
Rule-based Forwarding (RBF):
improving the Internet’s flexibility and security

Lucian Popa∗ Ion Stoica∗ Sylvia Ratnasamy†

1 Introduction
From active networks [33] to the more recent efforts on
GENI [5], a long-held goal of Internet research has been
to arrive at a network architecture that isflexible. The al-
lure of greater flexibility is that it would allow us to more
easily incorporate new ideas into the Internet’s infras-
tructure, whether these ideas aim to improve the existing
network (e.g.,improving performance [36, 23, 30], relia-
bility [12, 13], security [38, 14, 25], manageability [11],
etc.) or to extend it with altogether new services and
business models (e.g.,multicast, differentiated services,
IPv6, virtualized networks).

An unfortunate stumbling block in these efforts has
been that flexibility is fundamentally at odds with
another long-held goal: that of devising asecurenetwork
architecture. As one example of this tussle: several
schemes seek the flexibility of forwarding packets along
multiple paths (e.g., [36, 12, 13]), to improve perfor-
mance and reliability while schemes such as network
capabilities [38, 37, 29] seek to constrain packets to a
single “approved” network path. In a different exam-
ple: active filtering [14, 22] seeks to block unwanted
traffic based on source addresses; but yet other propos-
als [32, 35] enable attackers to legitimately conceal their
addresses when routing through middleboxes.

In this paper, we propose a new architectural concept –
that of packetrules– and develop arule-basedforward-
ing architecture (RBF) that we argue is both flexible and
secure. A rule is a simpleif-then-else construct
that describes the manner in which the network should
– or should not – forward packets. In RBF, instead of
sending packets to a destination (IP) address, end-hosts
send packets using the destination’s rule. At a high-level,
the reason RBF achieves both security and flexibility is
that, with rules, a user must specify bothwhat packets
it is willing to receive as well ashow it wants these
packets forwarded and processed by the network. More
specifically, RBF is designed to ensure the following
properties hold at all times:

1. rules are mandatory: every packet must contain a
rule; any packet without a rule is dropped.

2. rules are provably valid: a rule is deemedvalid if
all recipients (end-hosts, middleboxes and/or routers)
named in the rule have explicitly agreed to receive the
associated packet(s). Given a rule, any router, middle-
box or end-user can verify the rule’s validity.

3. rules are provably safe: rules cannot exhaust net-
work resources;e.g.,rules cannot compromise or cor-
rupt routers nor cause packet forwarding loops.

∗University of California, Berkeley
†Intel Labs, Berkeley

4. rules allow flexible forwarding: rules can select ar-
bitrary forwarding paths and/or invoke functionality
made available by on-path routers; both path and
function selection can be conditioned on (dynamic)
network and packet state.

The first two properties enable security by ensuring
the network will not forward a packet unless it has
been explicitly cleared by its recipients while the third
property ensures that rules cannot be (mis)used to attack
the network itself. As we shall show, our final property
enables flexibility by allowing a user to give the network
fine-grained instructions on how to forward his packets.

In the remainder of this paper, we present RBF, a
forwarding architecture that meets the above properties.

2 Design Rationale and Overview
In this section, we present the answers to three key
questions for the RBF design: (1) What can rules do?,
(2) How are rules distributed to routers and end-hosts?,
and (3) How to ensure rules are valid?

The RBF architecture aims to provide end users extra
control over the forwarding of their packets as well as
over the packets that can reach them; however, RBF is
not concerned with route discovery and route computa-
tion, which we argue should remain under the control of
network owners. For this reason, we implement the RBF
functionality above the network layer (IP).

2.1 What can rules do?

Broadly speaking, previous architectures that aim to pro-
vide flexible forwardinge.g.,[33, 17, 36, 32, 35, 30, 28]
can be divided into four classes based on whether end-
users are allowed to (i) modify router forwarding state,
or/and (ii) modify forwarding information in packet
headers (e.g., destination address). These classes are:
(1) Modify both router forwarding state and forwarding
information in packet headers (e.g., most Active Net-
work proposals [33], ESP[17]). (2) Modify router state
but not packet headers (e.g.,Active Networks focusing
on “active storage”[34]). (3) Modify packet forwarding
information but not routing state (e.g.,i3[32], DOA[35]).
(4) Modify neither router forwarding state nor packet
state (e.g.,IP). 1

We argue that the third class provides the best tradeoff
between flexibility and security. Allowing data packets
to modify router forwarding state poses significant
security risks. Indeed, at the limit, an application could

1Of course, routers perform logging and monitoring tasks
which change their state, and routers modify the TTL value
which represents state in packet, but in this section we refer to
user-controlled forwardingabilities. We also ignore IP loose-
source routing which is rarely used due to security concerns.

1

implement complicated distributed protocols (e.g.,rout-
ing protocols) whose safety is notoriously hard to verify.
This eliminates the first two classes. In contrast, the last
class offers limited flexibility, as end-users can exercise
no control on packet forwarding. This leaves us with the
third class, to which RBF belongs.

With RBF, end-users control packet forwarding using
rules. Each packet contains a rule and a set ofattribute-
value pairs in its header. Upon receiving a packet, the
router executes the packet’s rule. The rule takes as input
the attribute values in the packet header, as well as
forwarding state exposed by the routers under the form
of router attributes. Rules mayupdatethe value of the
packet attributes,forward the packet via IP or to layers
above (transport or application), ordrop the packet. In
contrast, rulescannotmodify the router attributes.

A rule can be represented by a simple transition table:
based on the current value of packet attributes and router
attributes, the rule may generate a new set of packet
attributes and forward/drop the packet. In practice, rules
are encoded using anif-then-else tree-like structure,
which has a more compact representation (§3).

This generic structure enables RBF to provide a rich
set of forwarding functionalities, including explicit mid-
dlebox traversal, multi-path routing, anycast, multicast,
and loose source routing. We illustrate the generality of
rules through a set of examples in Section 4.

2.2 How are rules distributed?

Distributing rules to routers: Routers need to know the
rules associated with the packets they receive. There are
two basic approaches by which routers can obtain rules.

First, rules can be carried in packets; this frees routers
from maintaining per-rule state, and implementing
costly rule distribution protocols. This approach how-
ever incurs a high overhead on the data path as rules
increase packet headers, and routers need to verify rules
to ensure their validity.

The second approach is to install rules at routers; this
incurs a lower overhead on the data plane, as packets
need only to carry rule identifiers instead of the rules
themselves. However, the process of obtaining rules can
be complex; the router can either get rules in advance,
in which case it may need to store a huge number of
rules or the router can download rules on demand, in
which case it may need to buffer the packets it receives
until it obtains the rules for those packets. Moreover,
the packets installing rules have to themselves travel on
rules, which makes this process very difficult.

In this paper, we chose to have packets carry rules. In
Section 7 we estimate the overhead of rules.
Distributing rules to end-hosts: RBF leverages the
DNS infrastructure to distribute rules. Upon a DNS
lookup, instead of returning the destination IP address,
the DNS server returns the rule of the destination.

In Section 4 we show how servers can protect against
DoS attacks, by redirecting their DNS entry to a large
entity and by creating per-client rules (i.e., rules that
drop packets from any other source than one client).

2.3 How is rule validity ensured?

To guarantee rule validity, each rule is certified by a
third party certifying authority, called Rule Certification
Entity, or RCE for short. The RCE guarantees that
all nodes whose addresses appear explicitly in a rule
(i.e., destinations, middleboxes and indirection routers)
agree with the rule. In addition, the RCE may verify the
rule for forwarding-loops before certifying it (§6).

Upon receiving a packet, an RBF router verifies the
rule’s signature. If the verification fails, the router drops
the packet; otherwise, the router applies the rule. To
verify the rule certificate, a router needs to know the
public keys of all RCEs. We believe this is a a reasonable
assumption as we expect the number of RCEs to be
relatively small.

Destinations can validate rules that allow traffic only
from certain sources. Malicious senders can attempt to
spoof their addresses to bypass rule directives and mis-
lead routers into not dropping their packets. To prevent
this attack, RBF assumes the existence of ananti-
spoofingmechanism. In this paper we propose the use of
passports [24], but other alternatives are possible (§6).

To make sure rules can only be used for a limited
amount of time, rules have associatedleases(§6).

2.4 Summary

RBF can be succinctly described as: (1) Every packet
contains a rule; there are no exceptions and no special
traffic. (2) A rule is a set of forwarding directives
associated to the packet by end-users; the expressivity
of rules enables forwarding flexibility. (3) The rule bears
a trusted entity’s signature, which guarantees the rule is
valid and safe. (4) Routers verify the rule signature and
forward conforming to the rule’s directives.

3 Rule Specification
RBF represents rules as a sequence of actions that can
be conditioned byif-then-elsestructures of the form:

i f (<CONDITION>) ACTION1
else ACTION2

Conditions arecomparison operatorsapplied on the
packet and router attributes.

The actions can be: (1)update the value of the
packet attributes; (2)drop the packet and (3)forward
it to the network interfaces via IP or to higher layers
implementing the functionalities requested by the rule.

The packet attribute set consists of the five-tuple in
the IP header (i.e., IP addresses, ports, protocol type),
and a number of custom attributes withuser defined
semantics.For simplicity, RBF does not allow rules to
add new packet attributes. On the other hand, router
attributes may include the router’s IP address, AS num-
ber, congestion level, flags indicating whether the router
implements a specific functionality such as intrusion
detection and so forth.

Every rule has a unique identifier (ID). The rule ID
is defined as the concatenation of a hash of the rule
owner’s public key and of an index unique to the owner.

2

R1
Destination Rule

Packet Format:

AttributesRBF

Transport Header

A
D

R_D State = 0
IP Header

R A’s attributes

R_D State = 1

R A R_A s attributesR_A

Figure 1: Simple indirection example.

For example, the following rule forwards a packet to a
destinationD via a waypoint routerR1; a packet attribute
namedstate indicates whether or not the packet has
already visitedR1:

R D :
i f (packet . s ta te == 0) / / from source to R1

i f (rou te r . address != R1)
sendto R1

else packet . s ta te = 1 / / to D
i f (packet . s ta te == 1)

sendto D

where thesendto action is a short form for the follow-
ing: change the destination address toD and forward the
packet using IP ifD is not the local address, or forward it
to the transport layer otherwise. Once the packet is for-
warded or dropped, the rule execution stops; the packet
is by default dropped if it is not explicitly forwarded
by the rule. Fig.1 illustrates this example, whenD is
communicating with another hostA, who’s rule isR A.

While RBF does not allow rules to modify the packet
payload or replicate packets, RBF enables rules toinvoke
such functionality at middleboxes or routers, if available.
This allows RBF to leverage recent advancements in
router design that enable network operators to provide
new functionality through router extensions [8, 9, 26].
While the functionality invoked by a rule at a router may
modify the packet payload, may replicate packets and
may change the router state, such actions are done by
code that is controlled by the network operator.

A packet with sourceS and destinationD must include
a destination rule, R D, which is the rule specified and
owned by D. In addition, each packet may include a
return rule; this is the rule specified and owned byS and
is used for return traffic fromD to S.
Expressiveness:At a high-level, our rule specification
can be viewed as defining a finite state machine (FSM):
the state is encoded in the packet attributes, while the in-
put is represented by the attributes of the routers along
the data path. The rule specifies the transition function
of the FSM. It is not difficult to show that RBF can the-
oretically implementany deterministicforwarding func-
tion that can change the packet attributes only. However,
there are forwarding functions that cannot be efficiently
expressed in RBF. This limitation is similar to the im-
practicality of implementing complex functions with the
simple FSM mechanism due to the exponential growth in
the number of states. In particular, forwarding decisions
based on any functions other than comparisons of packet
and router attributes (e.g.,sum, hash, logarithm) are not
practically expressible in RBF.

4 Examples of RBF usage
RBF gives end-users four basic types of control: (1)
block unwanted packets in the network; (2) redirect

packets through a sequence of waypoints; (3) use
enhanced functionality at routers (if available) and
middleboxes; (4) use router state in the forwarding
decision and record such state. Next, we present several
examples to illustrate RBF’s flexibility.
Port-based filtering: Web serverD can use the following
simple rule (registered under its DNS name) to make sure
that it receives only packets destined to port 80:

R f i l t e r p o r t :
i f (packet . d s t p o r t != 80) drop ;
sendto D

Middlebox Support: In addition to accepting traffic di-
rectly on port 80,D can use the following rule to route all
the other incoming traffic through a packet scrubber[3],
deployed either byD’s provider, or a third party:

R mbox port :
i f (packet . d s t p o r t == 80) sendto D
else

i f (packet . s ta te == 0) / / before scrubber
i f (rou te r . address != Scrb) sendto Scrb
e lse

packet . s ta te = 1 / / mark scrubbed
invoke Scrb serv ice / / scrub

e lse i f (packet . s ta te == 1) sendto D / / scrubbed

Thus, similar to other previous proposals [32, 35], RBF
provides explicit support for middleboxes, such as WAN
optimizers, proxies, caches, compression or encryption
engines, transcoders, intrusion detection (IDS) boxes.
Secure Middlebox Traversal: In the previous example,
an attacker can directly send a packet with thestate
attribute value set to 1 such as to appear that the packet
has already visited the middlebox. The destination can
protect against this behavior in two ways.

In the first approach,D can simply ensure that the
packet does indeed arrive from the middlebox when
the state attribute is set to the value of 1,i.e., if
(packet.source != Scrb) drop. For this
purpose, the IP source address attribute has to be set
when the packet gets toScrb (before invoking the
service), i.e., packet.source = Scrb. This rule
relies on the anti-spoofing mechanism used in RBF to
block packets with spoofed source address attributes.

Note that to avoid legitimate packets to be dropped
by the anti-spoofing mechanism, the source address
attribute has to be set at all off-path waypoints and
routers that change the destination address; we omit this
in the presented rules for readability purposes.

In a second approach, the destination can use stronger
cryptographic guarantees. For this purpose, the mid-
dlebox has to offer a functionality that creates a
cryptographic proof, which guarantees the packet has
visited it. The destination itself implements another
functionality that verifies these proofs before delivering
the packet to the application. Both these functionalities
are invoked by the rule (atScrb and respectively atD).
This process can be generalized to arbitrary rules (the
verification functionality has to use static analysis).
DoS Protection: To protect against DDoS attacks, a
server,D can create a custom rule for each client; this
rule drops packets from any source other than the client.

3

By controlling the number the number of rules granted at
a given time,D controls the maximum number of active
clients. An example of a rule similar to a capability is:

R f i l t e r s r c :
i f (packet . source != requester IP)

drop ;
. . . / / r e s t o f the r u l e

Similarly to capability based architectures [38, 37],
our solution is based on the premise that destinations
are able to grant rules on demand, and that any requester
can ask for a destination’s rule. Unfortunately, this opens
the capability distribution protocol itself to DoS attacks
(dubbed Denial of Capabilities,e.g.,[29]).

In RBF, a destinationD can contract with a large entity
E and redirect it’s DNS entry toE. Each requester will
then contactE instead of contactingD. E forwards the
rule requests toD, but acts as a rate throttler, limiting the
rate of rule requests; thus,D cannot be under DoS attacks.
D creates rules and replies back to the requesters it wants
to approve (e.g., this decision is based on its current
load, as in [38]).E forwards requests toD conforming
to a policy that may contain: a maximum rule request
rate, a white-list of always allowed senders/prefixes, a
black-list of denied senders and other parameters such
as a desired request service discipline (e.g.,fair queuing
across senders),etc. D can update this policy at any time.

The assumption here is that aE has typically far more
resources thanD.D can employ multiple such entities and
leverage DNS round-robin to further diffuse potential
attacks. Also note that, DoS attacks on the rule granting
process are less effective than on the data plane [25].

Alternatively, E could directly create and return a
rule for each requester, onD’s behalf. For this purpose,
D provides E a rule template parameterized by the
requester’s address and a policy to grant rules. In this
case,E has to incorporate the functionality of an RCE
and certify rules. Compared to throttling rule requests to
D, this approach avoids involving the destination in the
rule granting process, but requires some of the RCEs to
be able to withstand DoS attacks, and may also require
more frequent policy updates betweenD andE.
Mobility: Host D changes its network IP address due
to physical movement. In RBF,D can continue an exist-
ing communication without having to re-establish it. To
achieve this,D creates a rule for the new address with the
same ID as the rule used in the existing communication,
and places it in the packet as the return rule.
Multicast: For security reasons, RBF does not support
packet replication, and thus multicast cannot be imple-
mented entirely at the RBF layer. Instead, multicast can
be implemented by invoking multicast functionality de-
ployed by ISPs at some of their routers; this functionality
maintains (soft) state at routers to create a multicast (re-
verse path) tree. This approach implements essentially an
overlay multicast solution, which leverages the IP multi-
cast functionality at on-path routers. For simplicity, here
we consider only single-source multicast trees.

SourceS wants to send packets to a multicast group
uniquely identified byM. S advertises (e.g.,on the web)

that receivers should use the following registration rule:
R m u l t i c a s t r e g i s t r a t i o n :

i f (rou te r . m u l t i c a s t a v a i l a b l e and
packet . c r t r o u t e r != rou te r . address)

packet . c r t r o u t e r = rou te r . address
invoke m u l t i c a s t r e g i s t r a t i o n

sendto S

where thecrt router attribute makes sure multicast
registration is called just once at each multicast router.

When joining the multicast tree, a receiver,D, sends a
registration packet using the above rule. Prior to sending
this packet,D creates a rule to receive the multicast
packets sent byS and inserts it in the packet’s payload:

R mcast forward ing to D :
packet . d s t p o r t = PORT D LISTENS MCAST M
sendto D

The packet payload also contains the identifier
M. The first multicast enabled routerR process-
ing the registration packet, stores the mapping
M→R mcast forwarding to D. R creates its
own rule to receive these multicast packets, replacesD’s
rule in the packet, and sends the packet further.

The registration continues recursively. To send a
multicast packet,S sends a copy of the packet to every
router from which it has received a registration.

On top of the vanilla multicast functionality, this
approach can easily implement other functionalities,
such as access control and traffic accounting, which have
been previously proposed to “fix” the IP multicast [21].
Other Examples: RBF enables a plethora of useful ex-
amples not presented here, such as:secure loose path for-
warding[30, 28],multipath forwarding, anycast, on-path
redirection(e.g.,use router attributes to track the avail-
ability of a disconnection-prone destination and imple-
ment DTN[19]),path logging(e.g.,record on-path router
information, such as the max/min link bandwidth, for-
warding table size, packet counters, number of neigh-
bors, queue size, up time,etc.). More importantly, all
these individual examples can be combined as needed.
Source Control: In some cases, the source may also de-
sire control over how its outgoing packets are forwarded;
for example, to send packets through an anonymizer. We
do not elaborate in this paper, but in such cases, a packet
can also contain asource rule. A packet is always for-
warded first on the source rule (if present) and once the
source rule has been completed, the packet is forwarded
as per the destination rule. We use a well-known packet
attribute to denote which rule is currently active and only
allow this attribute to be set, thus ensuring that control
does not return to the source rule once the destination
rule has been activated. (This is verified by static analy-
sis before rule certification.)

5 Rule Certification and Creation
To certify rule R, an end-hostD sends a certification
request to an RCE; the rule to access the RCE is provided
toD by its ISP. Upon receiving this request, the RCE uses
a challenge response mechanism to verify thatD is in-
deed the owner of the key used to nameR and thatD owns
the only (assume for now) IP address explicitly specified

4

Attacks / Certifi- Lease Anti- Rule
Mechanisms cation Spoofing Structure
Rule Spoofing × ×

Infinite Loops × ×

DoS Attack × × × ×

State Corruption ×

Man-in-the-middle ×

Rule Violation ×

Replay Attack ×

Table 1: Attacks and Defense Mechanisms

in R; for this, D’s return rule has to contain only that
same address used inR.2 Next, the RCE verifies whether
R is well formed; if so, the RCE signsR and sends it back
to D. If the rule contains multiple end hosts, the RCE
asks every end-host that appears in the rule, besides the
owner, to sign the rule (the certification request contains
a contact rule for each host). Only after all end-hosts sign
the rule, the RCE verifies the rule and signs it as well.

To protect against DoS attacks, RCEs control the
number of clients that can reach them (e.g.,through the
number of ISPs they have contracts with), and limit the
rate of certification requests to a contracted rate.

To create rules in the first place, we envision that users
rely on applications similar to firewall configuration
software. Rule creation could also be delegated; for in-
stance enterprises could create rules for their employees.
DHCP servers can be extended to work with RBF (along
with the address, they create and return a rule).

6 Security Analysis
We consider attacks from malicious hosts and routers
and we discuss two broad types of attacks:

A. Creation of Malicious Rules: (1)Rule Spoofing:an
attacker creates a rule that sends traffic to an address it
does not own; (2)DoS the network:create infinite loops,
amplify traffic, slow down routers; (3)DoS hosts; (4)
Corrupt router internal state.

B. Misuse of Existing Rules: (1)Replay attack:use a
rule for a longer time than its creator intended. (2)Rule
violation: violate rule directives,e.g.,sources avoid their
packets being dropped, bypass middleboxes; (3)Man-in-
the-middle attack:modify rules inserted by other hosts.

RBF uses three mechanisms to protect against these
attacks: (1) rule certification; (2) rule leases and (3)
anti-spoofing. Table 1 shows the mechanisms used
against each attack.

When it certifies a rule, a RCE associates to the rule an
expiration time stamp as required by the requester; there
is a maximum allowed lease value, to prevent attacks
when IP addresses change. A router drops a packet if its
current time exceeds the rule expiration time. We assume
that all routers and RCEs are synchronized, via NTP[7]
as recommended [10]. We have a working solution that
does not require any router clock synchronization, but
which we do not detail here.

2To certify itsfirst rule,D sends the first certification request
to its RCEC with no return rule, but with a request to certify
a simple ruleR s allowing traffic only fromC to D. C checks
R s to be indeed as such and simply replies on this rule.

Alternatively to using passports[24] for anti-spoofing,
to protect against DoS, RBF can simply leverage the
already existing ingress filtering, deployed by over 75%
of today’s ASes [16]. Thus, only hosts in less than 25%
of the ASes can bypass rule dropping directives based
on source address and participate in a DoS attack; the
default-off nature of RBF additionally scales down the
bots available to attackers since it reduces the spreading
potential of viruses. Moreover, an attack will stop once
the lease of the rule expires; the victim can detect the
attacker, and stop providing new rules to the attacker
for a period of time. RBF can further incentivize the
deployment of ingress filtering; destinations under attack
can simply deny rules to requesters from ASes known
not to ingress filter.

To prevent forwarding-loops, RCEs usestatic anal-
ysis to detect whether rules can create cycles. Since
rules have a simple format, we use methods similar to
symbolic execution (but much simplified) to identify
the potential for loops in the FSM governing the rule
behavior; in such cases, rules are not signed.

In RBF, an attacker can also send packets with random
certifications, causing the router to try to verify their sig-
nature. RBF routers can simply blacklist such attackers,
if the anti-spoofing mechanism prevents the attackers
from concealing their identity. Moreover, this attack can
only occur at the first RBF router. For this reason, the
incentives for it are low, since the attacker targets its
own access route and at most other collocated users, and
the routers can detect attackers more easily.

Malicious routers on the path from the RCE to a
host could certify rules in the name of the host (rule
spoofing). To prevent this threat, ISPs could upload to
the RCEs the mapping between the IP and the public key
of their customers (or sign such a mapping). However,
since the malicious routers can already significantly
affect the traffic to hosts (drop/alter/multiply) this
solution may be overkill for most cases.

7 Related Work and Next Steps

Preliminary evaluation: We have implemented a com-
piler that translates rules from the high-level language
used in the examples of this paper into a compact format
that is carried in packets and interpreted by routers. In our
current implementation, many common forwarding sce-
narios (unicast, routing-via-middleboxes, filtering, mul-
ticast) can be expressed with 60-70Byte rules (this value
including all the RBF fields and a 40B signature), while
some of our more complex rules could take as much as
100B (e.g., the secure version of the scrubber example
in §4) or even 130B (e.g.,loose source routing with four
hops). However, a complete evaluation is a topic for fu-
ture work.

We also built a prototype rule forwarding engine
using Click[27]. We have applied RBF on top of
RouteBricks[18]. Preliminary results show that inter-
preting rules does not degrade throughput for packets
larger than 300B compared to running [18] alone, while

5

 Functionality

Architecture

Receiver

Reachability

Control

Host

DoS

Protection

Network

Safety

 (e.g. loops)

Router

Safety

Control over

path (e.g. loose

path, middlebox)

Multiple

Paths

Invoke Router

Extensions

(e.g. IDS,

multicast)

Use Router

State in

Forwarding

(e.g. DTN)

Record Router

State (e.g.

network probing,

ECN)

Mobility Select

Dest. (e.g.

anycast)

Both Source

& Dest.

Control of

Flexibility

Keep State at

Routers (e.g.

for reliable

multicast)

RBF Yes Yes Yes Yes Yes, secure Yes Yes Yes Yes Yes Yes Yes No

Active Networks No ~ Hard No ~ Hard Yes, not secure Yes Yes Yes Yes ~ Yes Yes No Yes

ESP No No Yes Yes IP, not secure No Only ESP Yes Yes No No No Yes

i3, DOA No No Yes Yes Yes, not secure No No No No Indirection Limited Yes No

Platypus, SNAPP No No Yes Yes Yes, secure Yes No No No No No No No

TVA, SIFF No Yes Yes Yes IP, not secure No No No No No No No No

NUTSS Yes Yes Yes Yes Yes, secure No No No No No No No No

PushBack, AITF, StopIt No Yes Yes Yes IP, not secure No No No No No No No No

Predicate routing,

Off-by-default

Yes ~Yes Yes Yes IP, not secure No No No No No No No No

Security Flexibility

Figure 2: Related work comparison.

for small packets, the throughput degradation is always
less than 30%. Routing on a 8-core (Intel Xeon X5560)
machine gave us forwarding speeds of up to 23Gbps.
Furthermore, RBF could leverage specialized hardware,
such as network processors.

Recall also that routers must verify rule signatures.
While signature verification is expensive, there are two
reasons we argue this overhead is manageable. First, only
routers at trust boundaries need to authenticate rules; bor-
der routers see lower traffic loads than core ones. Second,
routers can cache the results of authentication checks,
maintaining a hash of the rule and its signature; on
subsequent packets, routers need only to verify this hash.
Thus verifications are required only for the new arriving
flows at border routers (assuming a large enough cache);
e.g.,traffic measurements [1] show that new flow arrivals
represent less than 1% of link capacity, rates that can be
handled with commercial modules (e.g.,for ECC[2, 4]).
Related Work: RBF is inspired by, and augments, sev-
eral directions in past research. In general, RBF’s contri-
bution is in offering both flexibility and security, where
prior approaches tended to focus on one or the other.

Fig. 2 presents a synthesis of the security and
flexibility abilities of RBF compared to several pre-
vious works: Active Networks [33, 34], ESP[17],
i3[32], DOA[35], Platypus[30], SNAPP[28], TVA[38],
SIFF[37], NUTSS[20], PushBack[22], AITF[14],
StopIt[25], Predicate Routing[31], Off-by-default[15].

Several recent proposals call for open router APIs
[8, 9, 26] and APIs to modify flow entries in switches[6].
RBF is complementary to these efforts; we offer an
end-to-end data plane design that allows endpoints to use
the new functionality these router architectures enable.
Incremental Deployment: All RBF benefits shown in
Fig. 2, except the first two (i.e., reachability and DoS)
can be achieved with a partial deployment of RBF routers
and middleboxes. In an initial phase, RBF routers could
support both RBF and legacy (non-RBF) traffic. To also
offer DoS protection and reachability control, individual
ASes can upgrade to RBF, by dropping legacy traffic.
Hosts in such ASes can can use multihoming to handle
legacy traffic, although they will be vulnerable to DoS
attacks on the legacy interfaces.

References
[1] CAIDA: www.caida.org/data/realtime/.
[2] Certicom Suite B IP Core, http://www.certicom.com.
[3] Cisco Traffic Anomaly Detector: www.cisco.com/en/us/products/ps5892/.

[4] CLP-17: High Performance Elliptic Curve Cryptography (ECC) Point
Multiplier Core, http://www.ellipticsemi.com/products-clp-17.php.

[5] Global Environment for Network Innovations, http://www.geni.net/.
[6] The OpenFlow Switch Consortium: www.openflowswitch.org.
[7] RFC 1305 - Network Time Protocol. 1992.
[8] Juniper Networks Delivers Platform for Customer and Partner Application

Development. InPress Release, Dec. 2007.
[9] Cisco Opens Routers to Customers and Third-Party Applications. InPress

Release, April 2008.
[10] T. Akin. Hardening Cisco Routers.O’Reilly, 2002.
[11] R. Alimi, Y. Wang, and Y. R. Yang. Shadow configuration asa network

management primitive.SIGCOMM, 2008.
[12] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris. Resilient

Overlay Networks. InSOSP, 2001.
[13] K. Argyraki and D. R. Cheriton. Loose Source Routing as aMechanism

for Traffic Policies. InACM SIGCOMM Workshops, 2004.
[14] K. Argyraki and D. R. Cheriton. Active Internet Traffic Filtering: Real-time

Response to Denialof-Service Attacks. InUSENIX Tech. Conf., 2005.
[15] H. Ballani, Y. Chawathe, S. Ratnasamy, T. Roscoe, and S.Shenker. Off by

Default! In ACM HotNets, 2005.
[16] R. Beverly and S. Bauer. The Spoofer project: Inferringthe extent of

source address filtering on the Internet. InSRUTI Workshop, 2005.
[17] K. L. Calvert, J. Griffioen, and S. Wen. Lightweight Network Support for

Scalable End-to-End Services. InACM SIGCOMM, August 2002.
[18] M. Dobrescu, N. Egi, K. Argyraki, B.-g. Chun, K. Fall, G.Iannaccone,

A. Knies, M. Manesh, and S. Ratnasamy. RouteBricks: Exploiting
Parallelism to Scale Software Routers. InACM SOSP, 2009.

[19] K. Fall. A Delay-Tolerant Network Architecture for Challenged Internets.
In ACM SIGCOMM, 2003.

[20] S. Guha and P. Francis. An End-Middle-End Approach to Connection
Establishment. InACM SIGCOMM, 2007.

[21] H. W. Holbrook and D. R. Cheriton. IP multicast channels: EXPRESS
support for large-scale single-source applications.ACM SIGCOMM, 1999.

[22] J. Ioannidis and S. M. Bellovin. Implementing Pushback: Router-Based
Defense Against DDoS Attacks. InNDDS, 2002.

[23] D. Katabi, M. Handley, and C. Rohrs. Congestion controlfor high
bandwidth-delay product networks.ACM SIGCOMM, 2002.

[24] X. Liu, A. Li, X. Yang, and D. Wetherall. Passport: Secure and Adoptable
Source Authentication. InUSENIX NSDI, 2008.

[25] X. Liu, X. Yang, and Y. Lu. To Filter or to Authorize: Network-Layer DoS
Defense Against Multimillion-node Botnets. InACM SIGCOMM, 2008.

[26] J. C. Mogul, P. Yalagandula, J. Tourrilhes, R. McGeer, S. Banerjee,
T. Connors, and P. Sharma. API Design Challenges for Open Router
Platforms on Proprietary Hardware. InACM Hotnets, 2008.

[27] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek. The click modular
router.SIGOPS Oper. Syst. Rev., 33(5):217–231, 1999.

[28] B. Parno, A. Perrig, and D. G. Andersen. SNAPP: Stateless Network-
Authenticated Path Pinning. InACM ASIACCS, 2008.

[29] B. Parno, D. Wendlandt, E. Shi, A. Perrig, B. Maggs, and Y.-C. Hu.
Portcullis: Protecting Connection Setup from Denial-of-Capability
Attacks. InACM SIGCOMM, 2007.

[30] B. Raghavan and A. C. Snoeren. A System for Authenticated Policy-
Compliant Routing. InACM SIGCOMM, 2004.

[31] T. Roscoe, S. Hand, R. Isaacs, R. Mortier, and P. Jardetzky. Predicate
Routing: Enabling Controlled Networking. InACM Hotnets, 2002.

[32] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana. Internet
Indirection Infrastructure. InACM SIGCOMM, 2002.

[33] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and G. J.
Minden. A Survey of Active Network Research.IEEE Commun., 1997.

[34] D. L. Tennenhouse and D. J. Wetherall. Towards an ActiveNetwork
Architecture.SIGCOMM Comput. Commun. Rev., 37(5), 2007.

[35] M. Walfish, J. Stribling, M. Krohn, H. Balakrishnan, R. Morris, and
S. Shenker. Middleboxes no longer considered harmful. InOSDI, 2004.

[36] W. Xu and J. Rexford. MIRO: Multi-path Interdomain ROuting. In ACM
SIGCOMM, 2006.

[37] A. Yaar, A. Perrig, and D. Song. SIFF: A Stateless Internet Flow Filter to
Mitigate DDoS Flooding Attacks. InIEEE Symp. on Sec. and Priv., 2004.

[38] X. Yang, D. J. Wetherall, and T. Anderson. A DoS-limiting Network
Architecture. InACM SIGCOMM, 2005.

6

