
DevoFlow: Cost-Effective Flow Management for High
Performance Enterprise Networks

Jeffrey C. Mogul, Jean Tourrilhes, Praveen Yalagandula, Puneet Sharma, Andrew R. Curtis∗, Sujata Banerjee
HP Labs, Palo Alto, CA, US –{FirstName.LastName}@hp.com

∗University of Waterloo School of Computer Science, Waterloo, Ontario, Canada –a2curtis@uwaterloo.ca

ABSTRACT
The OpenFlow framework enables flow-level control over
Ethernet switching, as well as centralized visibility of the
flows in the network. OpenFlow’s coupling of these features
comes with costs, however: the distributed-system costs of
involving the OpenFlow controller on flow setups, and the
switch-implementation costs of involving the switch’s con-
trol plane too often.

In this paper, we analyze the overheads, and we pro-
poseDevoFlow, a modification of the OpenFlow model in
which we try to gently break the coupling between central-
ized control and centralized visibility, in a way that main-
tains a useful amount of visibility without imposing unnec-
essary costs.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design

General Terms
Design, Performance, Measurement

Keywords
Network, OpenFlow, Traffic Engineering, Enterprise

1. INTRODUCTION
The OpenFlow [9] framework enables fine grained, flow-

level control of Ethernet switching. OpenFlow has been de-
ployed at various academic institutions and research labora-
tories, and has been the basis for many recent research pa-
pers [1, 13], as well as for hardware products from vendors
such as NEC, Arista, and Toroki. (We will assume the reader
is familiar with the basics of OpenFlow.)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Hotnets ’10,October 20–21, 2010, Monterey, CA, USA.
Copyright 2010 ACM 978-1-4503-0409-2/10/10 ...$10.00.

Compared to traditional packet switching, OpenFlow pro-
vides several benefits: (1) a logically centralized controller
can supervise all flow-level decisions, thereby avoiding the
need to enforce global policies by carefully crafting switch-
by-switch configurations; (2) the central controller can see
all flows, potentially enabling globally-optimal management
of network traffic; and (3) OpenFlow switches are relatively
simple and future-proof, since policy is imposed by con-
troller software, rather than by switch hardware or firmware.

While OpenFlow was originally proposed for campus
and wide-area networks, others have made quantified argu-
ments that OpenFlow is a viable approach to data-center net-
works [15]. The examples in this paper are taken from data-
center environments, but our work should be applicable to
other cases in which OpenFlow might be used.

However, OpenFlow is not perfect. In particular, we be-
lieve it excessively couples the first two features: central
control and central visibility. If one wants the controllerto
have visibility over all flows, it must also be on the critical
path of setting up all flows. Experience suggests that putting
the controller on the critical path of every flow setup is not
sufficiently scalable, as we discuss in section 3.1.

Perhaps, then, having full visibility over all flows is not
quite the right goal. Instead, we propose devolving some of
control back to the switches, in a way that preserves central
control and visibility over allsignificantflows, while lim-
iting the load on the central controller. Our design, called
DevoFlow (for Devolved OpenFlow), modifies the Open-
Flow model to redistribute as many decisions as possible to
the switches, in ways amenable to simple and cost-effective
hardware implementation.

In essence, DevoFlow is designed to allow aggressive use
of wild-carded OpenFlow rules – thus reducing the num-
ber of switch-controller interactions, and the number of
TCAM entries – by providing new mechanisms to detect
QoS-significant flows efficiently, by waiting until they ac-
tually become significant. DevoFlow also introduces new
mechanisms to allow switches to make local routing deci-
sions when these do not actually require per-flow vetting by
the controller.

The reader should note that in this paper we are not
proposing any radical new designs. Rather, we are point-

ing out that a system like OpenFlow, when applied to high-
performance enterprise or data-center networks, must ac-
count forquantitativereal-world issues. Our arguments for
DevoFlow are essentially an analysis of tradeoffs between
centralization and its costs, especially with respect to real-
world hardware limitations.

Therefore, we start in sec. 2 with a discussion of the ben-
efits of centralized control and visibility, so as to understand
how much devolution we can afford. Then, in sec. 3, we
analyze the costs of flow setup and flow-statistics gathering,
both for an idealized switch and under real-world implemen-
tation constraints. Finally, sec. 4 describes the DevoFlow
design in some detail.

2. BENEFITS OF CENTRAL CONTROL
In this section, we discuss which benefits of OpenFlow’s

central-control model are worth preserving, and which could
be tossed overboard to lighten the load.

A logically centralized controller can supervise all flow-
level decisions, thereby avoiding the need to enforce global
policies by carefully crafting switch-by-switch configura-
tions: OpenFlow provides an advantage over traditional
firewall-based security mechanisms, in that it avoids the
complex and error prone process of creating a globally-
consistent policy out of local accept/deny decisions [3, 13].
Similarly, OpenFlow can provide globally optimal admis-
sion control and flow-routing in support of QoS policies, in
cases where a hop-by-hop QoS mechanism cannot always
provide global optimality [8].

However, this does not mean thatall flow setups should be
mediated by a central controller. In particular, we argue that
microflows (amicroflow is equivalent to a specific end-to-
end connection) can be divided into three broad categories:
security-sensitive flows, which must be handled centrally to
maintain security properties;significant flows, which should
be handled centrally to maintain global QoS and congestion
properties; andnormal flows, whose setup can be devolved
to individual switches.

Of course, all flows are potentially “security-sensitive,”
but some flows can be categorically, rather than individually,
authorized by the central controller. Using standard Open-
Flow, one can create wild-card rules that pre-authorize cer-
tain sets of flows (e.g.: “all MapReduce nodes within this
subnet can freely intercommunicate”) and install these rules
into all switches. Similarly, the control can define flow cat-
egories that demand per-flow vetting (e.g., “all flows to or
from the finance department subnet”). Thus, for the pur-
poses of security, the controller need not be involved in every
flow setup.

Central control of flow setup is also required for some
kinds of QoS guarantees. However, in many settings, only
those flows that require guarantees actually need to be ap-
proved individually at setup time. Other flows can be cat-
egorically treated as best-effort traffic. Kimet al. [8] de-
scribe an OpenFlow QoS framework that detects flows re-

quiring QoS guarantees by matching against certain header
fields (such as TCP port numbers) while wild-carding others.
Flows that do not match one of these “flow spec” categories
are treated as best-effort.

Some reviewers have questioned why we want to support
QoS requirements within data-center networks. Two forces
drive this requirement. First, the trend towards “fabric con-
vergence” (using a single network fabric to carry normal net-
working, storage, HPC, video, etc.) aims to reduce cost and
management complexity, but some of these services have
strict QoS requirements. Second, many data center opera-
tors want to support multiple tenants. While compute and
storage resources can be virtualized using well-understood
techniques, the need to provide guaranteed and properly iso-
lated network performance to multiple tenants creates inter-
esting QoS requirements.

In summary, we believe that the central-control benefits
of OpenFlow can be maintained by individually approving
certain flows, but categorically approving others (by means
of wildcard rules).

The central controller can see all flows, potentially en-
abling globally-optimal management of network traffic:
Regardless of whether the controller should be involved in
admission-control decisions at the start of certain flows, in
order to properly manage the performance of a network, the
controller needs to know about the current loads on network
elements. (This assumes that we want to exploit statistical
multiplexing gain, rather than strictly controlling flow ad-
mission to prevent oversubscription.) Further, the controller
may need to know which flows are creating loads on cer-
tain links, so as to possibly re-route or throttle problematic
flows, and to forecast future network loads. For example,
NOX [15] “can utilize real-time information about network
load ... to install flows on uncongested links.”

More specifically, dynamic flow scheduling of data-center
traffic in Hedera can deliver up to 113% more bisection
bandwidth than static load balancing [1].

However, this requirement does not mean that the con-
troller’s flow-awareness should start with the initial setup of
every flow. First, some flows (“mice”) may be brief enough
that, individually, they are of no concern, and are only inter-
esting in the aggregate. Second, some QoS-significant best-
effort flows might not be distinguishable as such at flow-
setup time – that is, the controller cannot tell from the flow
setup request whether a flow will become sufficiently intense
(an “elephant”) to be worth handling individually.

Instead, the controller should be able to efficiently detect
elephant flows as they become significant, rather than pay-
ing the overhead of treating every new flow as a potential
elephant. The controller can then re-route problematic ele-
phants in mid-connection, if necessary. For example, Hed-
era’s scheduler requires detection of “large” flows at the edge
switches, where a large flow could be defined as taking 10%
of the host-NIC bandwidth.

OpenFlow switches are relatively simple and future-

proof, since policy is imposed by controller software, rather
than by switch hardware or firmware: Clearly, we would
like to maintain this property. We believe that our DevoFlow
proposal, while adding some complexity to the design, main-
tains a reasonable balance of switch simplicity vs. system
performance, and may actually simplify the task of a switch
designer who seeks a high-performance implementation.

3. COSTS OF OPENFLOW
In this section, we look at several costs of the original

OpenFlow model – flow setups and statistics collection –
from the perspectives both of an abstract distributed system
design, and of a real-world switch implementation.

We ground our discussion of implementation costs in our
experience implementing OpenFlow on the ProCurve 5406zl
Ethernet switch, which uses an ASIC on each multi-port
line card, and also has a CPU for management functions.
This experimental implementation has been deployed both
internally and in numerous academic institutions. The prac-
tical issues we describe are representative of issues facing
any flow-management framework, and we believe that the
5406zl switch is representative of the current generation of
Ethernet switches.

3.1 Flow setup costs
The costs of flow setup can be divided into controller load

costs, network costs, and switch-internal costs.
Controller load : Involving the controller in all flows cre-

ates a potential scalability problem: any given controllerin-
stance can support only a limited number of flow setups per
second; e.g., Tavakoliet al. [15] report that one NOX con-
troller can handle “at least 30K new flow installs per second
while maintaining a sub-10ms flow install time. [...] The
controller’s CPU is the bottleneck.” Kandulaet al. [7] found
that 100K flows arrive every second on a 1500-server cluster,
implying a need for multiple OpenFlow controllers.

Some researchers have worked on distributed implemen-
tations of the OpenFlow controller – also valuable for fault
tolerance. For example, Tootoonchian and Ganjali [17] de-
scribe HyperFlow, a mechanism that distributes the con-
troller, but their approach can only support global visibility
of rare events such as link state changes, and not of frequent
events such as flow arrivals. However, data-center traffic en-
gineering requires central visibility of all large flows [1],
which distributed OpenFlow controller approaches cannot
yet achieve.

Network: Using the central controller for all flow setups
imposes both network load and latency.

To set up a bi-directional flow on aN -switch path, Open-
Flow generates2N flow-entry installation packets, and at
least one initial packet in each direction is diverted first to
and then from the controller. This adds up to2N + 4 extra
packets.1 These exchanges also add latency – up to twice
1The controller could set up both directions at once, cuttingthe
cost toN + 2 packets; NOX apparently has this optimization.

the controller-switch RTT. The average length of a flow in
the Internet is very short, around 20 packets per flow [16],
and datacenter traffic has similarly short flows [6]. There-
fore, full flow-by-flow control using OpenFlow generates a
lot of control traffic – on the order of one control packet for
every two or three packets delivered ifN = 3, which is a
relatively short path, even within a datacenter.

In terms of network load, OpenFlow’s one-way flow-setup
overhead (assuming a minimum-length initial packet, and
ignoring overheads for sending these messages via TCP)
is about94 + 144N bytes to or from the controller – e.g.,
about 526 bytes for a 3-switch path. Use of the optional
flow-removed message adds88N bytes. The two-way cost
is almost double these amounts, regardless of whether the
controller sets up both directions at once.

Switch-implementation costs: Real switches have finite
bandwidths between their data and control planes, and finite
compute capacity. These issues can limit the rate of flow se-
tups; the best implementations we know of can set up only
a few hundred flows per second. The current 5406zl imple-
mentation can do 146 setups per second.

First, on a flow-table miss, the data plane must invoke the
switch’s control plane, in order to encapsulate the packet for
transmission to the controller.2 Unfortunately, the manage-
ment CPU on most switches is relatively wimpy, and was
not intended to handle per-flow operations.

Second, even within a switch, control bandwidth may be
limited, due to cost considerations. The control datapath
within a linecard ASIC is very fast, so the switch can make
forwarding decisions at line rate. On the other hand, the
control datapath between the ASIC and the CPU is not fre-
quently used in traditional switch operation, so this is typi-
cally a slow path. For example, the 5406zl has a raw band-
width of 300 Gbit/sec, but we measured the loopback band-
width between the ASIC and the management CPU at just
35 Mbit/sec. This four-order-of-magnitude difference is in
line with observations made by others [4].

Finally, the slow switch CPU can limit the bandwidth be-
tween switch and central controller. Using the 5406zl we
measured the bandwidth available for flow-setup payloads
between the switch and the OpenFlow controller at just 10
Mbit/sec.

The DIFANE approach [18] avoids these costs by split-
ting pre-installed OpenFlow wildcard rules among multiple
switches in a clever way that ensures all decisions can be
made in the data plane. However, DIFANE does not address
the issue of global visibility of flow states and statistics.

3.2 Switch state size
OpenFlow rules can have wildcards. While exact-match

2While it might be possible to do a simple encapsulation entirely
within the data plane, the OpenFlow specification requires the use
of a secure channel, and it might not be feasible to implementthe
Transport Layer Security (TLS) processing and TCP connection
state without using the switch’s CPU.

rule lookups can be implemented with a hash table, wild-
card rules must be stored in a TCAM. TCAM entries are an
expensive resource, in terms of ASIC area and power con-
sumption.

Also, OpenFlow rules require matching against at least
240 bits, and more for higher-radix switches. Since TCAM
widths are typically multiples of 36 or 72 bits, generally this
means about 288 bits are necessary for each rule. This can
be compared to the 60-bit match for a traditional Ethernet
address lookup (48 bits of MAC address + 12 bits of VLAN
ID). Our switch hardware has enough SRAM for about 16K
exact-match entries (although we do not currently use the
SRAM), but has TCAM space for only about 1500 wildcard
OpenFlow rules.

Finally, because OpenFlow rules are per-flow, rather than
per-destination, each directly-connected host will typically
require an order of magnitude more rules than in a tradi-
tional Ethernet lookup. (One study reports a 10:1 ratio of
flows to hosts [6].) Use of wildcards could reduce this ratio,
but this is often undesirable as it reduces the ability to im-
plement flow-level policies (such as multipathing) and flow-
level visibility.

The implication of state-size limits is that in a real-world
OpenFlow deployment, there will be pressure to reduce the
number of wild-card flow-table entries. (Note that DIFANE
addresses this issue, at least in part.)

3.3 Hardware technology issues
A fair question to ask is whether our measurements are

representative, especially since the 5406zl hardware was not
designed to support OpenFlow. Hardware optimized for
OpenFlow would clearly improve those numbers, but throw-
ing hardware at the problem adds more cost and power con-
sumption – especially when in the form of TCAMs. Moore’s
Law won’t provide much relief; improvements in on-chip
memory speed and density are offset by similar increases in
Ethernet speeds and per-switch port density. (Off-chip mem-
ory for line-rate lookups becomes increasingly infeasible.)

Vendors of merchant-silicon Ethernet switch chips, such
as Broadcom, Fulcrum, Fujitsu, and Marvell, are notably coy
about the size of their TCAMs and other tables. However,
we have been told that these chips operate under memory
size and power constraints substantially similar to those for
full-custom ASICs.

The NetFPGA implementation of OpenFlow [12] can
store 32K–64K exact-match entries, but only has enough
TCAM space to store 32 wildcard rules. While the limits
of this experimental platform might not be typical of com-
mercial switches, it conforms to the pattern of supporting
many more exact-match rules than wildcard rules.

Although the state-size issues described in section 3.2
would not be as pressing in a software-based router imple-
mented using commodity server hardware [5], we do not be-
lieve such systems will be cost-effective for most enterprise
applications in the foreseeable future.

3.4 Flow statistics costs
Global bandwidth controllers, such as Hedera, need

timely access to statistics. (Hedera’s current implementation
collects updates every 5 seconds [1], but this limit is im-
posed by their NetFPGA-based hardware; they would like to
get their control loop down to a few tens of milliseconds [2].)

OpenFlow supports three per-flow counters (packets;
bytes; flow duration) and provides two approaches for mov-
ing these statistics from switch to controller:

• Push-based: The controller learns of the start of a flow
whenever it is involved in setting up a flow. Optionally,
OpenFlow allows the controller to request an asyn-
chronous notification when a switch removes a flow ta-
ble entry, as the result of a controller-specified per-flow
timeout. (OpenFlow supports both idle-entry time-
outs and hard timeouts.) If flow-removed messages
are used, this increases the per-flow message overhead
from 2N +2 to 3N +2. Also, the existing push-based
mechanism does not inform the controller about the be-
havior of a flow before the entry times out.

• Pull-based: the controller can send a Read-State mes-
sage to retrieve the counters for a set of flows matching
a wild-card flow specification. This returns88F bytes
for F flows. In the worst case, reading the stats for all
16K exact-match rules and 1500 wild-card rules theo-
retically supported by our switch would return 1.3MB;
doing this once per second would require slightly more
than the 10Mbit/sec bandwidth available between the
switch CPU and the controller!
Optionally, Read-State can request a report aggregated
over all flows matching a wild-card specification; this
can save switch-to-controller bandwidth but loses the
ability to learn much about the behavior of specific
flows.

In short, the existing statistics mechanisms are both rela-
tively high overhead, and in particular they do not allow the
controller to request statistics only for the small fraction of
elephant flows that actually matter for performance.

4. DEVOFLOW
We have several design principles for DevoFlow:

• Retain as much of OpenFlow as possible: including
simple implementations of fast switches.

• Maintain central control over the important things :
but devolve other decisions to the switches as much as
possible.

• Maintain central visibility over QoS-significant
flows: but otherwise provide only aggregated informa-
tion.

• Reduce switch-controller network bandwidth.
• Avoid leaving the data plane: since switch-internal

bandwidth between the data and control planes, and
switch CPU capacity, are both limited.

Our overall goal is to enable otherwise infeasible policiesfor
high-performance enterprise and data-center networks.

DevoFlow attempts to resolve two dilemmas; a control
dilemma:

1. Invoking the OpenFlow controller on every flow setup
provides good start-of-flow visibility, but puts too
much load on the control plane.

2. Aggressive use of OpenFlow flow-match wildcards re-
duces control-plane load, but prevents the controller
from seeing the events that it wants to see.

and a statistics-gathering dilemma:

1. Collecting OpenFlow counters on lots of microflows,
via the pull-based Read-State mechanism, can create
too much control-plane load.

2. Aggregating counters over multiple microflows via the
wild-card mechanism may undermine the controller’s
ability to manage specific elephant microflows.

Our resolution of these dilemmas is to support aggressive
use of flow wildcards, by introducing a few new, simple
mechanisms to improve visibility.

4.1 Mechanisms for devolving control
We introduce two new mechanisms for devolving control

to a switch,rule cloningandlocal actions.
Rule cloning: Under the standard OpenFlow mechanism

for wildcard rules, all packets matching a given rule are
treated as one flow. This means that if we use a wildcard to
avoid invoking the controller on each microflow arrival, we
also are stuck with routing all matching microflows over the
same path, and aggregating all statistics for these microflows
into a single set of counters.

In DevoFlow, we augment the “action” part of a wild-
card rule with a boolean CLONE flag. If the flag is clear,
the switch follows the standard wildcard behavior. Other-
wise, the switch locally “clones” the wildcard rule to create
a new rule in which all of the wildcarded fields are replaced
by values matching this microflow, and all other aspects
of the original rule are inherited. Subsequent packets for
the microflow match the microflow-specific rule, and thus
contribute to microflow-specific counters. Also, this rule
goes into the exact-match lookup table, and thus reduces the
use of the TCAM, which avoids most of the TCAM power
cost [10]. This approach is similar to the proposal by Casado
et al. [4], but their approach does per-flow lookups in the
control-plane software, which might not scale to high line
rates.

Local actions: Certain flow-setup decisions might require
decisions intermediate between the heavyweight “invoke the
controller” and the lightweight “forward via this specific
port” choices offered by standard OpenFlow. In DevoFlow,
we envision rules augmented with a small set of possible
“local routing actions” that a switch can take without paying
the costs of invoking the controller. If a switch does not sup-

port an action, it defaults to invoking the controller, so asto
preserve the desired semantics.

Examples of local routing actions include:

• Multipath support : where the switch is given a choice
of several output ports for a clonable wildcard, not just
one. The switch can then select, randomly or round-
robin, between these ports on each microflow arrival;
the microflow-specific rule then inherits the chosen
port rather than the set of ports. (This prevents intra-
flow re-ordering due to path changes.)
OpenFlow does have support for Equal-Cost MultiPath
(ECMP), but as Al-Fareset al. point out, ECMP “can
cause substantial bandwidth losses due to long-term
collisions.” [1].

• Rapid re-routing : where a switch is given one or more
fallback paths to use if the designated output port goes
down. If the switch can execute this decision locally,
it can recover from link failures almost immediately,
rather than waiting several RTTs for the central con-
troller to first discover the failure, and then to update
the forwarding rules. OpenFlowalmostsupports this
already, by allowing overlapping rules with different
priorities, but it does not tell the switchwhy it would
have multiple rules that could match a flow, and hence
we need a small change to make indicate explicitly that
one rule should replace another in the case of a specific
port failure.

4.2 Mechanisms for efficient statistics collec-
tion

We offer two different ways to improve the efficiency of
OpenFlow statistics collection.

Use sFlow: Instead of push-based or pull-based collection
(see sec. 3.4), we can use sampling. In particular, the sFlow
protocol [14] allows a switch to report the headers of ran-
domly chosen packets to a monitoring node – which could
be the OpenFlow controller. Samples are uniformly chosen
and typically at a rate of 1/1000 packets, although this rate
is adjustable. Because sFlow reports do not include the en-
tire packet, the incremental load on the network is less than
0.1%, and since it is possible to implement sFlow entirely in
the data plane, it does not add load to a switch’s CPU. In fact,
sFlow is already implemented in many switches, including
the ProCurve 5406zl.

Triggers and reports: Alternatively, we propose another
new push-based mechanism: extending OpenFlow rules to
include threshold-basedtriggerson counters. When a trigger
condition is met, for any kind of rule (wildcarded or not), the
switch sends areport, similar to the Flow-Removal message,
to the controller. (It can buffer these briefly, to pack several
reports into one packet.)

The simplest trigger conditions are thresholds on the three
per-flow counters (packets, bytes, and flow duration). These
should be easy to implement within the data plane. One
could also set thresholds on packet or byte rates, but to do

so would require more state (to define the right averaging
interval) and more math, and might be harder to implement.

Is the triggers+reports mechanism superior to sFlow? At
this stage in our research, we are not sure, so we are in-
vestigating both options. We suspect that it might be more
efficient to use asynchronous reports triggered once per ele-
phant flow, instead of adjusting the sFlow sampling rate so
that elephants are detected quickly without excess overhead.
Mori et al. [11] suggest that it might require 5–10 sam-
ples (at a sample rate of 1/1000 packets) to reliably detect
10K-packet elephants, whereas the trigger+reports mecha-
nism can detect arbitrary-sized elephants while sending just
one packet.

How quickly do we need to detect elephant flows? Kan-
dulaet al.[7] found that, in their data-center, almost all bytes
were carried in flows lasting longer than 10 seconds – imply-
ing that the congestion they observed probably did not come
from mice – but more than half of the bytes are in flows
lasting under 25 seconds; they observe that this means that
traffic engineering cannot depend on scheduling just a few
long-running flows.

Hedera defines a “large” flow as one taking at least 1/10
of a host’s NIC bandwidth [1]. At 1Gbps and 1500B/packet,
this works out to about 8333 packets/sec, implying that sam-
pling 1/1000 packets would take on the order of a second to
identify a large flow. This is fast enough to support Hedera’s
existing 5-second control loop, but perhaps not fast enough
to support their desired sub-100 msec. loop. Since the re-
sults in the Hedera paper were based on synthetic traffic, we
suspect more research is necessary to address the detection-
speed question.

4.3 Avoiding the control plane
One of our goals was to avoid leaving the data plane. Here

we briefly discuss whether this is feasible for the new mech-
anisms that we have described.

Rule cloning: Ideally, we would like the data plane to di-
rectly insert entries into the exact-match table. This might
require some redesign of existing data planes; some ASIC
designers have assured us that this is not impossible. Oth-
erwise, rule cloning would require a control plane operation
once per flow.

Multipath support : This requires support for rule-
cloning, a random-number generator, new bit on multi-
action rules to say “multipath” rather than “multicast”, and
perhaps a small table to hold path-choice biasing weights.

Triggers: should be a modest extension to the mechanism
that updates per-flow counters. Most modern switches sup-
port either NetFlow or IPFIX, which is about half of what
we need – the other half is some additional per-entry stor-
age for trigger threshold, and an additional comparator in
the pipeline.

5. PRELIMINARY RESULTS
We are currently evaluating DevoFlow via simulations.

Our very preliminary results show that, when re-routing
elephant flows using DevoFlow triggers, we can increase
throughput over ECMP routing by 16% and 24% for Clos
and HyperX networks, respectively — within 6%–8% of
optimal for our workload. With a trigger on flows that
reach 1MB, DevoFlow sends 86% fewer packets to the con-
troller, and uses 75% fewer flow table entries, compared to a
Hedera-like approach that collects statistics once/second.

6. SUMMARY
OpenFlow’s centralized decision-making yields important

benefits based on the controller’s global viewpoint, but the
overheads required to set up and monitor each flow could be
a bottleneck.DevoFlowpreserves the benefits of OpenFlow,
while devolving decisions (as appropriate) to the switches,
thereby reducing these overheads.

7. REFERENCES
[1] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and

A. Vahdat. Hedera: Dynamic Flow Scheduling for Data Center
Networks. InProc. NSDI, Apr. 2010.

[2] M. Al-Fares and A. Vahdat. Pers. communication, 2010.
[3] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and

S. Shenker. Ethane: Taking Control of the Enterprise. InProc.
SIGCOMM, pages 1–12, Aug. 2007.

[4] M. Casado, T. Koponen, D. Moon, and S. Shenker. Rethinking
Packet Forwarding Hardware. InProc. HotNets, Oct. 2008.

[5] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall,
G. Iannaccone, A. Knies, M. Manesh, and S. Ratnasamy.
RouteBricks: Exploiting Parallelism to Scale Software Routers. In
Proc. SOSP, pages 15–28, 2009.

[6] A. Greenberg et al. VL2: A Scalable and Flexible Data Center
Network. InProc. SIGCOMM, Aug. 2009.

[7] S. Kandula, S. Sengupta, A. Greenberg, and P. Patel. The Nature of
Datacenter Traffic: Measurements & Analysis. InProc. IMC, 2009.

[8] W. Kim, P. Sharma, J. Lee, S. Banerjee, J. Tourrilhes, S.-J. Lee, and
P. Yalagandula. Automated and Scalable QoS Control for Network
Convergence. InProc. INM/WREN, San Jose, CA, Apr. 2010.

[9] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. OpenFlow:
Enabling Innovation in Campus Networks.SIGCOMM CCR,
38(2):69–74, 2008.

[10] N. Mohan and M. Sachdev. Low-Leakage Storage Cells for Ternary
Content Addressable Memories.IEEE Trans. VLSI Sys.,
17(5):604–612, May 2009.

[11] T. Mori, M. Uchida, R. Kawahara, J. Pan, and S. Goto. Identifying
Elephant Flows Through Periodically Sampled Packets. InProc.
IMC, pages 115–120, Taormina, Oct. 2004.

[12] J. Naous, D. Erickson, G. A. Covington, G. Appenzeller,and
N. McKeown. Implementing an OpenFlow switch on the NetFPGA
platform. InProc. ANCS, pages 1–9, 2008.

[13] A. K. Nayak, A. Reimers, N. Feamster, and R. Clark. Resonance:
Dynamic Access Control for Enterprise Networks. InProc. WREN,
pages 11–18, Aug. 2009.

[14] sFlow.http://sflow.org/about/index.php.
[15] A. Tavakoli, M. Casado, T. Koponen, and S. Shenker. Applying NOX

to the Datacenter. InProc. HotNets, NY, NY, Oct. 2009.
[16] K. Thompson, G. Miller, and R. Wilder. Wide-Area Internet Traffic

Patterns and Characteristics.IEEE Network, 11(6):10–23, Nov. 1997.
[17] A. Tootoonchian and Y. Ganjali. HyperFlow: A Distributed Control

Plane for OpenFlow. InProc. INM/WREN, San Jose, CA, Apr. 2010.
[18] M. Yu, J. Rexford, M. J. Freedman, and J. Wang. Scalable

Flow-Based Networking with DIFANE. InProc. SIGCOMM, Aug.
2010.

