
Towards Interactive Debugging for ISP Networks

Chia-Chi Lin†, Matthew Caesar†, Jacobus Van der Merwe§

†University of Illinois at Urbana-Champaign
§AT&T Labs – Research

ABSTRACT
The extreme complexity of Internet software leads to a
rich variety of hard-to-isolate failure modes and anoma-
lies. Research on debugging modern networked systems
has thus far focused on “removing the human from the
loop” by automatically detecting problems that violate
predefined conditions. Here, we argue for a very different
approach. Namely, we take the position that manual labor
is a necessary evil of debugging problems in networked
systems, but that this process would be vastly simpler
with in-network support for debugging. We propose a
network-layer substrate forinteractive debugging that
allows for tight controls on network execution, to pro-
vide reproducibility and performance isolation of the live
network in highly distributed and dynamic environments.

1. INTRODUCTION
The Internet is the most complex distributed soft-

ware infrastructure ever created. Unfortunately, the
extreme complexity of this software makes it prone
to defects introduced by human error. Network ser-
vice and equipment developers introduce bugs and
vulnerabilities into network software, and operators
misconfigure equipment with devastating effects and
high-profile outages [5, 16], and with high costs [2].

Conventional wisdom is that debugging large scale
systems should be done with fully automated tech-
niques, for example by checking the behavior of the
system against a model that describes how the sys-
tem should behave (which may place constraints on
statistical behavior [12] or deterministic rules on or-
derings or contents of messages [6]). Unfortunately,
while some problems can be identified this way, fully
modeling the logic of a complex protocol requires
complex models (increasing probability of bugs in
the model), instrumenting protocols with models is
often not possible due to lack of internal boundaries
within modules, ossification of legacy code, privacy
issues (e.g., when the developer and debugger belong
to different institutions) and scaling issues of reveal-
ing internal state. In addition, model-based tech-
niques typically “detect” problems instead of indi-
cating how the problem can be repaired, still requir-
ing the troubleshooter to understand the complex
dynamics and state of the underlying network to de-
sign a solution. Finally, while automated techniques
have been developed to localize memory faults [1]
and avoid concurrency bugs [13], the larger class of

logical or semantic errors seems to fundamentally re-
quire human knowledge to solve.

In this work, we take the position that manual la-
bor by domain experts is a necessary evil of debug-
ging problems in networked software, but that this
process would be vastly simpler with network-level
architectural support for debugging. As an early first
step in this direction, we propose an architecture for
interactive debugging of networked software. While
tools such as gdb exist to isolate problems on a single
machine, today we lack a practical gdb-style tool for
interactive debugging of modern network software.

To clarify our goals, we give a simple example
of how our proposed environment might be used in
practice. Imagine that a network operator of an
large ISP receives a phone call from a complaining
customer, indicating that their Internet connectivity
appears to fail at random times, with a large outage
occurring the previous night. To diagnose the prob-
lem, the network operator creates a cloned instance
of the live network based on the last checkpoint be-
fore the outage occurs, and places a breakpoint that
is triggered when the route between the customer
and a remote network becomes unavailable. The op-
erator then runs the cloned instance. When the route
is withdrawn, the cloned instance is paused, and the
operator may then query and print to view the cur-
rent state of the network. The operator notices that
the path changed because a withdrawal message was
received from a neighboring router, and hence the
operator places a breakpoint triggered on the cre-
ation of that update. By repeating this process,
the operator localizes the problem to a single router,
which repeatedly sends updates, even though it is re-
ceiving no new external events. The operator forms
a hypothesis that the router’s software is faulty, and
to test the hypothesis rolls back the router’s software
to an earlier version. To test the workaround, the
operator plays the cloned network forward at high
speed (injecting synthetic external updates) to see if
any oscillations will take place over the next several
days. Since the problem does not reoccur, the cloned
network is merged back into the live network.

The ability to perform these functions would dras-
tically simplify the ability to interactively troubleshoot
network software. However, modern network infras-
tructures do not provide the underlying primitives
and mechanisms to perform these operations. To ad-

1

dress this, we propose three key network-layer prim-
itives to simplify interactive network debugging:

Isolation of the operational network: The mission-
critical nature of modern networked systems coupled
with their need to react to events in real-time means
taking parts of the network offline for debugging pur-
poses is not tenable. Hence, we propose a strawman
architecture for a network software hosting infras-
tructure, that leverages virtualization technologies
to provide strong resource isolation of the live net-
work. Operators may clone the live network into
a separate instance running atop our infrastructure,
test workarounds and investigate faults within the
contained environment, and merge the instance back
into live network once the problem has been fixed.

Reproducibility of network execution: The ability
to replicate the fault is improved if the system can
replicate the precise sequence of steps that led to a
bug being triggered. However, reproducing execu-
tion of networked software, which by its nature exe-
cutes asynchronously and nondeterministically with-
out centralized control, introduces some challenges.
To address this, we propose several algorithms (lever-
aging previous work on distributed semaphores and
checkpointing). These algorithms instill an ordering
over message propagation in the live network, that
can be reproduced exactly when running within a
cloned instance, simplifying the ability for operators
to reproduce rarely encountered exceptions.

Interactive stepping through execution: The tremen-
dous load, scale, and rates of change of modern net-
works makes it hard for a human troubleshooter to
build an understanding of the entire system.Debugging
such a system becomes much easier if the troubleshooter
has time to investigate and manipulate state, and
slowly step through operation of individual messages.
To achieve this in distributed networks, we develop
a collection of protocols that provides tight control
over execution of network software (e.g., allowing the
operator to interactively step through distributed ex-
ecution), while preserving the distributed character-
istics of asynchronous communication (e.g., realistic
convergence processes and communication patterns).

2. IN-NETWORK SUPPORT FOR DEBUG-
GING

In this section, we describe our overall approach
towards supporting the three network-level primi-
tives mentioned in Section 1. We start by proposing
a strawman architecture for isolating the operational
network based on virtual service platforms. Many of
the key enabling technologies for this architecture
have been developed in previous work [17, 4], how-
ever, we lack algorithms to interactively debug and
step through network software atop this design. We

hence proceed to describe two key algorithms, one
for interactive stepping, and another to ensure re-
producibility of network execution.

Isolating the operational network with vir-
tual service platforms: To isolate the opera-
tional network from interactive debugging activities,
our architecture leverages virtualization technologies
to encapsulate networked software into virtual ser-
vice platforms (VSPs), which individually provide
the abstraction of a single dedicated hosting envi-
ronment (virtual network) to the network software
(Figure 1). VSPs are logically decoupled from their
underlying hardware, and run atop a virtual service
hypervisor, which manages network and computa-
tional resources across VSPs. VSPs may be cloned
from other VSPs or directly from the live network
(which itself is run as a VSP) to perform debug-
ging, and when a fault is repaired the new VSP may
be merged back into the live network. The virtual
service hypervisor allocates resource slices to each
VSP and performs priority-based scheduling to iso-
late the live network from VSP activity. Execution
of each VSP is controlled with use of a runtime man-
ager, which allows speedup/slowdown of execution,
time reversal/replay of previous events, and paus-
ing of execution to view a fixed state of the system.
The human troubleshooter interacts with the sys-
tem through a debugging coordinator (DC), which
coordinates runtime operation of the entire virtual
network. Individual network software processes run
with virtual service coordinators (VSCs), which are
parts of the VSP that corresponds to each physical
node. The DC accepts debugging commands (e.g.,
to insert breakpoints, or to print state, or to ma-
nipulate execution) from the human troubleshooter.
These commands are sent to a coordinator module,
which translates them into low-level algorithmic in-
structions for VSCs. The DC receives event notifi-
cations from VSCs, for example when a new control
packet is sent, or a router’s FIB is updated. To al-
low the troubleshooter to step through, slow down,
pause, reverse, and replay operation, the VSC runs
each virtual instance atop a runtime manager, which
controls process execution and timing. An event fil-
ter module determines which events the VSC will
send to the DC, and a backplane routing process is
run to construct routes via a separate virtual net-
work that are isolated from the debugger (used to
ensure the DC can always reach all VSCs).

Interactive stepping by distributed lockstep ex-
ecution: To interactively step through execution,
the runtime manager must coordinate execution across
the distributed set of processes making up the soft-
ware service. This is done by logically dividing the
service’s execution into a series of timesteps. These

2

(a) (b)
Figure 1: System architecture (a) component view (b) deployment view.

timesteps may be chosen at various levels of granu-
larity (per-unit-time, per-message, per-path-change).
The VSP then runs the service software in virtual
time, by executing it in lockstep across nodes, by al-
ternating between two phases: first, VSPs exchange
messages, and second, VSPs replay those messages
to their local server software and collect outbound
messages to be sent in the next cycle. A distributed
semaphore is used by nodes to agree on when phases
occur. We give more details in Section 3.1.

While this approach controls execution, it also lim-
its the set of possible execution paths the service
software may traverse by limiting dynamics such as
convergence and randomness arising from event or-
derings. However, dynamics are important to debug
as well, since they affect convergence behavior and
other aspects of system-wide performance, and since
some problems are only triggered in the presence of
dynamics. To address this, we define an ordering
model that produces a realistic ordering of events
to be delivered to nodes. The VSP uses the order-
ing model to associate a virtual arrival time with
each message, to determine when it should be de-
livered to the service software instance. The trou-
bleshooter may additionally change ordering models
to alter the execution environment in an effort to
trigger new bugs. In future work we aim to derive
ordering models that characterize the service’s dy-
namics (e.g., by leveraging formal characterizations
mapping events to a distributed set of routing pro-
tocol messages [10]), but for now our design simply
assigns a pseudorandom ordering.

Reproducing network execution by masking
randomness: Debugging a system becomes much
easier if the operation of that system is reproducible.
In such a system, a developer may re-execute the
system multiple times, evaluating hypotheses and
testing workarounds, and can expect the same ex-
ecution each time. The developer may also be able
to recreate rarely-encountered exceptions, by rolling
the system back to a state when the fault was known
to occur, and replaying from that point. For exam-
ple, consider a simple single-computer program that
executes differently based on a call to rand().

Unfortunately, existing network software incorpo-
rates a high degree of randomness and nondetermin-
ism in its execution, arising from varying packet or-
derings, delay and jitter, and other variables arising
from distributed execution. To address this, our de-
sign manipulates the operation of the live network
itself, to cause it to run in a reproducible way. Here,
each VSC employs virtualization technologies to fa-
cilitate reproducibility (e.g., handling timers). Then,
each VSP intercepts messages from the network be-
fore delivering them to the network software, and
then uses a pseudorandom sequence to determine
the exact orderings and timings at which to send the
messages up to the network software. Coming up
with this ordering may be done in a variety of ways,
for example there already exist algorithms that can
instill an ordering of events across a set of nodes [14],
and these algorithms are fully compatible with our
design. As an optimization to reduce overheads, we
also consider an “optimistic” approach: each node
independently decides on a pseudorandom sequence
of events, and then lets the network execute in an
arbitrary fashion. If the order in which events ex-
ecute is different from the pseudorandom sequence,
the network is “rolled back” to an earlier state, and
played forward with the correct ordering. Now, pre-
dicting the ordering in which certain network events
(e.g., link failures) will happen is an extremely chal-
lenging problem. However, in order to debug a sys-
tem, it is not necessary to reproduce events taking
place outside the system, such as link failures. Hence
to simplify this problem, we only predict internal
events taking place within the software in the VSC,
and rely on logging to record external events such
as link failures and externally-received routing up-
dates (logs are only required when interfacing with
external systems, for example if testing a system us-
ing a synthetically generated workload no logging is
required). We give more details in Section 3.2.

3. ALGORITHM DESIGN
Next, we describe two algorithms that run within

each VSP. First, the live algorithm (Section 3.1), in-
struments the production network to make its exe-
cution reproducible. The idea here is for the VSP to

3

manipulate the way the live network operates (by re-
ordering messages, and controlling the time at which
messages are delivered) so that the network software
running above acts in a reproducible way. Second,
the lockstep algorithm (Section 3.2), allows a cloned
copy of the live network to be “stepped” through in
a manner controlled by the human debugger. This
algorithm works by making the cloned copy run in a
lockstep fashion, so that in each step, control mes-
sages are only allowed to propagate a single hop.
When provided with a checkpoint collected from the
live network’s operation, the lockstep algorithm re-
produces the exact sequence of events that occurs in
the production network after that checkpoint. Both
algorithms eliminate the nondeterminism introduced
by distributed execution, but they have different char-
acteristics: the live algorithm adds reproducibility to
the production network with acceptable overheads,
while the lockstep algorithm enables execution to be
paused and stepped through.

3.1 Interfacing with the Production Network
In order to make the live network’s execution re-

producible, we need to ensure the ordering of mes-
sages propagating through the network can be pre-
cisely regenerated after-the-fact. We do this by hav-
ing the VSP running beneath the live network in-
stilling a pseudorandom ordering on the way mes-
sages generated by the software propagate through
the network. Given a log of network-level events, the
system’s execution can then be precisely generated
by regenerating this ordering. To do this, we need to
solve two problems: (i) we need some way to come up
with the pseudorandom ordering (ii) we need some
way to perform the rollback/reversal when the pre-
dicted ordering is violated.

Algorithm 1 live recv(pkt)

1: history.insert(pkt)
2: if history.back() != pkt then

3: rollback(history, pkt)
4: else

5: deliver(pkt)
6: history.update(pkt)

7: end if

Ordering packets: Since we rollback whenever
the ordering is violated, we could simply choose any
arbitrary pseudorandom ordering. However, to im-
prove performance, we would like to minimize the
number of times we have to roll back. Hence, as an
optimization we select orderings that are likely to
happen anyway, given the typical delays of network
links (Algorithm 1). In particular, we have each node
select a pseudorandom sequence that closely matches
the ordering of messages the node would expect to
receive from simultaneous events. For example, if
a node is connected to one upstream node with a

low-delay link and another with a high-delay link,
it is reasonable to expect packets to arrive from the
former node sooner. To instill this ordering, a VSC
maintains a history of messages it has received so far
(older entries in this list are garbage collected after
some delay to reduce state requirements). The his-
tory is sorted by the source and incoming interface of
the message according to a pseudorandom ordering.
Every time a VSC receives a message, it will insert it
into the history, and also send it up to the network
software. If later on another message arrives that
should have been sent up to the software first (be-
fore a message that was already sent up) according
to the ordering, the network software will be rolled
back, and the messages will be played back in the
order given by the pseudorandom sequence.

Algorithm 2 rollback(history, pkt)

1: for tpkt ∈ [history.back(), history.search(pkt)) do

2: history.search(tpkt).restore()
3: history.search(tpkt).cleanup()
4: end for

5: for tpkt ∈ [history.search(pkt), history.back()] do

6: live receive(tpkt)

7: end for

Algorithm 3 cleanup(pkt)

1: for tpkt ∈ [history.back(), history.search(pkt)] do

2: history.search(tpkt).restore()
3: history.search(tpkt).cleanup()
4: end for

5: for tpkt ∈ (history.search(pkt), history.back()] do

6: live receive(tpkt)

7: end for

Rolling back: To roll back misordered messages,
we employ two algorithms: Algorithm 2 rolls back
the state of network software, and Algorithm 3 cleans
up outputs generated by misordered messages (the
restore() method relies on existing virtualization
technologies to rollback state, our focus here is only
on determining causal relationships necessary to per-
form the rollback across nodes). For example, if a
node reads in packets p1, p2, and outputs a packet
p3, and we later find out p1 is going to be rolled
back, then the question of whether p2 and p3 need
to be rolled back depends on their relationship with
p1. In sight of this, we assume after delivering a
packet to the network software, a VSC knows if the
software will produce any packet in response of the
input. In addition, a VSC could pinpoint which out-
put packet is corresponding to which input. If the
software doesn’t read in packets it won’t use imme-
diately (which is the case for common network soft-
ware), the assumption trivially holds; otherwise, we
could modify the network software or use virtual-
ization technologies to provide explicit information
to the VSC. With this assumption, a VSC records
additional information with each entry in the his-

4

tory: the changes of the state of the software before
and after processing the given message, and the ex-
act output produced. Then, the VSC could rollback
messages received out of order by restoring the local
state, cleaning up output packets sent, and redeliver
the messages.

Grouping events: The above algorithms provide
reproducibility. However, in the worst case (if there
were a very long causal chain), the system would
have to perform many rollbacks. To bound the num-
ber of rollbacks, we group packets in the system into
events according to their causal relationships. We
then divide the timeline into blocks, group events ap-
pearing in a single block together, and then indepen-
dently impose an ordering on each group. One VSC
is assigned to periodically broadcast group numbers.
Each VSC maintains a local copy of the latest group
number received and tags the packets triggering an
event with the number. The output packets gener-
ated by a particular input packet are assigned the
same group number as the input packet. The his-
tory is then divided into groups, and the ordering is
instilled only within each group. With this, an entry
in the history can be removed after two times the
maximum propagation time across the network after
its group becomes inactive since all messages that
would be ordered before it would arrive by then.

3.2 Reproducing Execution in a Cloned In-
stance

The live algorithm supports reproducibility with
minimum perturbation to the production network.
However, it doesn’t offer a easy way to step through
the execution, and thus make it less desirable to be
run in a cloned instance where delay and overheads
are not the major issue. In light of this, we intro-
duce a lockstep algorithm that operates in a debug-
ging environment which could be run on the same
physical infrastructure as the live network, or a sep-
arate server-based testing network. Instead of apply-
ing the same mechanism as the live algorithm, the
lockstep algorithm achieves reproducibility by forc-
ing the network to run in a lockstep fashion. This is
done by explicitly queuing messages between nodes
(and timer events), and playing them at precise in-
tervals. Since it is deployed in a debugging environ-
ment, where requirements for delay and overheads
are not that demanding, the mechanisms are jus-
tified. To make the network run in lockstep, the
algorithm instructs each VSC to cycle through two
phases: a transmission phase and a processing phase.
The algorithm coordinates all VSCs with a mecha-
nism similar to a distributed semaphore to make sure
they are in the same phase at the same time. Be-
tween transitions through these phases, each VSC

uses buffers and timeouts to eliminate the nonde-
terminism introduced by the communication subsys-
tem, and hence make it reproducible.

Transmission phase: In this phase, each VSC
sends all messages generated in the previous process-
ing phase. In particular, the VSC sends out packets
in a sending buffer (filled in the processing phase)
and stores all packets received in a receiving buffer
(events from live network logs may also be injected
during this phase). To ensure reproducibility, con-
tents of the receiving buffer are sorted in the same
way as the one running the live algorithm in the pro-
duction network. To indicate readiness to transition
to the processing phase, a VSC sends an end of send-
ing packet when it has no further packets to send.

Processing phase: In this phase, each VSC pro-
cesses all messages received during the previous trans-
mission phase. In particular, the VSC sends all mes-
sages in the receiving buffer up to the network soft-
ware, and enqueues the software’s generated pack-
ets into the sending buffer. The VSC waits for the
network software to finish processing packets before
transferring to the transmission phase.

4. EVALUATION
Our design simplifies troubleshooting, but comes

with several costs. As an early first step towards
measuring these costs, we evaluate our design for
OSPF running atop several network topologies con-
structed with the BRITE topology generator, with
link delays set to 1ms plus a (0.0, 0.5] ms exponen-
tially distributed random delay. We compare a base-
line network running OSPF directly atop the phys-
ical network with a network running OSPF within
a VSP. For realistic failure conditions, we extract
link failure events from Abilene ISIS traces over the
month of Jan. 2009 (giving 209 events), and map
events to random links in the BRITE topology (we
also ran simulations directly over the Abilene topol-
ogy and acquired similar results). Each run is re-
peated 10 times (standard deviation bars in charts
lack visibility due to their small size). The group-
ing time for the live algorithm is set to 25 ms. We
measured performance penalties along several axes:

Delay and control overhead: Figure 2a shows
the additional convergence delay incurred by the live
algorithm, which is somewhat high. While this de-
lay may be tolerable for certain protocols (e.g., BGP
uses an MRAI timer to intentionally slow conver-
gence for scalability), it may harm convergence of
other protocols. To address this, we implemented the
optimization described earlier in Section 3.1, which
instills an ordering of events that is close to what we
would expect the network to do (based on observed
link delays and propagation times), which vastly re-

5

100 200 300 400 500 600
Network Size (Number of Nodes)

0
2
4
6
8

10
12
14
16

D
el

ay
 (

m
s)

Plain OSPF
Live alg (w/ optimization)
Live alg (w/o optimization)

(a)

100 200 300 400 500 600
Network Size (Number of Nodes)

0

1000

2000

3000

4000

5000

6000

C
on

tr
ol

 T
ra

ffi
c

(1
k

pk
ts

)

Plain OSPF
Live alg (w/ optimization)
Live alg (w/o optimization)

(b)

100 200 300 400 500 600
Network Size (Number of Nodes)

0
1
2
3
4
5
6
7
8
9

10

S
to

ra
ge

 S
iz

e
(k

B
)

(c)

100 200 300 400 500 600
Network Size (Number of Nodes)

0

25

50

75

100

R
es

po
ns

e
T

im
e

(m
s)

(d)
Figure 2: Live algorithm: (a) delay (b) overheads (c) storage. Lockstep algorithm: (d) response time per step.

duces the number of rollbacks. With this optimiza-
tion, we see a large reduction in delay (less than 3%
increase over plain OSPF, causing the two lines to
overlap in the figure). The optimization produces a
similar decrease in control overhead (Figure 2b).

Storage requirements: Our approach requires
additional state to be kept at routers, for the his-
tory of received packets needed for rollback. Fig-
ure 2c shows these requirements to be small and in-
crease slowly with network size, and should fit in the
megabytes or gigabytes of DRAM available in mod-
ern routers. Furthermore, to reproduce events in a
deterministic system, one only needs to log exter-
nal events, so a secondary benefit of our design is in
reducing log sizes by a factor of 480 to 3000.

Response time: To support interactive debug-
ging, our system should have fast response to com-
mands from the human troubleshooter. Figure 2d
shows the response time to execute a single step com-
mand of the system (where a single step moves be-
tween two phases of the lockstep algorithm). We find
that latency is generally under 100 milliseconds.

5. RELATED WORK AND CONCLUSION
Related work: Architectural principles to increase
observability of the network include tracing, perfor-
mance monitoring, root cause notification, beacon-
ing and probing, and logging observations (e.g., [7,
12]). As well as automatically pinpointing faults:
root cause analysis, system models, anomaly detec-
tion, and correlating observations (e.g., [6]). How-
ever, this work focuses solely on non-interactive tech-
niques (which could be used to supplement our de-
sign). On the other hand, there are works focusing
on using recorded states to roll back [11] or replay [9]
the systems, but they are mainly limited to stan-
dalone systems. There has also been older work on
interactive debugging, some of it on parallel systems
(e.g., [15, 8, 3]), but this work was prevalent only be-
fore the advent of modern distributed networks and
protocols, with recent research focusing on entirely
removing the human from the loop. Finally, we owe
much to work on network virtualization [4, 17] and
distributed algorithms [14] which form the founda-
tions of our design.

Conclusion: The high complexity of ISP networks

coupled with the rich variety of faults they undergo
will require humans to be ”in-the-loop” to diagnose
problems for the foreseeable future. To address this,
we propose a strawman architecture for interactive
debugging of network software. This architecture
presents a number of challenges, and we draw from
previous work as well as propose new algorithms to
solve some of them. For future work, we will refine
this design, by implementing primitives for cloning
and merging network state, and evaluate our design
through a realistic system implementation.

6. REFERENCES
[1] Coverity Inc. www.coverity.com.

[2] Software errors cost U.S. economy $59.5 billion annually.

NIST News Release, October 2002.

www.nist.gov/public_affairs/releases/n02-10.htm.

[3] PDB parallel debugger. July 2009. http://publib.boulder.

ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/com.

ibm.cluster.pe_linux43.opuse.doc/am102_pdbman.html.

[4] R. Alimi, Y. Wang, and Y. Yang. Shadow configuration as

a network management primitive. SIGCOMM, August

2008.

[5] J. Duffy. BGP bug bites Juniper software. In Network

World, December 2007.

[6] N. Feamster and H. Balakrishnan. Detecting BGP

configuration faults with static analysis. In NSDI, May

2005.

[7] R. Fonseca, G. Porter, R. Katz, S. Shenker, and I. Stoica.

X-Trace: a pervasive network tracing framework. In NSDI,

April 2007.

[8] G. Fox, R. Williams, and P. Messina. Parallel Computing

Works! (Chapter 5.3: Parallel Debugging). Morgan

Kaufmann, 1994.

[9] D. Geels, G. Altekar, P. Maniatis, I. Stoica, and T. Roscoe.

Friday: global comprehension for distributed replay. In

NSDI, April 2007.

[10] T. Griffin. What is the sound of one route flapping?

presentation made at the Network Modeling and

Simulation Summer Workshop, 2002.

[11] D. R. Jefferson and A. Motro. The time warp mechanism

for database concurrency control. pages 474–481, 1986.

[12] A. Lakhina, M. Crovella, and C. Diot. Diagnosing

network-wide traffic anomalies. In SIGCOMM, August

2004.

[13] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: detecting

atomicity violations via access-interleaving invariants. In

IEEE Micro, January-February 2007.

[14] N. Lynch. Distributed Algorithms. Morgan Kaufmann,

1997.

[15] D. McDowell and D. Helmbold. Debugging concurrent

programs. ACM Computing Surveys, December 1989.

[16] P. Roberts. Cisco tries to quash vulnerability talk at Black

Hat. In eWEEK, July 2005.

[17] Y. Wang, E. Keller, B. Biskeborn, J. van der Merwe, and

J. Rexford. Virtual Routers on the Move: Live Router

Migration as a Network-Management Primitive. In

SIGCOMM, August 2008.

6

