
WikiDo
Nate Kushman Micah Brodsky S.R.K. Branavan Dina Katabi Regina Barzilay Martin Rinard

Massachusetts Institute of Technology

Abstract— The Internet has allowed collaboration on an unprece-
dented scale. Wikipedia, Luis Von Ahn’s ESP game, and reCAPTCHA
have proven that tasks typically performed by expensive in-house or
outsourced teams can instead be delegated to the mass of Internet
computer users. These success stories show the opportunityfor crowd-
sourcing other tasks, such as allowing computer users to help each
other answer questions like “How do I make my computer do X?”.
Such a system would reduce IT cost, user frustration, and machine
downtime. The current approach to crowd-sourcing IT tasks,however,
only allows users to collaborate on generating text. Anyonewho goes
through the process of searching help wikis and user forums hoping
to find a solution for some computer problem knows the inefficacy
and the frustration accompanying such a process. Text is ambiguous
and often incomplete, particularly when written by non-experts. This
paper presents WikiDo, a system that enables the mass of non-expert
users to help each other answerhow-to computer questions by actually
performing the task rather than documenting its solution.

1. Introduction

As computers have gotten faster, cheaper, and more
functional, they have also gotten much more complicated,
leading to a situation in which the productivity bottleneckis
not the computer, but the users themselves and their ability
to effectively use the computer system. Non-expert users
regularly encounter tasks that they do not know how to
perform such as configuring their home router, removing
a virus, or even just emailing a photo. Many users do not
have technical support, and hence their first, and often only,
resort is a web search. Such searches, however, often lead
to a disparate set of user forums written in ambiguous
language. They rarely make clear which user configura-
tions are covered by a particular solution; descriptions of
different problems overlap; and many documents contain
conjectured solutions that may not work. The net result is
that users spend a lot of time manually working through
large collections of documents trying solutions that oftenfail
to help them perform their task. The situation is particularly
difficult for non-expert users who often struggle even with
well written documentation.

The main limitation of existing on-line technical help is
that it only documents how a task was performed. What
a typical user really wants is a system that automatically
performs the task for him, taking into account his machine
configuration and global preferences, and asking the user
only for information which cannot be automatically pulled
from his computer, like his password or which photo he
would like to e-mail. One-off automation tools exist for
particularly arduous tasks such as the Mail Merge wizard in
Microsoft Word. Today, however, these automation scripts
have to be meticulously programmed by experts, limiting
their applicability to only those tasks most in need of au-
tomation. For example, Microsoft has recently started a team

to automate the solution documents on their knowledge-base
web site [7]. Each of these automated scripts is a program
handwritten by an expert. As a result, in 6 months of their
work, they have automated only about 150 of the hundreds
of thousands of knowledge-base articles [9]. Expert-based
automation is slow and expensive and hence unlikely to
cover the majority of problems that users encounter.

This paper introduces WikiDo, a system that enables the
mass of lay users to collaborate on automating computer
tasks, instead of just documenting how to perform them.
WikiDo aims to build a database of automated solutions
for every important computer task. The key characteristic
of WikiDo is that a user contributes to this database by
simply performing the task. WikiDo records the graphical
user interface (GUI) actions as the user performs the task.
It aggregates multiple such GUI traces into a canonical
sequence of GUI actions parametrized by user-environment,
that will successfully accomplish the task on a variety of
different configurations.

When a user comes across a task they do not know how
to perform, they search the WikiDo database, which takes
advantage of the current user’s GUI context to try to find
the right solution. Users can then either read a text version
of the GUI actions, use the solution as a tutorial that will
walk them through how to perform the task step by step, or
allow the solution to run automatically on their computer
to perform the desired task. Furthermore, WikiDo can take
a restore point in case the user is unhappy with the result
of the solution. Note that while WikiDo solutions can be
executed automatically, since they are a sequence of GUI
actions, they are also understandable by end users allowing
them to be audited for malicious behavior just as easily as
current text solutions found on-line.

To scalably build such a database with the help of non-
expert users, WikiDo tackles two important challenges.

(1) Merging GUI traces while handling mistakes and
configuration differences:Since WikiDo obtains solutions
from non-expert users, we expect many of these solutions
to contain mistakes and redundant actions. Naively filtering
out actions that are not common across all traces, however,
will remove not only mistakes and redundancies, but also
any actions that are specific to a particular user configura-
tion. WikiDo’s approach to distinguishing these two cases
is inspired by the write-coalescing of log-structured file-
systems [19]. WikiDo models the state of the system and
tracks which of the differing actions contributes to the final
committed state and which get aborted or over-written.
Action differences which do not affect the final state are

filtered out as mistakes, while the remaining differences
are retained and used to parametrize the branches of the
automated playback. The playback algorithm then chooses
among the retained branches based on the system state and
user inputs.

(2) Translating the existing corpus of textual infor-
mation: To reach the point where the WikiDo database
contains most common tasks, WikiDo should take advantage
of the preexisting corpus of on-line help articles, like the
ones available in the Microsoft Knowledge Base [8]. Ideally,
these on-line resources could be translated to GUI actions
fully automatically. Existing machine learning (ML) trans-
lation algorithms, however, cannot yet handle such tasks
sufficiently well. Even very recent research that focuses
directly on translating Microsoft Knowledge Base articles
to GUI actions is able to correctly translate only 37%
of articles [13]. To deal with this inaccuracy, WikiDo
employs crowd-sourcing to boost the power of the ML
translator. WikiDo runs the translator as a sub-component,
but identifies the sentences on which it fails by using an ML
classifier that takes advantage of both the state of the system
and the linguistic information in the document. It then gives
these incorrectly translated sentences to humans, and asks
the humans to execute them as GUI actions in a virtual
machine (VM). This approach allows WikiDo to maximize
the leverage it can get from the crowd-sourced translations
by focusing them on the difficult sentences, and translating
the easier ones automatically.

To give a sense of the potential of WikiDo we present
preliminary results from our prototype implementation.

We tested the automation capability of WikiDo on 5
computer tasks, completed by 12 Computer Science stu-
dents. Even with detailed instructions, the students failed to
correctly complete the task in 20% of the cases. For each
task, we used WikiDo to aggregate the 12 executions into
a canonical automated solution. For all 5 tasks, WikiDo
produced correct canonical solutions which play back suc-
cessfully on a variety of different machines.

We also tested WikiDo’s ability to combine machine
learning translation with crowd-sourced translation. Given
120 documents from the Microsoft Knowledge-base [8], a
state of the art ML translator was able to correctly translate
only 37% of these documents. WikiDo was able to boost
the translator performance to 100% by asking users to
demonstrate only 9-10% of the actions.

2. Illustrative Example

A system that aims to automate computer tasks based
on user executions needs to attend to many subtleties.
We illustrate these subtleties by considering the task of
configuring a new IMAP account in Microsoft Outlook,
which is documented in Fig. 1a.
(a) Different configurations require different GUI actions:
When started, Outlook launches a different window de-
pending on whether a prior account has been configured.
As a result, different users need to perform different GUI

Configure your Outlook IMAP client

1. Start Outlook for the first time, or go to:
Tools→Account Settings→New→IMAP →Next.

2. At Auto Account Setup, chooseManually .
3. Click Next twice.
4. Enter your name and your email address and set:

Account Type=IMAP .
5. Choose your Incoming and Outgoing mail servers and

enter your password.
6. Click More Settingsand click theOutgoing Server tab.
7. Check the check box for authentication and the second

radio button and enter your user name and password.
8. And on theAdvanced tab, change bothNone

drop-downs toSSL, then change25 to 465.

(a) Help Document

(b) Step 8

Fig. 1. Documentation for configuring IMAP for Outlook clients.

actions while performing this task. WikiDo must recognize
these differing sequences of GUI actions as valid execution
branches, and distinguish them from differences caused by
user mistakes.

(b) Users make mistakes even with detailed directions:
When we asked students to follow the instructions in Fig. 1a,
we find that many students repeatedly failed to correctly per-
form step 8, which is shown in Fig. 1b. The port numbers are
on the left side of the dialog box and so users tend to change
them first and then change the drop-downs, even though the
directions specify the opposite order. Unfortunately, when
the drop-downs are changed Outlook automatically resets
the port numbers. Users that fail to notice this eventually
find that Outlook cannot connect with the mail server, but
they are given little information on what they did wrong.
While some users repeat the mistake on successive attempts
and eventually give up, others eventually recognize their
mistake and correct it. To take advantage of user traces with
mistakes like this, WikiDo needs a mechanism to detect

mistakes and remove them from the canonicalized trace.
(c) Some actions cannot be automated:This includes
actions which require a user to enter their name, password,
or other user-specific inputs. WikiDo can avoid leaking
passwords since the GUI naturally obfuscates these entries,
providing WikiDo a simple accurate heuristic to avoid
recording passwords. However, WikiDo needs to recognize
which actions require user input and mark them as such in
the automated solution.
(d) Machine learning-based translation cannot cope with
implicit directions: We have also tried to automate the
text in Fig. 1a using a state-of-the-art machine learning
algorithm that maps text to GUI actions [13]. Unfortunately,
some steps were left out of the documentation, as is often
the case, because they are obvious to humans. For example,
after step 8 it is clear to the human user that he must
click OK to finish the task.In contrast, the ML translator
stalls at this point, leaving the dialog box open and the
task incomplete. While one could tell the ML algorithm
about this particular case, it is difficult to address the general
problem of implicit commands.

3. WikiDo

The main goal of WikiDo is to build a database of
computer task automations, based on crowd-sourced help
from a community of Internet users. Users contribute by
simply performing the necessary GUI actions, either re-
motely in a virtual machine (VM) running on the WikiDo
server, or by downloading a client which records the actions
performed locally on their own machine. In either case,
WikiDo currently uses the Microsoft Active Accessibility
interface [6] to record GUI actions. Developed to enable
accessibility aids for users with impaired vision, the ac-
cessibility interface has been built into all versions of the
Windows platform since Windows 98 and is now widely
supported [6]. Apple’s OS X already provides a similar
accessibility framework [4], and the Linux community is
working to standardize on a single accessibility interfaceas
well [1]. The accessibility interface allows WikiDo to both
record and playback GUI actions without any modification
to the operating system, and allows it to work seamless for
both desktop and web-based applications.

There are two ways for users to contribute to the database.
First, they can simply perform some task that they already
know how to perform, then upload their GUI recording
to the WikiDo server. Alternatively, they can contribute
by helping to translate existing text documents. In this
case, WikiDo will give the user a sentence to translate
within an existing VM running on its servers. The user then
simply performs the actions described in the text sentence.
The rest of this section describes in detail how WikiDo
takes advantage of these two types of contributions by both
merging multiple noisy GUI traces for the same database
entry into a single clean canonical trace, and by translating
entire text databases into GUI action traces with as few user
translations as possible.

It is important to recognize that WikiDo’s automated

solutions are intended to be best-effort. Thus, WikiDo takes
a Microsoft System Restore Point before automatically
performing any task, and immediately rolls back if the user
does not confirm that the task was successfully performed.
This user feedback is also used to inform the translation and
merging process.

3.1. A Canonical Solution From Multiple GUI Traces

For each task, WikiDo collects GUI traces from multiple
users and aggregates them into a canonical GUI script
that, when executed on a user machine, can automatically
perform the corresponding task. Generating a canonical so-
lution requires: (1) filtering out user mistakes and irrelevant
actions; (2) identifying user and environment specific GUI
actions so that they can be made into parameters in the
canonical solution. WikiDo performs these transformations
by converting the concrete GUI actions into a sequence of
abstract actions on which the transformations are performed.

3.1.1) Abstract Model: In the abstract model all actions
are performed onwidgets, which are each a part of aview.
A widget could be a text-box, a button, etc, while a view is
identified by all the widgets contained in the GUI window in
which an action is performed. For example, in Fig. 1b, the
tab labeledAdvanced is a particular view in that window
and the button labeledUser Defaults is a widget in that
view.

There are three types of abstract actions in WikiDo’s
model:
Update-Actions:Update-Actions create a pending change
to the system state. Examples of Update-Actions include
editing the state of an existing widget, such as typing into a
text box or checking a check-box, and adding or removing
entries in the system state, e.g. an operation which adds or
removes an item from a list-box.
Commit/Abort-Actions: These actions cause pending
changes made by Update-Actions to be written back into
the system state. A typical example of a Commit-Action is
pressing theOK button, which commits all changes in all
widgets in the corresponding window. An Abort-Action is
the opposite, and aborts any pending state changes in the
corresponding window, e.g., pressing aCancel button.
Navigate-Actions:These change the set of available wid-
gets by changing the current view. Examples of Navigate-
Actions include opening a dialog box, selecting a different
tab in a tabbed window, or going to the next step of a wizard
by pressing theNext button.

Note that a single concrete GUI action may be converted
into multiple abstract actions. For example, pressing theOK
button both commits the pending states in the corresponding
window and navigates to a new view.

3.1.2) Filter Mistakes: WikiDo first filters out mistakes
in an individual abstract action trace. For example, a user
may open a given dialog box, type a value into an edit box,
and then close the dialog box only to realize he made a
mistake. He therefore opens the dialog box again to change
the value. The goal is to remove all actions from the trace

associated with the first opening of the dialog box. A three
pass algorithm achieves this goal as follows:
(a) Filtering Out Update-Actions: The first pass processes
the tracebackward to remove all Update-Actions on a
particular widget except the last Update-Action that actually
gets committed. To do this, the algorithm walks backwards
through the trace maintaining two sets of widgets: a pending
set and a committed set. When the algorithm sees a Commit-
Action for some widget(s), it checks if the widget is already
in the committed set, and if not, it adds it to the pending
set. When the algorithm reaches an Update-Action, it checks
whether the widget is pending and if so, it moves it to the
committed set. If the widget is not pending, it removes that
Update-Action from the trace. At the end of the backward
pass, there is at most one Update-Action for each widget,
and each Update-Action is followed by a Commit-Action for
that widget. There may also be redundant Commit-Actions
with no Update-Action. We will remove those in the next
step.
(b) Filtering Out Commit-Actions and Abort-Actions:
The previous step may leave Commit-Actions that no longer
have associated Update-Actions. To remove these the algo-
rithm walks forward through the trace maintaining a set
of pending widgets. When it reaches an Update-Action, it
adds the affected widget to the pending set. When it reaches
a Commit-Action, it checks whether the affected widget
is pending, and if so it removes it from the pending set.
Otherwise, it removes the Commit-Action from the trace.
(c) Filtering Out Navigate-Actions: The trace may also
contain unnecessary Navigate-Actions which appear either
after removing unnecessary Update-Actions and Commit-
Actions, or just because of isolated user navigation mistakes
(e.g., clicking the wrong tab). These unnecessary Navigate-
Actions are removed by removing any action sequence
containing only Navigation-Actions as long as we can
navigate immediately from the available views before the
sequence to the next view after the sequence. We determine
if such a navigation is possible by observing whether we
have ever seen such a navigation in a trace.

3.1.3) Parametrize Update-Actions: Now that we re-
moved mistakes, differences in user inputs reflect machine
configuration specific or user specific information. For each
widget in each view, WikiDo parses all traces to find all
unique values that were given to that widget via Update-
Actions that were subsequently committed. Based on these
values the associated Update-Actions are marked as ei-
ther AutoEnter if the associated widget is assigned the
same value in all traces, orUserEnter if the associated
widget is assigned a different value in each trace. On
play back, AutoEnter updates are performed automatically
while WikiDo will stop play back and ask the user for all
UserEnter actions. UserEnter is typically used for updatesto
widgets containing information like username and password
which cannot be automated. Note that if the widget is
assigned to a few different values, many of which occur
in multiple traces (e.g., a printer name), WikiDo will assign

it PossibleAutoEnter, and on play back let the user select
one of the previously entered values or enter a new value.

3.1.4) Parametrize Navigate-Actions::When two dif-
ferent traces follow different navigation paths, i.e. theyvisit
a different set of views, WikiDo is forced to decide if they
differ because the user made a mistake in one of the traces,
or simply because differences in the user’s configuration
require a different set of steps to perform the same action.

WikiDo distinguishes these two cases by recognizing that
if the users’ underlying configuration causes the difference,
then the users’ GUI actions will be exactly the same up
until the point of divergence, but the resulting views will
be different. For example, performing the same set of
actions to open Outlook will bring up two different windows
depending on whether or not the user has already configured
an account. In cases like this, WikiDo will automatically
generate a separate branch in its resulting canonical trace
with the branch point parametrized by how the underlying
system reacts, i.e. which window Outlook displays. This
ensures that even when differences in the underlying system
create the need for different navigation paths, WikiDo can
still automatically execute the solution without needing help
from the user. If the users actually perform different actions
even though the underlying system reacts exactly the same
way, then these are typically mistakes, which would be
removed by our filtering algorithm above. If they still exist
after filtering, however, WikiDo chooses the path that is
the most common among the different traces. Note that if
there are multiple ways to complete the same task, this will
merely pick the most common way.

3.2. Document Translation via Machine Learning

WikiDo initially builds its database by automatic trans-
lating existing natural language (English) documents to a
sequence of GUI actions. Given a sentence, e.g. “point to
OK”, this process translates it into a GUI command, e.g.
LEFT CLICK, and an object in the environment on which
to perform that command, e.g.BUTTON:OK. This problem
has been recently addressed in the machine learning com-
munity [13]. Our goal is to utilize such an ML translator
to bootstrap WikiDo’s database by automatically translating
existing on-line help databases.

We must address two problems, however, in order to
achieve this goal. First, getting experts to correctly trans-
late documents is expensive, and without any examples
of correctly translated documents, the state of the art ML
translator can correctly translate only 37% of the documents
in the Microsoft Knowledge Base [13]. WikiDo addresses
this issue by using crowd-sourcing as a proxy for expert
annotations. It merges multiple action sequences to filter
out idiosyncrasies and mistakes of individual solutions,
providing a new inexpensive approach for annotating data
for this ML task, in much the same way as the ESP game
annotates images for machine vision tasks [21].

The second problem is that even when human experts
fully annotate a sizable corpus of randomly selected docu-
ments, the ML translator correctly translates only 52% of

the documents in the Knowledge Base [13]. Thus, simply
replacing expert annotation with crowd-sourced annotation
will not enable WikiDo to translate all documents in the
Knowledge Base and similar databases. Thus, instead of ran-
domly choosing documents for human translation, WikiDo
asks for crowd-sourced translation of only the sentences on
which the ML translator produces incorrect translations. To
accurately detect such sentences, WikiDo utilizes the ML
classifier described below.

The WikiDo translator operates in an iterative fashion,
interleaving two steps. First, starting with the output transla-
tions of the baseline ML translator [13], WikiDo’s classifier
predicts which sentences have been erroneously translated.
Next, WikiDo provides humans with a few of the incorrectly
translated sentences and a connection to an associated VM
snapshot running on WikiDo’s servers, and asks them to
perform the actions described in the sentence. Multiple such
translations are merged into a single canonical translation
using the method described in the previous subsection. The
second step of this process is to retrain the baseline ML
translator with the newly obtained human translations. Thus
the human effort is used both to directly translate difficult
sentences, and to train the baseline ML translator to improve
its accuracy. This iterative process continues until all the
action translations are predicted to be correct.

A critical component of this process is a classifier which
can accurately detect sentences which have been translated
incorrectly. To do this with high accuracy, WikiDo takes
advantage of the fact that detecting sentences which are
difficult to translate is much easier than translating them
correctly. For example, the classifier can recognize that
long sentences with many uncommon words are much
more likely to be translated incorrectly than short sentences
with common words like “click” and “OK”. Also, if the
ML translator had many other alternate translations which
also had a reasonable match to the words, then it’s more
likely the translation was incorrect, and if many words
in the sentence are left unmapped to an action, then it’s
likely an action was missed. These features and others
from the sentences, the environment and the translated GUI
sequences are combined together using a support vector
machine (SVM), a state of the art learning algorithm [17].
WikiDo trains the SVM using the translations obtained by
crowd-sourcing.

4. Results

We report two preliminary sets of results showing
WikiDo’s potential, one set for the merging task, and one
for the translation task.

4.1. Trace Merging

We evaluate WikiDo’s ability to aggregate multiple solu-
tions using the 5 tasks in Table 1. To perform our evaluation,
we ask 12 computer science students to perform each of
these 5 tasks based on the instructions from our lab website.
We then utilize a prototype of the WikiDo aggregator

Fig. 2. Filtering Results: This shows that the canonicalized WikiDo trace
is always on par with the best user trace and occasionally significantly
better.

IMAP Add a new IMAP account to Outlook
DS Printing Configure the local printer to print double sided
Active Dir Join the computer to the lab’s Active Directory domain
Virus Scanner Install a virus scanner
Certificate Change a Firefox configuration setting related to certificates

Table 1

Aggregation Tasks

described in§3.1 to merge the recorded GUI traces from
the 12 users into a single canonical trace.

We find three important results. First and foremost, we
find that for all 5 tasks, WikiDo’s canonical trace plays
back successfully, performing the required task on a set
of 6 different personal machines from other members of
our lab. Second, the quality of WikiDo’s filtering is shown
in Figure 2. The figure shows that WikiDo’s removal of
many unnecessary actions results in traces that are much
shorter than those from the average user, and about as short
or shorter than those from even the most efficient users.
Despite removing many unnecessary actions, WikiDo’s
playback success shows that it never removed anynecessary
actions. Lastly, we also find that WikiDo’s parametrization
also works quite well. Approximately 90% of the actions
in the canonical traces are marked as AutoEnter and thus
require no user interaction. This reduced the average number
of actions a user needs to perform from 25 down to
2. Additionally, 92% of the remaining UserEnter actions
require entering personal information such as usernames or
passwords which cannot be generically automated. Thus,
WikiDo’s parametrization ensures that as much as possible,
the resulting traces can be replayed automatically with little
input from the end user.

4.2. Document Translation

We evaluate WikiDo’s ability to translate text documents
into GUI actions by utilizing 120 documents pulled from
the Microsoft Knowledge Base. Representative of typical
Knowledge Base articles, these documents contain an aver-
age of 8-9 actions each. We implemented both the iterative
translator, and the classifier that identifies incorrectly trans-
lated actions, but we have not yet fully integrated them.
Therefore, we report the performance of each component
in isolation.

Our first evaluation effort considers WikiDo’s iterative
translation when selection of which actions to give to
human translators is driven by an oracle. As additional

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08F
ra

ct
io

n
of

 D
oc

um
en

ts
 C

or
re

ct

Fraction of Actions Annotated

Fig. 3. WikiDo’s Translation Performance as a Function of the
Annotated Actions: After asking users to translate only 7.5% of actions,
WikiDo can successfully translate all documents.

Actual Correct Actual Wrong
Predicted Corr. 24354 (94%) 1459 (6%)

Predicted Wrong 783 (12%) 5661 (88%)

Table 2

Classifier Performance

human translations are provided, we measure the fraction
of correctly translated documents. Figure 3 shows that
WikiDo’s translator is quite effective, and can successfully
translate all the documents correctly by requesting human
translation of less than 8% of the total actions.

Our second evaluation focuses on the accuracy of the
SVM action classifier described in§3.2 which will be
used to replace the oracle once we integrate it into our
iterative translator. To train the classifier, we run our iterative
translator on the 120 Knowledge Base documents. We
then manually compare these translations with the correct
translations to mark each one as correct or incorrect. We
then split the translations such that those for 35 of the
documents are placed in a training set and the translations
for the other 85 are placed in a test set. The performance of
the classifier on the translations for the 85 test documents
is shown in Table 2. The figure shows that if the classifier
predicts that a given action was translated correctly, then
94% of the time the action actually is correct. This ensures
that WikiDo’s resulting translations are usually correct.
Secondly, if WikiDo’s classifier predicts that an action
was translated incorrectly then only 12% of the time was
the action actually translated correctly. This ensures that
WikiDo does not request too many unnecessary translations.
Specifically, we can assume that this inaccuracy will in-
crease the percentage of human translations needed from
8% to more like 9-10% of actions.

5. Related Work

WikiDo is motivated by prior work on crowd-
sourcing [10], [21], [5]. Prior work on crowd-sourcing of
how-to computer tasks, however, has limited users’ con-
tributions to text and graphics. In contrast, the key idea
underlying WikiDo is to allow users to contribute by simply
performing a computer task rather than documenting in text
how one could potentially perform the task.

WikiDo is also inspired by the concept of Programming
by Example (PBE) [14], [12], [18], [11], however these
approaches rely on application-specific APIs, and do not
take advantage of crowd-sourcing.

While there are many tools to help automate computer
tasks, most either do not support recording and must be
scripted by programmers [3], [2], or allow recording only
by relying on application specific APIs, or low-level screen
coordinates and thus cannot be used to robustly automate
generic computer tasks. Apple’s Automator is the only tool
which provides both, as far as we know, but it provides
no mechanism to collaborate and automatically produce a
canonical GUI trace which works under multiple different
machine configurations.

Lastly, there are also tools that exploit persistent state
information (e.g. file-system state) from a large user popu-
lation [15], [22], [16], [20]. By nature of their design, they
cannot handle how-to type tasks, configuration tasks that
involve a server machine, or any task with user specific
information. In contrast, since WikiDo works at the GUI
level it can handle not just local configuration tasks, but
any general task the user can perform.

In contrast to all of this work, WikiDo is the only
application-independent tool which allows crowd-sourced
automation of how-to type computer tasks.

6. Acknowledgments

This work was supported by NSF grant IIS-0835652.

References
[1] Accesibility Toolkit (ATK). http://accessibility.kde.

org/developer/atk.php.
[2] AutoHotkey. http://www.autohotkey.com/.
[3] AutoIt, a freeware Windows automation language.http://www.

autoitscript.com/.
[4] Mac OS X Accessibility Framework. ”http://developer.

apple.com/documentation/Accessibility/Conceptual/
AccessibilityMacOSX/AccessibilityMacOSX.pdf”.

[5] Mechanical Turk.http://www.mturk.com.
[6] Microsoft Active Accessibility. http://en.wikipedia.org/wiki/

Microsoft_Active_Accessibility.
[7] Microsoft Fixit. http://support.microsoft.com/fixit.
[8] Microsoft Knowledge Base.http://support.microsoft.com.
[9] Security Garden Blog. http://securitygarden.blogspot.com/

2009/04/microsoft-fix-it-gadget.html.
[10] Wikipedia. http://www.wikipedia.org.
[11] L. D. Bergman, V.C., T.A.L., and D. O. DocWizards: A System For Authoring

Follow-me Documentation Wizards. InUIST, 2005.
[12] M. Bolin, M. Webber, P. Rha, T. Wilson, and R. Miller. Automation and

customization of rendered web pages. InUIST, 2005.
[13] S. Branavan, H. Chen, L. Zettlemoyer, and R. Barzilay. Reinforcement learning

for mapping instructions to actions. InACL, 2009.
[14] A. Cypher. Watch What I Do: Programming by Demonstration. MIT Press.
[15] Y.-M. W. et. al. Strider: A black-box, state-based approach to change and

configuration management and support. InLISA, 2003.
[16] H.W., Y.H., C.Y., Z.Z., and Y.W. FTN: Towards Privacy-Preserving, Automatic

Troubleshooting. InIPTPS, 2004.
[17] T. Joachims. Text categorization with support vector machines: Learning with

many relevant features. InECML, 1998.
[18] G. Little, T.L., A.C., J.L., E.H., and E.K. Koala: Capture, share, automate,

personalize business processes on the web. InCHI’07.
[19] M. Rosenblum and J. K. Ousterhout. The design and implementation of a

log-structured file system. InACM TOCS, 1992.
[20] Y. Su, M.A., and J. Flinn. Autobash: improving configuration management

with operating system causality analysis.SOSP, 2007.
[21] L. von Ahn and L. Dabbish. Labeling images with a computer game. InCHI,

2004.
[22] H. J. Wang, J.P., Y.C., R.Z., and Y.-M. Wang. Automatic misconfiguration

troubleshooting with peerpressure. InOSDI, 2004.

