
Chemical Networking Protocols
Thomas Meyer and Christian Tschudin

University of Basel, Switzerland
{th.meyer,christian.tschudin}@unibas.ch

ABSTRACT
Beyond the mere collection of computers, a network is
the home of competing and cooperating execution flows.
In this paper we show how to design network protocols
based on molecule-like entities such that the correspond-
ing execution flows can by analyzed as if they were chem-
ical processes. Our goal is to create robust protocol im-
plementations which are resilient to unreliable execution.
We introduce the metaphor of chemical networking pro-
tocols, demonstrate its benefits by a formal stability anal-
ysis of a gossip-style protocol and present a first example
of a self-healing load balancing protocol that is resilient
to code removal attacks.

1 INTRODUCTION
Every now and then, network engineers are making use
of chemical terms to describe properties of their proto-
cols: TCP’s congestion control algorithm bases on the
“conservation of packets principle” trying to bring a con-
nection to “equilibrium” [14]. AntNets stochastically
routes packets proportional to “pheromone concentra-
tions” [6]. Gossip-style protocols like [16] adopt the dy-
namics of epidemic spreading to disseminate information
in a robust way. Apparently, chemically inspired ideas
are considered to be beneficial for the dynamic behavior
of protocols.

For the sake of stimulating the discussion, we are tak-
ing the extreme position of using chemistry as the central
dogma for designing protocols and explore the potential
of this approach. We aim at transposing properties of
chemical systems to protocols that are hard to obtain oth-
erwise. This includes autonomously finding equilibria at
the point of optimal operation or the protocol’s robust-
ness to internal and external perturbations.

We introduce a programming model to describe com-
putation as well as network communication as abstract
chemical reactions and show two examples of “Chem-
ical Networking Protocols” (CNPs). The first example
“chemically calculates” the average of distributed val-
ues. Because of the analogy to chemical reaction net-
works, we can make use of analytical tools developed
over decades in chemistry to predict the behavior of
such systems, like for example Metabolic Control Analy-
sis [13] or Chemical Organization Theory [7]. We will
give an example for this analysis potential by formally
proving the protocol’s stability.

In the second part of this paper we ask whether some
higher-level properties, such as the capability of biolog-
ical systems to heal themselves, can be achieved in our
model. This is important with regard to future execution
environments that may be unreliable, such as probabilis-

tic chips [4] or deep space probes, where the question is
how to write communication software that tolerates spu-
rious execution errors. In this paper we show how to con-
struct self-replicating molecules that bring forward self-
healing software. We apply this to CNPs and demon-
strate a path load balancing protocol that is robust not
only to the loss of packets but also to the deletion of code.

2 CHEMICAL REACTION MODEL
Traditionally, protocol execution is handled by a state
machine that upon the reception of a packet synchronous-
ly changes its internal state and performs some com-
munication activity. Here we introduce a “molecule
metaphor” where each packet is treated as a virtual
molecule. Virtual molecules react with other molecules
in a reaction vessel (node). A reaction may produce other
molecules being delivered to the application or being
sent over the network. In such a chemical perspective,
we obtain a web of reactions that together perform a dis-
tributed computation (called network service).

2.1 Modeling Chemical Communication
Instead of encoding a deterministic state machine, or
having a sequential program that processes an incom-
ing packet, each network node contains a multisetM(S)
of a finite set of molecules S = {s1, . . . , sn} (=pack-
ets). In addition, each node defines a set of reaction rules
R = {r1, . . . , rm} expressing which reactant molecules
can collide and which molecules are generated during
this process. Such a reaction is typically represented as
follows:

i : Ci +Xi −→ Ci +Xj (1)

The above reaction in node i consumes, if present, two
molecules C and X from the local multiset, regenerates
C and sends molecule X to neighbor node j. In a simple
two-node network topology, the above example spans the
following reaction network, also depicted in Fig. 1:

1 : C1 +X1
r1−→ C1 +X2 (2)

2 : C2 +X2
r2−→ C2 +X1 (3)

C1 C2X1 X2
r1

r2

Node 1 Node 2

Figure 1: Distributed reaction network spanned by two identical local
rules, (2) and (3), resp.

A received molecule is in a first step passively placed
into the multiset of the node. For example, rule (3) is
not executed immediately after node 1 receives a new

X molecule. It is rather scheduled for a later time de-
termined by an exact stochastic reaction algorithm, such
as [11, 12]. The role of this delayed execution is to en-
force the “law of mass action” at the macroscopic level.
In chemistry, the “law of mass action” states that the
reaction rate is proportional to the concentration of re-
actant molecules: Molecules C1 and X1 react with an
average rate equal to the product of their concentration
r1 = c1x1. The rate of packets sent from node 1 to
node 2 is equal to r1 while the packet stream in the op-
posite direction exhibits a rate of r2 = c2x2. It can be
shown that the overall reaction system spanned by the
two local reaction rules strives towards the equilibrium
where the number of X molecules in either node is in-
versely proportional to the number of the corresponding
C molecules.

2.2 Representation-free Encoding
Unlike traditional protocols, our chemical networking
protocols use a representation-free encoding of informa-
tion. Traditional protocols store their local state symbol-
ically1 in variables, such as integers or flags, ultimately
encoded as bit patterns. Such symbolic information is
then piggybacked to packets in order to send informa-
tion to distant nodes. CNPs encode protocol states as
concentrations, here the abundance of molecule X in the
multiset. This encoding is more robust: When removing
a molecule, the concentration only changes marginally
and state information is not lost, only disturbed.

Due to the law of mass action, the packet rate re-
flects the concentration of its originating chemicals (e.g.
r1 ∝ x1). Thus, the packet rate itself, not the sym-
bolic information inside the packet, is used to commu-
nicate state information among nodes.2 This rate coding
scheme akin to the nervous system [5] results in a higher
resilience to the loss of packets. The law of mass action
plays an important role: It mediates between the local
and global world by proportionally mapping molecule
concentrations to packet rates and vice-versa.

3 COMPUTING AGGREGATES AS
CHEMICAL EQUILIBRIA

In this section we present an example of a chemical net-
working protocol (CNP) that calculates the average of
distributed values. We compare our chemical approach
to epidemic protocols.

3.1 The Gossip-style Push-Sum Protocol
Recently, gossip-based or epidemic protocols gained at-
tention because of their potential to disseminate informa-
tion in a robust way. For example, the Push-Sum proto-
col [16] averages out locally stored values by means of

1Symbol = meaningful task-related reduction of information [3].
2If more than one molecule type is exchanged, however, we have to

pass the identity of the molecule along with the packet to distinguish
them at the receiver’s side.

a simple local algorithm: Node i stores sum and weight
as tuple (si, wi), starting with (xi0, 1) where xi0 is the
node’s initial (sensor) value. In each round, i.e. after
a fixed time interval, each node i first sends the tuple(

1
2si,

1
2wi

)
to a randomly chosen neighbor and to itself

and collects the tuples {(sir, wir)} received from neigh-
bors in this round. Then it sums up the received values
si :=

∑
r sir and wi :=

∑
r wir. Like this, the frac-

tion xi = si/wi asymptotically approaches the average
over all values of the network. Although the protocol
is simple, the “proof of the approximation guarantee is
non-trivial” [16].

3.2 A Chemical Disperser Protocol
In the following we present an alternative, chemical im-
plementation that is elegant and intuitively graspable. It
also greatly simplifies the analysis such that the con-
vergence proof keeps on less than half a page. We
use the usual network representation as undirected graph
G = (V,E) where V is the set of |V | vertices (nodes),
E is the set of edges (links). A = [aik] is the adjacency
matrix of the graph where aik = aki = 1 if (i, k) ∈ E,
or aik = 0, otherwise.

Xi Cil
Cim

Cij
Cik

Node i
Node j

Node k

Node l

Node m

outflow
inflow

Figure 2: The chemical Disperser protocol calculates the average con-
centration of X molecules in a network of nodes.

Figure 2 schematically depicts the components of the
chemical Disperser protocol. Each node i ∈ V con-
tains a multiset of the following molecule types: The
concentration of Xi represents the computed average,
which is initially set to the local value xi0. For each link
(i, k) ∈ E to i’s neighbors there is a single instance of
molecule Cik that reacts with the local Xi molecule and,
by doing so, sends the X to the corresponding neighbor
node k. Formally, such a reaction is represented by the
following chemical equation:

Cik +Xi
ri−→ Cik +Xk ∀(i, k) ∈ E (4)

We can intuitively feel that the global reaction network
should lead to equilibrium: The more neighbors a node
has, the greater is the outflow of X , since there are more
C molecules to react with. On the other hand, a node
with higher degree also receivesX molecules from more
neighbors.

Formal Convergence Proof
To formally prove the stability of the chemical algorithm,
we perform a perturbation analysis at the fixpoint. There-
fore we first write down the differential equation for the
concentration of Xi:

ẋi =

inflow︷ ︸︸ ︷∑
k∈V

akixkcki−

outflow︷ ︸︸ ︷∑
k∈V

aikxicik ∀i ∈ V (5)

To find a fixpoint we set ẋi = 0. Since there is only one
control molecule Cik per link we simplify (5) by setting
cik = aik. Solving this equation w.r.t. xi yields

xi =
∑

k∈V akixk

deg(i)
∀i ∈ V (6)

Hence, xi is equal to the average concentration of X in
i’s neighbors, which only holds iff

xi =
∑

k∈V xk

|V |
= 〈x〉 ∀i ∈ V (7)

Consequently, at chemical equilibrium the X molecules
are equally distributed over the network.

This equilibrium is stable if the system returns back
to the fixpoint after a small perturbation. For the corre-
sponding analysis, we calculate the |V | × |V | Jacobian
matrix of (5):

J = [jik] =
[
∂ẋi

∂xk

]
= −L(G) (8)

where L(G) is the Laplacian of the network graph

L(G) = [lik] =

{
deg(i) if i = k,
−aik otherwise.

(9)

Since any Laplacian has positive real eigenvalues, the
eigenvalues of (8) are negative and the fixpoint in (7) is
asymptotically stable for arbitrary network topologies.

3.3 Protocol Comparison
The Push-Sum as well as our Disperser protocol rely on a
kind of mass conservation. In Push-Sum, half of a node’s
sum s is sent, the remainder is kept, but the overall sum
remains constant. For Disperser, this conservation is ob-
vious: The number of X molecules is conserved by all
reactions. The convergence time is the same for an ap-
propriately chosen parameter set. The two protocols dif-
fer in how they asymptotically approach the equilibrium:
While Push-Sum’s code is executed isochronously, mov-
ing half of the value to a neighbor, Disperser transfers
only one molecule per reaction, this rate being controlled
by the inter-reaction time interval, which is inversely pro-
portional to the concentration.

Note that neither of the two protocols is robust
against the deletion of messages. However, while a lost
message in Push-Sum results in the loss of half of a
node’s value, a packet loss in Disperser only decreases
the value by one. Robustness is increased, however, at
the cost of a higher message complexity. For a variant
of the Disperser protocol where the nodes do not require
information about their neighbors, see [21].

4 FRAGLETS — A CHEMICAL
PROGRAMMING LANGUAGE

So far we demonstrated static reaction networks where
abstract reaction rules were “installed” permanently in
each node. In this section, we extend this model aim-
ing at dynamically changing the set of reaction rules. We
present an excerpt of the Fraglets language [1, 25], an
artificial chemistry [8], whose corresponding chemical
machine is executable and which serves as a simple plat-
form to run chemical protocols.

Each molecule s ∈ S, or packet, is a string of sym-
bols over a finite alphabet Σ. The first symbol of the
string defines the string rewriting operation applied to
this molecule by the virtual chemical machine: It can
be thought of an assembler instruction. For example, the
molecule [fork a b c d] transforms itself and splits
into the two molecules [a c d] and [b c d]. The fol-
lowing list shows some of these instructions and their
actions:

[match α Φ] + [α Ω] −→ [Φ Ω]
[fork α β Ω] −→ [α Ω] + [β Ω]

[nop Ω] −→ [Ω]
[send k Ω]i −→ [Ω]k if (i, k) ∈ E

α, β ∈ Σ are arbitrary symbols, Φ,Ω ∈ Σ∗ are symbol
strings and i, k ∈ V are network nodes. Molecules start-
ing with match or any non-instruction identifier are in
their normal form. The match instruction can be used
to join two molecules by concatenating the second to the
first after removing the processed headers. Subsequent
instructions immediately reduce the product further un-
til they again reach their normal form. For example, the
two molecules [match pkt send 2 pkt] and [pkt

data] in node 1 imply the following reaction:

[match pkt send 2 pkt]1 + [pkt data]1

−→ [send 2 pkt data]1

(transmission to neighbor 2) −→ [pkt data]2

Such a chemical language allows us to “program” the
reaction graph. Molecules now have a structure, i.e. they
can contain information such as piggybacked user data.
However, the dynamics of the reaction network is still
governed by the law of mass action and thus, the proto-
col’s behavior is chemically controlled.

5 SELF-HEALING CODE
In order to heal itself, program code must be self-
referential and capable of regenerating itself. In addition
to these structural and behavioral properties, the code dy-
namics must be steered by a control loop that recognizes
defects and triggers code self-repair. In this section we
show how both, structural and dynamical aspects can be
realized using chemical programs.

5.1 The “Quine”
In our chemical programming model presented in Sect. 4,
there is no distinction between code and data. Molecules
may contain code or data or both, and therefore it is
possible to modify code or generate it on the fly. An
example that illustrates this concept is the following
“Quine”3, a program that generates its own code as out-
put [26]: [match x fork nop match x], [x fork

nop match x]. These two molecules react and, by do-
ing so, according to the rewriting rules, regenerate them-
selves as shown in Fig. 3.

[match x fork nop match x]

[x fork nop match x]

[fork nop match x fork nop match x]

[nop x fork nop match x]

Figure 3: The chemical “Quine” is a set of molecules that replicates
itself.

5.2 Code Homeostasis
The self-replicating quine above can easily be converted
in one that generates two copies of itself in each round.
Due to the law of mass action, its concentration rises ex-
ponentially in time. To limit this unbounded growth, we
apply a “non-selective dilution flow” to the reactor which
randomly destroys a molecule whenever the total number
of molecules exceeds a certain threshold. This imposes
selective pressure to the reaction vessel; consequently,
molecules that are not part of a self-replicating set will
eventually be displaced [19].

Interestingly and crucially, this harsh environment,
where several quines have to fight for resources, makes
them tamper-proof: Even when destroying some of a
quines’ instances, the surviving population grows again
until the vessel capacity is reached. Note that the self-
healing property does not require an external observer
that monitors the system and plans interventions: The
overall system rather intrinsically controls itself to main-
tain a stable state, that is the homeostasis of program
code.

6 A PATH LOAD BALANCING PROTOCOL
We now make use of quines as building blocks in order
to assemble a self-healing protocol that balances a packet
stream over two different network paths such that packet
loss is minimized.

As depicted in Fig. 4, we inject packets at rate r into
the source node where two quines, one for each path,
compete for them and send them over the corresponding
path. Instead of replicating as fast as possible, the quines
wait for and react with acknowledgment packets. These
acknowledgments are sent back over the reverse path by
the third quine in the destination node that delivers the
packet to the application.

3after the philosopher and logician Willard van Orman Quine
(1908–2000) who studied indirect self-reference

Formal Convergence Proof
This scheme leads to a perfect packet balance among the
two paths. When the source node’s reaction vessel is sat-
urated, its molecules either belong to quine 1 or 2, as
other molecules have been squeezed out. Let’s denote
the relative concentrations by x1 and x2, respectively,
satisfying x1 + x2 = 1. Since replication is triggered
by received acknowledgments, these concentrations are
x1 = r′1/(r

′
1 + r′2) and x2 = r′2/(r

′
1 + r′2) where r′n is

the rate of acknowledgments received over path pn.
Let’s assume that the bandwidth of p1 is infinite

whereas p2 drops packets exceeding a rate of B pack-
ets/s. We examine the overload situation where the to-
tal rate r > 2B. Consequently, the rate of acknowl-
edgments is r′1 = r1 and r′2 = min(r2, B). Due
to the law of mass action, the fraction of packets sent
over p1 is proportional to the concentration of quine 1:
r1 = x1r = r1r/(r1 + min(r2, B)). Hence

r1 = r −B and r2 = r − r1 = B (10)

Quine 2 reduced its concentration so as to only forward
packets up to the bandwidth limitation of path p2, as was
to be proved.

6.1 Surviving Code Attacks
Like in Sect. 3, our load balancing CNP reaches a (chem-
ical) equilibrium. Deviations from the equilibrium, for
example by lost molecules on a network path, are com-
pensated by increasing the population of quines that for-
ward packets over the opposite path. Moreover, the
code itself is organized in circuits of self-replicating
molecules: If we forcefully destroy some code, the sys-
tem will eventually regenerate it and, after some tran-
sition time, autonomously finds back to the equilibrium
state. In fact, packet loss as well as code loss are treated
by the same mechanism and in the same way.

Figure 5 depicts the protocol’s response to such
a deletion attack4, simulated in OMNeT++ for r =
200 pkts/s and B = 40 pkts/s. At t = 50 s we removed
80 % of all molecules (code and data) from the source
vessel. Note that the code regenerates itself within 10 s
while the traffic distribution r1/r2 remains unchanged.

6.2 Discussion
Being a showcase, our protocol is not as elaborate as ex-
isting load-aware protocols in many respects. Emerging
from microscopic chemical reactions, it realizes an in-
trinsic bandwidth estimation by using the rate of actual
data packets akin to ACK pacing in TCP [2] whereas
other existing bandwidth estimation techniques numer-
ically calculate the bandwidth based on the rate of sepa-
rate probe packets or on their inter-arrival time [10].

4Code mutations can also be caught by mapping them onto code
deletion events using a simple instruction encoding guarded by a parity-
bit.

dest dest

Quine 1

Quine 2

Quine 3
2 2

input stream
at rate r

output
stream

r1
r2

x1

x2

data packetsr1'

r2' 2

Path p1 (bw: ∞)

Path p2 (bw: B)

Node src Node dest
acknowledgments

Figure 4: Data packets to node dest are injected at rate r into node src. Quines 1 and 2 (concentration x1 and x2, resp.) compete for and forward
packets at rate r1 and r2 over paths p1 and p2, resp. The quine’s replication is controlled by acknowledgments received at rate r′

1 and r′
2, resp.

re
l.

co
nc

.

0.2

0.4

0.6

0.8

x
1
 (Quine 1)

x
2
 (Quine 2)

molecule
destruction
attack (80%)

time [s]

ra
te

 [
pk

ts
/s

]

30 40 50 60 70 80
0

50

100

150
r

1
 (Path p1)

r
2
 (Path p2)

Figure 5: OMNeT++ simulation: Relative concentrations of the self-
healing quines (forwarding code) in src during a deletion attack and the
corresponding packet forwarding rate (unaffected) of the quines.

Our protocol converges for bursty traffic: The stochas-
tic algorithm schedules the next reaction based on an ex-
ponential probability distribution; consequently, a burst
of incoming packets appears blurred at the output, which
helps estimating the bandwidth.

The load balancing protocol discussed in this paper
may also be used for other tasks. In [20], it serves as a
self-adapting forwarding engine of a self-healing routing
protocol implementation.

7 RELEVANCE, IMPACT, FUTURE WORK
In this section we will discuss some of the consequences
of a chemical protocol mindset.

7.1 Determinism vs. Resilience
Although ODEs can be used to approximate the behav-
ior of CNPs (as shown in Sects. 3 and 6) the underlying
execution model is stochastic. Consequently, pure CNPs
cannot be used for time-critical protocols. Additionally,
CNPs cannot prevent packet reordering. However, the
deterministic character of today’s protocols is not needed
everywhere in networking; there are network services
where we can relax the level of certainty for the purpose
of obtaining more resilience. This applies specifically to
continuously running services like routing, load balanc-
ing and long lasting signaling streams. As we pointed
out in Sect. 3, collective computations at large are also
good candidates. The use of representation-free encod-
ing mitigates the packet reordering problem since it does
not matter which of the identical molecule instances is
sent next.

Generally, we should try to soften the precision of the
protocol’s specification. As is conjectured in [24], this
may avoid brittleness of the system and facilitates a CNP
implementation. In return, we gain resilience to various

perturbations, such as the partial loss of information in
form of packets or code.

7.2 System Design and Analysis
Traditional flow-based protocols are analyzed as being
composed of a fixed number of interconnected packet
queues, scheduled by deterministic algorithms [17]. In
CNPs we can identify similar entities, which however
interact differently: Each node has a single packet buffer
(the molecule multiset) and we impose a specific stochas-
tic scheduling that is compatible with the law of mass
action [11, 12]. We can regard the multiset as virtually
divided into individual queues, one for each molecular
type, that are interconnected by reaction rules. The rules
may compete for the same type, akin to rule-based pro-
tocols [9, 18], and form a (distributed) closed network in
the sense of Kelly [15].

While traditionally only the packet flows have been
modeled as stochastic processes, we also apply (and im-
pose) this to the packet processing. On the analysis
side, this does not change much: the same mathematical
framework can be applied. However, our environment
forces protocol designers to come up with “fluid” pro-
tocols that can continuously track the environment and
adapt to it. This might seem to be a challenging task.
But, in addition to a sound mathematical foundation, a
CNP approach potentially promotes good system-wide
properties when composing such protocols. CNPs also
provide a graphical notation, the reaction graph, which
is intuitively graspable, and from which the underly-
ing mathematical equations can be derived automatically.
This is one of the biggest advantages of CNPs over tra-
ditional protocols. We conjecture that this may simplify
protocol and system design as well as the analysis of the
corresponding dynamics.

7.3 Resource Exploitation vs. Embodiment
The shown CNP examples have a higher message com-
plexity and tend to exploit all available resources, lead-
ing to a competitive rather than a cooperative environ-
ment. A contribution to last year’s HotNets workshop
promoted this strategy as long as the marginal cost can be
driven lower than the marginal benefit [23]. This trade-
off, however, has to be identified and analyzed for each
problem separately.

While exploiting resources, CNPs at the same time
explore and dynamically adapt to the environment. Our

load balancing protocol is able to obtain bandwidth in-
formation, like TCP, because it fills the link with pack-
ets; the quines occupy the available memory but survive
when reducing it. Hence, CNPs achieve a high degree of
embodiment: computation may be outsourced to the en-
vironment, a concept already employed in robotics [22].

7.4 Towards Self-Optimizing Protocols
In Computer Science, bio-inspired approaches recently
gained attention because of the promise of robustness
and scalability. The ultimate property however, evolv-
ability, is a challenge due to the lack of a formal the-
ory and the non-determinism of the resulting solutions.
With a chemical protocol design, a gradual path from
static to self-healing, and even towards self-optimizing
and evolving protocols, could be envisioned. Mutations
could be useful to evolve protocols online, potentially en-
abling self-optimization and long-term adaptability. We
conjecture that CNPs are better suited to automatic evo-
lution than traditional protocols due to their inherent
property of multi-stability that lets them glide into the
next equilibrium according to environmental conditions.

8 CONCLUSIONS
In this paper we looked at networking protocols with the
eye of a chemist. We examined how chemical concepts
can be transposed to network design in order to obtain
the same emergent properties that we find in chemical
systems such as stable equilibria, nota bene gaining an-
alyzability. This requires a paradigmatic shift from de-
signing local state machines to weaving global reaction
networks. For the first time, we demonstrated how to
obtain a protocol that intrinsically heals itself from code
deletion attacks. We believe that such techniques open
the door to the design of truly robust networks which are
able to survive even in environments where reliable code
execution can not be taken for granted.

ACKNOWLEDGMENTS
This work has been supported by the Swiss National Sci-
ence Foundation through SNF Project Self-Healing Pro-
tocols (2000201-109563). We would like to thank Lidia
Yamamoto for her continuous contribution to our re-
search, and Christophe Jelger, Pierre Imai and the anony-
mous reviewers for their useful comments.

REFERENCES
[1] Fraglets Home Page. http://www.fraglets.net.

[2] A. Aggarwal, S. Savage, and T. Anderson, Understanding the Per-
formance of TCP Pacing, Proc. 9th Ann. Joint Conf. of the IEEE
Comp. and Comm. Societies (INFOCOM 2000), 2000, pp. 1157–
1165.

[3] R. Bajcsy and J. Košecká, The Problem of Signal and Symbol In-
tegration, Advances in Artificial Intelligence, 1995.

[4] L. N. Chakrapani, P. Korkmaz, B. E. S. Akgul, and K. V. Palem,
Probabilistic System-on-a-Chip Architectures, ACM Trans. Des.
Autom. Electron. Syst. 12 (2007), no. 3, 1–28.

[5] P. Dayan and L. F. Abbott, Theoretical Neuroscience, MIT Press,
2001.

[6] G. Di Caro and M. Dorigo, AntNet: Distributed Stigmergetic Con-
trol for Communications Networks, J. Art. Intel. Res. 9 (1998),
317–365.

[7] P. Dittrich and P. Speroni di Fenizio, Chemical Organization The-
ory, Bull. Math. Bio. 69 (2007), no. 4, 1199–1231.

[8] P. Dittrich, J. Ziegler, and W. Banzhaf, Artificial Chemistries - A
Review, Artificial Life 7 (2001), no. 3, 225–275.

[9] F. Dressler, I. Dietrich, R. German, and B. Krüger, A Rule-Based
System for Programming Self-Organized Sensor and Actor Net-
works, Comput. Netw. 53 (2009), no. 10, 1737–1750.

[10] Y. Easwaran and M. A. Labrador, Evaluation and Application of
Available Bandwidth Estimation Techniques to Improve TCP Per-
formance, Proc. 29th Annual IEEE Int. Conf. Local Comp. Net.,
2004, pp. 268–275.

[11] M. A. Gibson and J. Bruck, Efficient Exact Stochastic Simulation
of Chemical Systems with Many Species and Many Channels, J.
Phys. Chem. A 104 (2000), no. 9, 1876–1889.

[12] D. T. Gillespie, Exact Stochastic Simulation of Coupled Chemical
Reactions, J. Phys. Chem. 81 (1977), no. 25, 2340–2361.

[13] J. H. S. Hofmeyr, Metabolic Control Analysis in a Nutshell, Proc.
2nd Int. Conf. Sys. Bio., 2001, pp. 291–300.

[14] V. Jacobson, Congestion Avoidance and Control, Proc. Symp.
Comm. Arch. Prot., 1988, pp. 314–329.

[15] F. P. Kelly, Reversibility and Stochastic Networks, John Wiley and
Sons Ltd., 1979.

[16] D. Kempe, A. Dobra, and J. Gehrke, Gossip-based Computation
of Aggregate Information, Proc. 44th IEEE Symp. Found. Comp.
Sc., 2003, pp. 482–491.

[17] J.-Y. Le Boudec and P. Thiran, Network Calculus, LNCS,
vol. 2050, Springer, 2004.

[18] L. F. Mackert and I. B. Neumeier-Mackert, Communicating Rule
Systems, Proc. IFIP WG6.1 7th Int. Conf. Prot. Spec., Test. and
Verific., 1987, pp. 77–88.

[19] T. Meyer, D. Schreckling, C. Tschudin, and L. Yamamoto, Ro-
bustness to Code and Data Deletion in Autocatalytic Quines,
Trans. on Comp. Sys. Bio. X, 2008, pp. 20–40.

[20] T. Meyer, L. Yamamoto, and C. Tschudin, A Self-Healing Multi-
path Routing Protocol, Proc. 3rd Int. Conf. on Bio-Insp. Models
of Netw., Inform., and Comp. Sys. (BIONETICS 2008), 2008.

[21] T. Meyer, L. Yamamoto, and C. Tschudin, An Artificial Chem-
istry for Networking, Bio-Inspired Computing and Communica-
tion, 2008, pp. 45–57.

[22] R. Pfeifer, M. Lungarella, and F. Iida, Self-Organization, Embod-
iment, and Biologically Inspired Robotics, Science 317 (2007),
no. 5853, 1088–1093.

[23] R. Raghavendra, R. Mahajan, J. Padhye, and B. Zill, Eat All You
Can in an All-you-can-eat Buffet: A Case for Aggressive Resource
Usage, Proc. 7th ACM Workshop on Hot Topics in Networks
(Hotnets VII), 2008.

[24] M. Shaw, ”Self-healing”: Softening Precision to Avoid Brittle-
ness, Proc. 1st Workshop on Self-healing Systems, 2002, pp. 111–
114.

[25] C. Tschudin, Fraglets - a Metabolistic Execution Model for Com-
munication Protocols, Proc. 2nd Symp. on Aut. Intel. Net. and
Sys. (AINS), 2003.

[26] L. Yamamoto, D. Schreckling, and T. Meyer, Self-Replicating and
Self-Modifying Programs in Fraglets, Proc. 2nd Int. Conf. on Bio-
Insp. Models of Netw., Inform., and Comp. Sys. (BIONETICS
2007), 2007.

