 1(a) and 1(b). licious versions of the tool to launch a set of example
For these reasons, we introduce two transformations attacks chosen from four different categoriég:Non-
to canonicalize a tool’s outpuutput templateandau- targeted attacks revealing complete informatidPrint

dit trails. The former describe an output's layout in a ga|| |P addresseqii) Non-targeted revealing partial in-
simple format we devised, indicating the relevant fields, formation: For each IP address, priftif it lies in 0/8

their expected order, and any additional processing op- ... 127/8 , 1 otherwise;(iii) Targeted revealing com-
tions to apply to them (e.g., truncating lower order bits). plete information For the node sending the largest num-
Such a template should be provided by the researcher,per of packets, print its IP address; g Targeted re-
and we implemented a tool for the provider that canoni- vealing partial information For the same node, prift
calizes an output file accordingly. For those cases wherejf it's inside 0/8 ... 127/8 , 1 otherwise.

simple post-processing does not suffice (e@raph- Conceptually, for the first three attack classes, we
Splicel), we require the analysis to generate @it should find no permuted output isomorphic to the orig-
trail that records meta-information about the Process- inal one, Considering the |arge number of IP addresses
ing. The audit trail annotates every output field with @ present in the trace. For the fourth class, we expect that
corresponding tuple that specifies its dependencies onghout half of the permuted outputs are isomorphic to the
sensitive inputs. Figures 1(c) and 1(d) show two such original, since the sensitive range spans half the address
audit trails corresponding to tf@raphSplicemruns dis- space. Next, we ran the malicious versions on the LBNL
cussed above. The elements in the audit trail comprise trace usingn = 50 permutation rounds. For the first
of IP address pairs corresponding to matrix elements three attack classes, our framework indeed found that all
in the GraphSpliceroutput. Having these trails, we 50 permuted outputs weneot isomorphic to the orig-
check the isomorphism of the outputs as follows. We inal one; while for the fourth class, it determined that

simultaneously parse the output generated from the se-26 were not isomorphic. These results match our intu-
cret input and its audit trail. The first element in the

ition and confirm the robustness of the canonicalization.

Validating the analytic model. To assess our ana-
lytic model's power, we used the above results with the
random variableX set to the number of permuted out-
puts that are isomorphic to the original. For the hon-
estGraphSplicerversions § = 50 andm = 50), the
model correctly predicts an information leak of exactly
0 bits. For the maliciou&raphSplicewersion, we focus
our analysis on the most interesting scenario, the fourth
attack class. In this cas& (= 24, m = 50), the model
estimates an information leak @f0025 bits, which is
indeed very close to the true valuelobit.

We further examined the model’s prediction for a
more general targeted attack that leakedits of in-
formation. We simulatedn permutation rounds to es-
timate the value of(, and then used this as input to the
analytic model to predict the expected information leak.
For varying values ofn, Figure 2 shows the compar-
ison between the actual information leak of a program
and the predicted value averaged o0 iterations of
the simulation. Model 1 and 2 correspond to Section 4's
cases of non-uniformly and uniformly sized equivalence
classes, respectively. Considering the first model, we
see that while withn = 10 rounds the predictions are
still rather imprecisemn = 50 rounds are already suf-
ficient for small values of actual leakage € 4 bits).
However, for higher degrees of leakage, we have to re-
sort to hundreds of permutations, and even then the er-
ror is still quite large forl0 bits. As discussed in Sec-
tion 4, Model 2 provides additional diagnostic power by
considering uniformly sized equivalence classes. In this
case, we see that we achieve accurate predictions with
much fewer rounds: for an actual leakagd 0bits, the

model predictd 0.2 bits with only a100 permutations.
20 T T T T T T T T T T
bt % o
e RS T A
Model 2, m=50
16 | Model 2, m=100 + % J
- 14 F 4
c I
'% 12+ X * 4
£ + l
§ 10 - | |
£ X |
7 e X J
B + ‘
'-qE) 6 ’ % 4
a .l Xx |
+ X
2 X 4
v

5 6 7
True Information Leak

8 9 10 1

Figure 2: Validation of Analytic Model
Additional Concerns. One final concern regards
shipping the output to the researcher. Once black-box
permutation analysis determines that the program satis-
fies the data provider’s privacy policy, we take an input
that lies in the same equivalence class as the secret input
and shigts output to the researcher. This step eliminates
any covert channels exploiting the ordering of lines in

the case that order cannot be predicted.

6. SUMMARY

We proposed black-box permutation analysis: a pow-
erful approach to securing mediated trace access that
can work with nearly arbitrary analysis programs. By
permuting sensitive fields in the input trace, and analyz-
ing resulting changes in the program output, we are able
to detect information leaks. Black-box permutation ac-
commodates expressive privacy policies, and can detect
violations of these policies using only a modest number
of permutation rounds, as shown by our analytic model.
Our technique can account for innocuous changes in
program output via canonicalization using a researcher-
suppliedoutput templateand anaudit trail generated at
run time. Avenues for future work include analyzing se-
curity over multiple experimental runs, and helping the
trace provider devise appropriate privacy policies.

7. ACKNOWLEDGMENTS

We would like to thank Jelena Mirkovic for sharing
her survey of network trace utilization. This work was
supported in part by NSF Award CNS-0905631. Opin-
ions, findings, and conclusions or recommendations are
those of the authors and do not necessarily reflect the
views of the National Science Foundation.

8. REFERENCES

[1] M. Backes, B. Kopf, and A. Rybalchenko. Automatic Discovery and
Quantification of Information Leaks. IRroc. IEEE S& P 2009.

[2] S.E. Coull, C. V. Wright, F. Monrose, M. P. Collins, and M. K. Reiter.

Playing devil's advocate: Inferring sensitive information from

anonymized network traces. MDSS 2007.

J. Fan, J. Xu, M. H. Ammar, and S. B. Moon. Prefix-preserving ip address

anonymization: measurement-based security evaluation and a new

cryptography-based schen@omput. Netw.46(2):253-272, 2004.

J. Jung, A. Sheth, B. Greenstein, D. Wetherall, G. Maganis, and

T. Kohno. Privacy oracle: a system for finding application leaks with

black box differential testing. Ifroc. CCS '08 pages 279-288, 2008.

J. Mirkovic. Privacy-safe network trace sharing via secure queries. In

Proc. NDA '08, pages 3-10, 2008.

J. C. Mogul and M. Arlitt. SC2D: An Alternative to Trace

Anonymization. InProc. ACM MineNet Worksho006.

S. Nagaraja, N. Borisov, and M. Caesar. Graphsplicer: Detecting p2p

topologies in network traffic. Technical Report, University of lllinois.

J. Newsome and D. Song. Dynamic taint analysis: Automatic detection,

analysis, and signature generation of exploit attacks on commodity

software. InProc. NDSSFeb. 2005.

R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxson, and B. Tierney. A

first look at modern enterprise traffic. In Proc. IMC, 2005.

R. Pang, M. Allman, V. Paxson, and J. Lee. The devil and packet trace

anonymizationSIGCOMM Comput. Commun. Re36(1):29-38, 2006.

M. Vutukuru, H. Balakrishnan, and V. Paxson. Efficient and Robust TCP

Stream Normalization. IRroc IEEE S & R May 2008.

131

[4]

[5]
[6]
[71
[8]

[9]
[10]

[11]

