
Securing Mediated Trace Access Using Black-box
Permutation Analysis

Prateek Mittal
UIUC

Vern Paxson
UC Berkeley / ICSI

Robin Sommer
ICSI / LBNL

Mark Winterrowd
UC Berkeley

1. INTRODUCTION
The lack of public access to current, real-world

datasets significantly hinders the progress of network re-
search as a scientific pursuit. It is often not possible to
robustly validate a proposed mechanism, enhancement,
or new service without understanding how it will inter-
act with real networks and real users. Yet obtaining the
necessary raw measurement data—in particular, packet
traces including payload—can prove exceedingly diffi-
cult, and not having appropriate traces for a study can
stall the most promising research.

There have been extensive efforts by the community
at large to change the status quo by providing collec-
tions of public network traces. However, the commu-
nity’s major push to encourage institutions to release
anonymized data has achieved only very limited suc-
cess. The risks involved with any release still outweigh
the potential benefits in almost all environments. The
lack of significant progress in this direction—despite
extensive efforts—is an undeniable indication that the
community needs a new approach.

An alternative paradigm for enabling network re-
search ismediated trace analysis: rather than bringing
the data to the experimenter, bring the experiment to
the data, i.e., researchers send their analysis programs
to data providers who then run them on their behalf and
return the output. The community has been using this
approach on anad hocbasis for a number of years, but in
that form itfails to scale: providers only undertake such
mediation based on a great deal of trust that the request-
ing researcher is acting in good faith and that data re-
leased via the mediation will not pose any privacy risks.

If as a community we find that for effectively con-
ducting our science we must increasingly rely upon me-
diated trace analysis, then we must address in a system-
atic fashion the crucial technical hurdle of ensuring that
mediated analysis programs do not leak sensitive infor-
mation from the data they process. The two frameworks
previously proposed for preventing such leaks have the
significant limitation of requiring researchers to code
their analysis programs in terms of pre-approved mod-
ules [6] or a specific language [5]. In this paper we pro-
pose a powerful alternative approach that can work with

nearly arbitrary analysis programs while imposing only
modest requirements on researchers and data providers.
The key observation we leverage is that the data provider
holds the researcher’s program “captive,” so to speak:
the provider can run it multiple times on different inputs
and observe the program’s behavior in each case.

Having captive programs creates an opportunity for
permutation analysis. As a simple example, suppose
that a researcher asking for mediated analysis asserts
that their program is indifferent to IP addresses—other
than that they remain distinct in a one-to-one mapping
with end systems—but that in fact the researcher’s pro-
gram searches for the presence of a single particular
IP address in a packet trace and flags its presence in a
surreptitious fashion in the output. Conceptually, the
provider can detect this leakage as follows. They first
feed the program the original trace and capture its out-
put. They then permute the trace, consistently alter-
ing its embedded addresses, anddiff the resulting out-
put with that from the first run. If the sensitive address
indeed appeared in the original trace but not in the per-
muted trace, then the outputs will necessarily differ (oth-
erwise, the program failed to leak its presence). If the
address did not in fact appear in the original trace, then
the outputs may agree (they might not if the permutation
happened to accidentally introduce the address), which
one might view as “no harm, no foul.”

We term such an approach asblack-box permuta-
tion analysis, since it can secure mediated trace analysis
without requiring any visibility into the internals of the
researcher’s program, and thus without imposing any re-
strictions on how the researcher must code it. However,
while the above example is appealing in its conceptual
simplicity, applying such analysis in a secure, system-
atic fashion requires careful consideration of numerous
issues. Our work endeavors to illuminate these issues
and develop sound approaches for attending to them. In
particular, we develop an analytic framework for per-
mutation analysis and employ it to show how to detect
violations of a data provider’s privacy policy using only
a relatively modest number of black-box permutations.
We also discuss how our technique can account for in-
nocuous changes in program output via canonicaliza-

1

tion. Finally, we present experimental results validating
the accuracy of our analytic model and the canonicaliza-
tion mechanism’s robustness.

2. RELATED-WORK
For brevity we omit discussion of trace anonymiza-

tion techniques and known attacks upon some of them
as discussed, e.g., in [3, 10, 2]. Mogul and Arlitt first ex-
plored mediated trace analysis with the thoughtfulSC2D
design [6]. However, SC2D never proceeded beyond
a proof of prototype, leaving many research challenges
unaddressed. In particular, its security guarantees de-
pend on the use of pre-approved analysis modules, a
specialized language, and independent expert review.
Regarding this latter, it is not clear what techniques ex-
perts would employ to check for information leaks.

Mirkovic [5] proposed that data providers publish a
query language and allow researchers to submit sets of
queries expressed using it to run over data. Depending
on the provider’s privacy policy, the framework allows
the use of certain queries on some packet fields in a par-
ticular context. The query results however consist ofag-
gregate information, such as counts or histograms, im-
posing a significant limitation on the range of analysis
that the system can support.

An alternative approach is to dynamically detect in-
formation leaks usingtaint trackingto follow informa-
tion flow during dynamic execution [8]. However, taint-
tracking suffers from both false positives (taint prop-
agates excessively) as well as false negatives (failure
to track implicit flows, such as control flow dependen-
cies), and traditionally only checks for a binary attribute
(tainted/untainted), which does not fit well for allowing
partial information use (declassification of data).

Recent work by Backeset al. [1] presents an ap-
proach to automatically discover and quantify informa-
tion leaks. While their assessment procedure is exact,
their analysis does not scale to real world programs,
since its computational complexity is proportional to the
square of program execution paths. We pursue a simi-
lar notion but from a different angle, by making proba-
bilistic assertions about information leakage using only
a modest number of experiments.

Junget al. [4] present a technique called “differen-
tial fuzz testing” in which changes in input are mapped
to output changes to infer likely leaks of information.
Their system relies on the hypothesis that any output
difference generated from two different inputs indicates
dependency on a sensitive input parameter, rather than
possibly arising (as will often be the case for typical
network analysis tools) from benign sources such as the
order in which a program reports per-flow statistics.

3. FRAMEWORK
For a given instance of mediated trace analysis we as-

sume that a researcher and a trace provider first negotiate
the kind of analysis that the researcher can undertake, to
enable the trace provider to evaluate the risks and assess
the possible information leaks of concern. We assume
that the analysis program runs in a deterministic fashion
(if it uses pseudo-random numbers, then it provides a
mechanism to set the generator’s initial seed), and that
the provider runs it in a sandboxed environment that has
no Internet connectivity. Thus, the only channel for con-
veying information back to the researcher is an output
file. We assume further that the time scale for verifying
that the analysis program does not leak information can
range from days to even several weeks, allowing ample
time for assessing multiple runs of the program.

We also assume that researchers provide the trace
provider withoutput templatesthat describe the format
of the agreed-upon output files, and that the programs
generateaudit trails that define how elements of the
input map to positions in the output. These annota-
tions allow the permutation analysis to soundly assess
whether a permuted input generates the same output as
the original data. We discuss the properties of the out-
put template and audit trail in Section 5. The researchers
needn’t restrict their analysis as long as they ensure that
the final results are free of concern. Provider however
can decline to release the output if unconvinced of its
safety. Our overarching goal is to reduce how much trust
providers require when mediating analysis of their data.

Threat model. The primary threat the framework
must address is leakage of information undesired by
the trace provider. The framework must protect against
both unintentional leakage due to errors and deliberate
attempts to exfiltrate data. In practice, providers will
likely assign levels of trust to different researchers in an
informal fashion, based primarily on reputation, but we
can bracket this range by considering two threat models.
First, honest-but-curiousresearchers intend to comply
with the provider’s privacy policy, but may misimple-
ment elements of it, and cannot be prevented from ex-
amining the results they get back for artifacts outside
the negotiated scope. Theadversarialmodel, on the
other hand, makes no assumptions about the legitimacy
of a researcher’s actions. They may include in their
analysis surreptitious elements that compromise sensi-
tive provider information.

Policy and risk management. In our framework
it is incumbent upon the data provider to determine
theirpolicy for what information they consider sensitive.
Clearly, there is great value in tools for assisting with
these determinations, but experience to date has shown
that such assessments can be quite subtle [10]. Informa-
tion correlation from external sources of data also poses
a challenge. A significant advantage that our approach
offers over trace anonymization in this regard is that the

2

class of deanonymization attacks is smaller: when re-
leasing anonymized traces, one must determineat the
time of releasethe full scope of possible future attacks,
while for black box permutation analysis we can prevent
any direct leaksat the time of analysis.

In general, policies that aim to hide user identity must
consider a wide range of trace information, including
IP/Ethernet addresses, timestamps, packet header “fin-
gerprints,” etc., and providers face a fundamental trade-
off in terms of conservative policies vs. utility for re-
search [10]. Examination of the range of possible poli-
cies is beyond the scope of this work. For purposes of
illustration, we will mainly consider the notion of sensi-
tive IP addresses.

We can consider a partial ordering of use cases
based on risk. For example, for IP addresses we
might consider entire addresses as sensitive, or allow
prefix-preserving comparisons across addresses. We can
keep addresses consistent only within flows, or per-host
across flows or not even within flows (addresses in ev-
ery packet are renumbered). For timing, we can retain
global time; relative time since the start of the trace; rel-
ative time on a per-flow basis; or relative time consistent
for individual hosts (though we must then select which
host of the pair in a flow to use).

Our framework can accommodate any of the above
policies—the provider expresses which they want to use
by selecting the specific mechanisms used to generate
permutations of the original trace data. In principle, the
privacy policy that drives permutation can be quite ex-
pressive; for example, we can restrict the range of per-
muted values to a specific set of values (ananonymity
set), a particularly attractive feature for preserving dif-
fering classes of machines in the network (e.g., end
hosts vs. servers). Privacy policies can also make use of
domain information, such as restricting the range of per-
muted addresses to the data provider’s IP address range.

4. ANALYTIC MODEL
A key question for permutation analysis concerns the

number of permutation experiments required to achieve
a given confidence level about the results. Just running
the program on the original trace and a permuted version
of it does not suffice to guarantee0 bits of information
leakage. For instance, a program taking a 32-bit IP ad-
dress as input may have 2 execution paths. Suppose that
the program travels the first execution path if the host ad-
dress ranges between0/8 and127/8 , and the second
path otherwise. If both the original and permuted values
both fall within or outside of0/8 . . . 127/8 , then we
will not observe any changes in the program’s behav-
ior, despite the program leaking1 bit of information. In
some ways the question of how many permutations are
required lies at the heart of the viability of our approach.
One can in principle comprehensively discover all infor-

mation leaks by tryingall possible input values (thereby
exercising all execution paths), but that clearly imposes
an intolerable computational burden. In this section we
examine the degree to which we can detect leaks in a
probabilistic fashion, and develop an analytic model for
understanding the confidence level gained by conduct-
ing a given number of permutation trials.

Consider the analysis program as a mapping from the
input to the output; the output of the program may thus
reveal some information about the input. For example, if
the program is a one-to-one mapping, the output may re-
vealall information about the input. On the other hand,
if the output of the program does not depend on the in-
put at all, then the output reveals no information about
the input. In general, a programP induces a set of input
equivalence classesR1, R2 . . . RN , such that all inputs
within a particular equivalence classRi yield the same
output. Now, an observationo of the program’s output
reduces the attacker’s uncertainty about the value of the
input, I, to the members of the corresponding equiva-
lence class, which we denote asRi(o). Let us denote the
attacker’s uncertainty at this point byH(I|o), which we
quantify using the information theoretic metric of en-
tropy. In general, if the attacker knows that some values
in the equivalence class are more likely to appear than
others, then we haveH(I|o) = −

∑
qj log2 qj , where

qj is the probability of thej’th element in the equiva-
lence classRi(o) being the value of the input. However,
because of the deterministic nature of the program, all
members of the equivalence classRi(o) yield the same
outputo with certainty, and the attacker cannot distin-
guish amongst the members ofRi(o). Thus, their un-
certainty about the input is uniform over all elements of
Ri(o), which gives us:H(I|o) = log2 |Ri(o)|.

We then can express the net information leaked (L) as
the change in uncertainty, i.e.,L = H(I|Φ)−H(I|o) =
log2 2b − log2 |Ri(o)|, whereΦ is simply the null obser-
vation andb is the length of the sensitive value in bits.
Observe that it is computationally expensive to exactly
computeRi(o), since doing so may require up to2b per-
mutation experiments. Thus we endeavor to probabilis-
tically estimate the size ofRi(o) using only a small num-
ber of permutation experiments,m. There is an impor-
tant tradeoff in the choice ofm: increasing it yields bet-
ter estimates of information leakage, but at the expense
of increased processing. At the end ofm permutation
experiments, suppose we observex permuted inputs to
lie in the equivalence classRi(o). Let X be the random
variable indicating the total number of test inputs be-
longing to equivalence classRi(o), andZi(o) the prob-
ability of a random input falling intoRi(o). We wish
to estimateZi(o), since from it we can then compute
the size of the equivalence class as|Ri(o)| = Zi(o) · 2b.
First, we compute the probability of observing a given

3

sizeX = x, as follows:

P (X = x|Zi(o) = zi(o)) =
(

m

x

)
zi(o)

x(1 − zi(o))
m−x

(1)
We now use Bayes’ rule to compute the probabilityZi(o)

given the observationx:

P (Zi(o) = zi(o)|X = x) =
P (X = x|Zi(o) = zi(o)) · P (Zi(o) = zi(o))∑

zi(o)
P (X = x|Zi(o) = zi(o))

(2)

We can use the prior distributionP (Zi(o) = zi(o)) to en-
code knowledge about information leak: for the honest-
but-curious model, we can use a Gaussian centered
around the negotiated information leak value, whereas
for the adversarial model, a distribution uniform over
the range of possible values. We can finally compute
H(I|o) as the weighted sum of conditional entropies,
giving us a quantitative measure of the attacker’s uncer-
tainty afterm permutation experiments:

H(I|o) =
∑
zi(o)

P (Zi(o) = zi(o)|X = x)·log2(zi(o) ·2b).

Note that so far we have tried to estimate|Ri(o)| only
from the inputs that fall into that equivalence class. We
can improve upon the above uncertainty estimate if we
assume that all equivalence classes are of uniform size.
We can justify this assumption for both non-malicious
adversaries (accidental mistakes) and some malicious
adversaries (as this is their best attack strategy, given
uniform a priori uncertainty about the inputs). To do
so, assume thatZi(o) has the form1

N , givenN equiva-
lence classes. Suppose that at end ofm permutation ex-
periments, we observer distinct outputs with frequency
x1, x2, . . . , xr. We can readily generalize Eqn (1) and
Eqn (2) to consider these observations as a randomvec-
tor X, gaining additional diagnostic power by using the
corresponding multinomial.

Extension to multiple fields. So far we considered
only a single sensitiveb-bit input. Now suppose we have
two sensitive fields of lengthsb1 and b2. A naive ap-
proach might consider this scenario as a single sensitive
input of sizeb1 + b2, but doing so increases the num-
ber of required permutations for accurate results expo-
nentially. However, if the two sensitive fields are inde-
pendent (for example, IP addresses and packet-capture
timestamps), then we can simply apply permutation to
one field first, keeping the other fixed, and then vice
versa. For the general case ofl independent fields, we
permute one field at a time, keeping the remainingl − 1
fields fixed. In this way, the number of experiments in-
creases only linearly in the number of sensitive fields.

On the other hand, observe that if two fields arenot
independent (e.g., TCP timestamp option and the corre-

sponding echo reply, or IP address and IP checksum),
then if the privacy policy specifies one of these, we need
to permute the other one accordingly in order to keep the
semantics of communication intact. If we are unaware
of coupling between two fields, and permute only one of
them, then the output may change drastically (due to the
violated semantics) even if the program does not leak
any information—a failure that is conservative in terms
of flagging a possible leak where one does not occur.

Extension to multiple packets. We have framed the
discussion in this section in terms of a single sensitive
input, such as an address in a given packet header. In
practice, traces may of course contain millions of sen-
sitive inputs (e.g., each distinct address), and our tech-
niques need to accommodate such scale. To do so, we
introduce the notion ofwholesale permutation, where
in m permutation experiments, we permute each sensi-
tive inputm times, and thus the number of permutation
experiments does not increase. To illustrate, suppose we
have a policy to reveal only the firstk bits of information
per address. Then we can simply performm wholesale
permutations on the remaining bits, and ensure that out-
puts reside in the same equivalence class. The problem
becomes slightly more complex if the program wishes to
usedifferingk bits for each IP, determined dynamically
at run time. To handle this case, the program needs to
reveal a meta-file specifying whichk bits per IP it used,
so that we can permute the remaining bits and check for
equivalence, as discussed in the next section.

5. EXPERIMENTAL VALIDATION
For a first evaluation in a real-world setting, we as-

sess our framework’s performance with three packet
analysis tools borrowed from past measurement stud-
ies: (i) a script that examines TCP sessions for not-
yet-acknowledged payload chunks [11], implemented in
the language of the Bro network intrusion detection sys-
tem, which we callBroAckStat; (ii) GraphSplicer [7],
a tool for identifying structures in network communica-
tion patterns; and(iii) TCPTrace, a tool deriving com-
prehensive flow-level statistics. We assume the position
of a data provider who is handed each of these tools for
processing a local packet trace. For our experiments,
we consider a simple privacy policy: the analysis tools
must not leakany information about IP addresses in the
trace. Before we can proceed, however, we first need
a mechanism for assessing the equivalence of outputs
from multiple executions of each tool.

Output Canonicalization. Comparing the outputs
from two different executions of a tool is not straight-
forward. A simple character-leveldiff will typically not
suffice, as an output might contain fields that, while de-
pending on the sensitive input, will not be passed on to
the researcher. In particular, this will often be the case if
the researchers are relying on third-party analysis tools

4

.33 .0 .33 .33
0 .66 .16 .16
.16 .25 .41 .16
.16 .25 .16 .41

(a) Secret run

.41 .16 .16 .25

.16 .41 .16 .25

.33 .33 .33 0

.16 .16 .0 .66

(b) Permuted run.

aa ab ac ad
ba bb bc bd
ca cb cc cd
da db dc dd

(c) Secret run

c’c’ c’d’ c’a’ c’b’
d’c’ d’d’ d’a’ d’b’
a’c’ a’d’ a’a’ a’b’
b’c’ b’d’ b’a’ b’b’

(d) Permuted run

Figure 1: GraphSpliceroutput (a/b); audit trail (c/d).

producing output they cannot control.TCPTrace, for ex-
ample, outputs IP addresses in clear text as part of a flow
identifier. If not part of the output that is shipped back,
such fields need to be excluded for output comparison.
We note that with some tools innocuous output changes
can be very subtle. For example, a change in the com-
putational order might affect just the lower order bits of
some output variables, such as when recording times-
tamps of certain activity. Furthermore, often theorder-
ing within an output can change when permuting an in-
put, even though its semantic meaning remains the same
(e.g.,BroAckStat’s output gets rearranged when permut-
ing IP addresses as its order depends on flow identifiers.)
Finally, even if a client fully controls the output format
(such as for analysis specifically written for the pursued
study), it can still be quite challenging to come up with
a canonical format suitable for determining the equiva-
lence of two outputs directly.GraphSplicer, for exam-
ple, prints out a matrix of probabilities indexed by host
pairs. Permuting input IP addresses changes the order of
these matrix entries in non-predictable ways, as depicted
in the examples shown in Figure 1(a) and 1(b).

For these reasons, we introduce two transformations
to canonicalize a tool’s output:output templatesandau-
dit trails. The former describe an output’s layout in a
simple format we devised, indicating the relevant fields,
their expected order, and any additional processing op-
tions to apply to them (e.g., truncating lower order bits).
Such a template should be provided by the researcher,
and we implemented a tool for the provider that canoni-
calizes an output file accordingly. For those cases where
simple post-processing does not suffice (e.g.,Graph-
Splicer), we require the analysis to generate anaudit
trail that records meta-information about the process-
ing. The audit trail annotates every output field with a
corresponding tuple that specifies its dependencies on
sensitive inputs. Figures 1(c) and 1(d) show two such
audit trails corresponding to theGraphSplicerruns dis-
cussed above. The elements in the audit trail comprise
of IP address pairs corresponding to matrix elements
in the GraphSpliceroutput. Having these trails, we
check the isomorphism of the outputs as follows. We
simultaneously parse the output generated from the se-
cret input and its audit trail. The first element in the

output is “.33”, with a dependency in the audit trail of
the formaa . Our permutation mapping determines the
corresponding dependency to look for in the permuted
run’s audit trail, i.e.,a’a’ . We find it in row 3 / col-
umn 3, and match the output element located at that
position to the secret run’s output. Both output ele-
ments are “.33”, and thus they match. Similarly, for
all other fields, we determine whether the two outputs
are indeed isomorphic. A crucial observation here is
that audit trails strictly help us with establishing equiva-
lence across runs; any imprecision (or intentional error)
in their specifications will lead to overestimates of infor-
mation leaks rather than underestimates.

Validating canonicalization. To assess the correct-
ness of canonicalization, we wrote output templates
for TCPTrace, BroAckStatandGraphSplicer, masking
any information about IP addresses. We also modified
GraphSplicerto leave an audit trail annotating its out-
put. Note that only tens of lines of code were required to
modify GraphSplicer. With these output templates and
audit trails in place, none of the three tools leaks infor-
mation about IP addresses, and therefore any “permuted
outputs” produced from permuted inputs should be iso-
morphic to the original result. To verify this, we used a
public packet trace recorded inside the Lawrence Berke-
ley National Laboratory (LBNL) [9], consisting of4169
unique IP addresses and about2.26 million packets. We
ran the analysis tools on this trace, usingm = 50 per-
mutation rounds. Indeed, for each tool our framework
correctly classified all50 permuted outputs as equiva-
lent to the original ones.

Focusing onGraphSplicer, we then instrumented ma-
licious versions of the tool to launch a set of example
attacks chosen from four different categories:(i) Non-
targeted attacks revealing complete information:Print
all IP addresses;(ii) Non-targeted revealing partial in-
formation: For each IP address, print0 if it lies in 0/8
. . . 127/8 , 1 otherwise;(iii) Targeted revealing com-
plete information: For the node sending the largest num-
ber of packets, print its IP address; and(iv) Targeted re-
vealing partial information: For the same node, print0
if it’s inside 0/8 . . . 127/8 , 1 otherwise.

Conceptually, for the first three attack classes, we
should find no permuted output isomorphic to the orig-
inal one, considering the large number of IP addresses
present in the trace. For the fourth class, we expect that
about half of the permuted outputs are isomorphic to the
original, since the sensitive range spans half the address
space. Next, we ran the malicious versions on the LBNL
trace usingm = 50 permutation rounds. For the first
three attack classes, our framework indeed found that all
50 permuted outputs werenot isomorphic to the orig-
inal one; while for the fourth class, it determined that
26 were not isomorphic. These results match our intu-

5

ition and confirm the robustness of the canonicalization.
Validating the analytic model. To assess our ana-

lytic model’s power, we used the above results with the
random variableX set to the number of permuted out-
puts that are isomorphic to the original. For the hon-
estGraphSplicerversions (X = 50 andm = 50), the
model correctly predicts an information leak of exactly
0 bits. For the maliciousGraphSplicerversion, we focus
our analysis on the most interesting scenario, the fourth
attack class. In this case (X = 24, m = 50), the model
estimates an information leak of1.0025 bits, which is
indeed very close to the true value of1 bit.

We further examined the model’s prediction for a
more general targeted attack that leakedk bits of in-
formation. We simulatedm permutation rounds to es-
timate the value ofX, and then used this as input to the
analytic model to predict the expected information leak.
For varying values ofm, Figure 2 shows the compar-
ison between the actual information leak of a program
and the predicted value averaged over1000 iterations of
the simulation. Model 1 and 2 correspond to Section 4’s
cases of non-uniformly and uniformly sized equivalence
classes, respectively. Considering the first model, we
see that while withm = 10 rounds the predictions are
still rather imprecise,m = 50 rounds are already suf-
ficient for small values of actual leakage (0 − 4 bits).
However, for higher degrees of leakage, we have to re-
sort to hundreds of permutations, and even then the er-
ror is still quite large for10 bits. As discussed in Sec-
tion 4, Model 2 provides additional diagnostic power by
considering uniformly sized equivalence classes. In this
case, we see that we achieve accurate predictions with
much fewer rounds: for an actual leakage of10 bits, the
model predicts10.2 bits with only a100 permutations.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 1 2 3 4 5 6 7 8 9 10 11

P
r
e
d

ic
te

d
 I
n

fo
r
m

a
ti

o
n

 L
e
a
k

True Information Leak

Model 1, m=10
Model 1, m=50

Model 1, m=100
Model 2, m=10
Model 2, m=50

Model 2, m=100

Figure 2: Validation of Analytic Model
Additional Concerns. One final concern regards

shipping the output to the researcher. Once black-box
permutation analysis determines that the program satis-
fies the data provider’s privacy policy, we take an input
that lies in the same equivalence class as the secret input,
and shipits output to the researcher. This step eliminates
any covert channels exploiting the ordering of lines in

the case that order cannot be predicted.

6. SUMMARY
We proposed black-box permutation analysis: a pow-

erful approach to securing mediated trace access that
can work with nearly arbitrary analysis programs. By
permuting sensitive fields in the input trace, and analyz-
ing resulting changes in the program output, we are able
to detect information leaks. Black-box permutation ac-
commodates expressive privacy policies, and can detect
violations of these policies using only a modest number
of permutation rounds, as shown by our analytic model.
Our technique can account for innocuous changes in
program output via canonicalization using a researcher-
suppliedoutput templateand anaudit trail generated at
run time. Avenues for future work include analyzing se-
curity over multiple experimental runs, and helping the
trace provider devise appropriate privacy policies.

7. ACKNOWLEDGMENTS
We would like to thank Jelena Mirkovic for sharing

her survey of network trace utilization. This work was
supported in part by NSF Award CNS-0905631. Opin-
ions, findings, and conclusions or recommendations are
those of the authors and do not necessarily reflect the
views of the National Science Foundation.

8. REFERENCES
[1] M. Backes, B. K̈opf, and A. Rybalchenko. Automatic Discovery and

Quantification of Information Leaks. InProc. IEEE S& P, 2009.
[2] S. E. Coull, C. V. Wright, F. Monrose, M. P. Collins, and M. K. Reiter.

Playing devil’s advocate: Inferring sensitive information from
anonymized network traces. InNDSS, 2007.

[3] J. Fan, J. Xu, M. H. Ammar, and S. B. Moon. Prefix-preserving ip address
anonymization: measurement-based security evaluation and a new
cryptography-based scheme.Comput. Netw., 46(2):253–272, 2004.

[4] J. Jung, A. Sheth, B. Greenstein, D. Wetherall, G. Maganis, and
T. Kohno. Privacy oracle: a system for finding application leaks with
black box differential testing. InProc. CCS ’08, pages 279–288, 2008.

[5] J. Mirkovic. Privacy-safe network trace sharing via secure queries. In
Proc. NDA ’08., pages 3–10, 2008.

[6] J. C. Mogul and M. Arlitt. SC2D: An Alternative to Trace
Anonymization. InProc. ACM MineNet Workshop, 2006.

[7] S. Nagaraja, N. Borisov, and M. Caesar. Graphsplicer: Detecting p2p
topologies in network traffic. Technical Report, University of Illinois.

[8] J. Newsome and D. Song. Dynamic taint analysis: Automatic detection,
analysis, and signature generation of exploit attacks on commodity
software. InProc. NDSS, Feb. 2005.

[9] R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxson, and B. Tierney. A
first look at modern enterprise traffic. InIn Proc. IMC, 2005.

[10] R. Pang, M. Allman, V. Paxson, and J. Lee. The devil and packet trace
anonymization.SIGCOMM Comput. Commun. Rev., 36(1):29–38, 2006.

[11] M. Vutukuru, H. Balakrishnan, and V. Paxson. Efficient and Robust TCP
Stream Normalization. InProc IEEE S & P, May 2008.

6

