
The Web Interface Should Be Radically Refactored

John R. Douceur, Jon Howell, Bryan Parno
{johndo,howell,parno}@microsoft.com

Microsoft Research
Washington USA

Michael Walfish
mwalfish@cs.utexas.edu

Computer Science
University of Texas at Austin

Texas USA

Xi Xiong
xxx111@cse.psu.edu

Computer Science & Engineering
Penn State University

Pennsylvania USA

ABSTRACT

The Web API conflates two conflicting goals: serving devel-
opers by supporting a wide and growing suite of function-
ality, and providing applications with an isolated execution
environment. We propose to split the API into two levels of
interface: a low-level interface that governs the relationship
between the application and the browser, and a set of high-
level interfaces that govern the relationship between the ap-
plication and its developer. We delineate a tiny set of prop-
erties needed by the low-level interface. We argue that this
restructuring provides significant benefit to both developers
and users.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Net-
works]: Distributed Systems—Client/Server; Distributed applications; D.4.5
[Operating Systems]: Reliability—fault-tolerance
General Terms: Algorithms, Design, Experimentation, Performance, Reliability
Keywords: web procotol, programming interface

1 INTRODUCTION

A clean-slate refactoring of the web API can make web ap-
plications more robust and more useful. In fact, the very no-
tion of a web API is misleading: It conflates the interface
against which a developer writes a program with the interface
that defines how a program is executed by a client. By sepa-
rating these concepts, we enable more robust web clients and
richer web applications without losing the essential proper-
ties that make the web applications attractive.

The essential properties of the web give users a fluid, care-
free experience. Users confidently click on links to open un-
known apps, an idea that would be foolish for desktop apps.
Trying an app is easy, as is sharing or discarding it. Users
don’t update or patch apps; the apps retrieve their own code
and content as needed. And notwithstanding these contrasts
to the desktop, web apps are nearly as powerful and capable
as desktop apps are.

While these properties are essential, the current web
falls far short of achieving them optimally. The confidence

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Hotnets ’11, November 14–15, 2011, Cambridge, MA, USA.
Copyright 2011 ACM 978-1-4503-1059-8/11/11 . . . $10.00.

with which users click on links is sometimes misplaced, as
domain-isolation failures have been discovered and exploited
in most major browsers [3]. And though it is easy to try a
vanilla web app, many web apps require browser plug-ins,
which in turn require updating and patching just like desk-
top applications. The functionality of web apps is limited
by the web API’s access restrictions. And web apps cannot
incorporate the majority of the world’s legacy code and li-
braries [10], slowing the rate of app development.

These problems arise from the conflation between two dif-
ferent interfaces: One is the interface against which a devel-
oper writes a program, which we call the Developer Pro-
gramming Interface (DPI). The other is the interface that de-
fines how a program is executed by a client, which we call the
Client Execution Interface (CEI). The web API specifies a
single interface layer, forcing these two interfaces—serving
wildly different purposes—to be the same. Pressure to enrich
the DPI conflicts with the desire to make the CEI robust.

We propose an alternative web architecture in which the
CEI is as narrow and semantically simple as possible. Our
proposed CEI provides an app with an isolated native-code
execution environment [10] with primitive calls for memory
allocation, thread management, synchronization, and an IP-
layer network port. UI facilities are a raw frame buffer and
events for keyboard and mouse input. To support the web’s
notion of links, there is a call for launching other applica-
tions. Other than these low-level primitives, all functionality
is provided by libraries, each of which can export an arbitrary
DPI to application code.

A small-CEI web is a big improvement over today’s web.
Developers can stick with a library that implements today’s
DPI (HTML, JavaScript, and a couple popular plug-ins), or
they can substitute just about any other libraries and tools
they wish (C#, Python, GTK+). A small, simple CEI frees
developers from browser incompatibilities, so they can guar-
antee their users a consistent experience. A small, simple
CEI also enables a far more robust browser, evicting all rich
functionality out of the browser’s core to the untrusted appli-
cations themselves. A developer’s decision to incorporate a
vulnerable library has no effect on other applications.

These are significant benefits, but achieving them requires
addressing some important challenges. Our minimal CEI
specifies the client’s native instruction set, introducing an
issue of cross-architecture compatibility. Our low-level CEI

might curb opportunities for serendipitous extensions. A pro-
liferation of DPIs may interfere with communication and in-
terface consistency across applications. Functionality that is
currently resident on the client will instead be downloaded
as libraries, introducing performance concerns.

These challenges are readily addressable, leading to a sys-
tem that will provide a better web experience than today’s
web. Users will run arbitrary apps without risking the in-
tegrity of their systems, and will never need to make secu-
rity decisions about updating plug-ins. Developers will be
free to choose among arbitrary components and tools, and
will know their apps will behave consistently on users’ sys-
tems. Others have attempted [5, 14, 20] to pry apart the web’s
DPI and CEI, but our clean-slate approach goes farther, con-
strained only to preserve the fundamental properties of web
applications.

2 THE IRON PROPERTIES OF THE WEB

The web browser, once a simple viewer for static web pages,
has evolved into an operating system for dynamic web ap-
plications. The diversity and capability of web applications
have grown so dramatically that modern web applications
rival the breadth and functionality of desktop applications.
What has fueled this trend? Why do users find a browser to
be a better application platform than a traditional desktop?

Somewhere within the amalgamation of standards and
conventions that define ‘web application’, there must be
some key properties that make such applications attractive.
These important properties are unrelated to most of the de
facto web API, such as HTML, DOM, CSS, JPEG, PNG and
JavaScript. An entirely different set of web standards could
be just as attractive and successful, as long as it retained a
particular set of core properties.

Web apps are attractive because they are isolated, rich, on-
demand, and networked:

• Isolated: Web applications cannot unilaterally affect
other applications, so they are safe to try.

• Rich: Web applications are visually appealing, interac-
tively responsive, and semantically powerful.

• On-demand: Web applications do not require installa-
tion or OS configuration, so they are easy to test drive
and easy to point others to.

• Networked: Web applications make use of resources on
the web, so they can access and integrate a growing and
up-to-date set of disparate content.

These properties—which we call the IRON properties—
are individually necessary to preserve the attractiveness of
the current web. If web apps were not isolated or on-demand,
the increased risk or burden of trying out a new app would
reduce its rate of proliferation. If not networked, many inter-
esting web apps (online maps, electronic commerce, cloud
storage, etc.) could not function. A web of static pages, ab-
sent client-side execution, would not be very rich.

We further believe that these properties are jointly suf-
ficient to provide the user experience that makes web ap-

HTTP HTML

JavaScript

CSS PNG

JPG

...

C++ GTK+

Pango Cairo

FreeType

Fontconfig

Xt Xau

X

...

Zoog

impl.

(Fig 3)

HTTP HTML JS CSS JPG GIF Flash WMV...

DPI

CEI

HTTP

protocol

engine

JS

runtime

CSS

layout

engine

HTML

parser

JPG

decoder

Flash

runtime

GIF

decoder

WMV

codec

...

C
lie

n
t

Im
p

le
m

e
m

e
n

ta
ti
o

n

HTTP HTML JS CSS JPG GIF Flash WMV...

Web

application

C#

.Net

CLR

new CEI

Web Classic .Net GTK DPIs

CEI

Web

application

Web

application

Web

application

Web

application

Figure 1—The CEI of the conventional web is closely bound to its
DPI. A wide CEI puts much functionality on the client, where it
impedes DPI innovation and hampers isolation.

plications attractive to users. To demonstrate this, we are
constructing a minimal execution platform that satisfies the
IRON properties. We aim to show that this platform can sup-
port all of today’s web apps.

3 WEAKNESSES OF THE CURRENT WEB API
Although the IRON properties are what makes web appli-
cations attractive, the current web API actually weakens all
four of these properties.

Web apps are not strongly isolated, because the web API
is very broad. Not only does the API include rendering in-
terfaces for the suite of HTML standards (DOM, CSS) and
an execution interface for JavaScript, but it also de facto
includes interfaces to common image formats (GIF, JPEG,
PNG) and popular plug-ins (Flash, JVM). This broad API
is implemented via a large trusted computing base (TCB),
which has evinced numerous security vulnerabilities and ex-
ploits [15], weakening isolation.

Web applications are undoubtedly rich, but far less rich
than desktop applications. In large part, this is because desk-
top apps can build on a huge volume of existing code and li-
braries, written in arbitrary languages, and built using a wide
variety of toolchains. By contrast, only a small fraction of
legacy code is written in or translatable to a web-standard
language such as JavaScript, Flash bytecode, or JVM byte-
code [10].

The web API enables applications to be richer by taking
advantage of plug-ins, such as ActiveX controls and runtimes
for Flash and Java. However, this makes web apps less on-
demand, because these plug-ins require updates and patches.
Since the plug-ins are part of the TCB, this requires users
to make configuration decisions: “Please install a new video
codec” may be a quick route to malware infection. Attempts
to use plug-ins to deploy entirely new runtimes, such as Sil-
verlight, suffer from low uptake because they require user ac-
tion beyond merely clicking on a link. A complex API leads
to inevitable incompatibilities among browser implementa-

tions [11, 14], making the web less on-demand.
Web applications are restrictively networked by the web’s

same-origin policy (SOP), which restricts how a web app
communicates with sites other than the app’s origin. This
policy inhibits interesting classes of networked applications,
most notably peer-to-peer applications.

These weaknesses have been tackled before. Various re-
search efforts have attempted to improve isolation [9, 17,
20, 21], provide native-code support [10, 23], and reduce the
limitations of the SOP [1, 7]. However, the potential of these
approaches is limited by the constraints of the current web
API. Understandably, there is reluctance to change such a
popular API, because of legacy concerns and because of de-
veloper familiarity with the existing API. However, we argue
that the biggest problem is not so much changing the web
API but rather disentangling two concepts that are conflated
by the term “Application Programming Interface”.

4 DECONSTRUCTING THE WEB API
When a developer codes application-specific behavior into
a desktop application, she builds on both libraries and OS
system services. From her point of view, she writes the app
against a Developer Programming Interface (DPI). When a
client OS executes the application, it sees instructions that
occasionally call OS services; it does not distinguish the app
from its libraries. The client provides a Client Execution In-
terface (CEI). Typical desktop applications link dozens of li-
braries, making the DPI (e.g. GTK+) much higher-level than
the CEI (e.g. Posix).

For web applications, the DPI and CEI are commonly
identical1: The developer writes JavaScript or Flash, manip-
ulates HTML and CSS, and presents JPEG or PNG images.
Each of these features is implemented by the client browser,
making the CEI equal to the DPI. See Fig. 1.

These two interfaces need not be identical; the CEI merely
needs sufficient functionality to satisfy the IRON properties
and to support code that implements the DPI. Otherwise, the
CEI should be as small as possible: A small CEI makes ap-
plications more strongly isolated because it reduces the size
of the shared TCB, thereby minimizing opportunities for se-
curity vulnerabilities across applications. A CEI that enables
native-code execution, a la Xax [10] or Native Client [23],
supports richer applications by allowing the reuse of extant
code, libraries, and toolchains (see Fig. 2). With a small CEI,
all rich code is outside the TCB, so applications can intro-
duce new rich behavior without involving user configuration
decisions, thus staying on-demand.

5 A MINIMAL CEI FOR THE WEB

In this section, we describe our specific proposal for a small,
simple CEI, which we call Zoog. (See Fig. 3). We model the
client as merely a tiny hosting center for applications: Ev-
ery application is written in native-code, controlled entirely
by the authoring vendor, and other applications may affect it
1Although toolkits such as GWT provide a higher-level DPI.

HTTP HTML

JavaScript

CSS PNG

JPG

...

C++ GTK+

Pango Cairo

FreeType

Fontconfig

Xt Xau

X

...

Zoog

impl.

(Fig 3)

HTTP HTML JS CSS JPG GIF Flash WMV...

DPI

CEI

HTTP

protocol

engine

JS

runtime

CSS

layout

engine

HTML

parser

JPG

decoder

Flash

runtime

GIF

decoder

WMV

codec

...

C
lie

n
t

Im
p

le
m

e
m

e
n

ta
ti
o

n

HTTP HTML JS CSS JPG GIF Flash WMV...

Web

application

C#

.Net

CLR

new CEI

Web Classic .Net GTK DPIs

CEI

Web

application

Web

application

Web

application

Web

application

Figure 2—Explicitly decoupling CEI from DPI unbridles innova-
tion among DPIs and admits a small Trusted Computing Base.

only through network communication. This section describes
the model in more detail, organized by how it addresses the
IRON properties.

5.1 Support for Isolated Applications

In any system, the trusted computing base (TCB) is the por-
tion that the designers are forced to assume is correct: In
our context, bugs in the TCB compromise isolation. To min-
imize this danger, we want a small TCB, which implies that
we also need a small CEI, since the CEI is implemented by
the TCB. Indeed, the goal of TCB minimality pervades the
design: Each CEI feature we introduce is both necessary to
achieve IRON applications and essentially minimal.

The smallest TCB, and hence CEI, that we can imagine for
isolating application execution is a microkernel. Microker-
nels can both isolate applications and give those applications
access to low-level hardware features. The question that we
answer in the subsections below is what types of calls the
microkernel should expose to enable IRON applications.

5.2 Support for Rich Applications

In Zoog, application execution is expressed as a program in
the client’s native instruction set, running multiple threads in
an isolated address space. This portion of the CEI requires
about six calls for memory allocation, thread creation, and a
futex-like scheduling primitive.

In support of rich user interaction, the CEI provides a low-
level frame buffer. It also includes an overlapping window
manager capable of labeling windows with application iden-
tity, providing a focusing gesture and feedback, and direct-
ing user keystrokes to the focused window. These are the
simplest primitives necessary for the TCB to provide a path
between the user and each application.

The display manager, which is also part of the TCB, may
also interpret some user gestures (e.g., copy-paste, drag-and-
drop) to convey cross-application user intent to the partici-
pating applications [18, 24]. Altogether, we anticipate about
ten calls in support of display primitives.

5.3 Support for On-demand Applications

The web is on-demand because the user can click a link,
and an app just appears. Today, the browser must identify
the origin of each application, whether it was launched via
link, opening a window, navigating the window.url prop-
erty, or another method. Each additional mechanism compli-
cates reasoning about isolation.

Zoog simplifies and secures application launch: One ap-
plication launches another with a single call specifying an
executable string of bits plus a cryptographic signature tying
those bits to the launched application’s identity. Most of the
burden of launching is shifted to the participating applica-
tions: the launching app must fetch the launched app’s boot
loader,2 and the launched app must bootstrap itself from the
small boot loader.

The primary use of application identity in Zoog is to label
windows to achieve trustworthy visual disambiguation [2].
The launch call strongly associates every app with a public
key; a PKI maps keys to human-readable names which la-
bel windows. Visual disambiguation enables a user, before
he types his bank password, to verify that he is typing into
the bank’s application, not a malicious app displaying the
bank’s logo. Our approach is a useful step, but the problem
of dealing with visual ambiguity is deep and unsolved.

5.4 Support for Networked Applications

Any CEI that allows an unvetted application to communicate
must prevent that connectivity from exploiting (1) other apps
on the same host, (2) other hosts nearby on the network, and
(3) other hosts across the internet.

For protecting apps on the same host, the current web API
imposes complicated restrictions on inter-domain communi-
cation that admit subtle flaws [22]. By contrast, Zoog pro-
vides no cross-app communication other than a layer-3 net-
work interface, which introduces seven CEI calls to support
zero-copy packet I/O. All higher-layer network processing
and message handling is the responsibility of a DPI library.
Since the only way a malicious app can attack a target app is
by sending packets, the case of another app on the same host
reduces to the case of another machine on the internet.

For protecting other hosts nearby on the network, the web
has evolved a complicated policy called the Same-Origin
Policy (SOP). It allows an application to communicate with
its origin server but disallows access to other servers, thereby
preventing apps from exfiltrating data from delicate intranet
servers to hosts outside the firewall. Because the pure SOP
is too restrictive for many applications, there are exceptions

2The launching app and the launched app’s server must agree on a boot-
block fetch protocol, but that’s outside the CEI and can evolve without
updating clients.

communication

TCB (§5.4)communication trusted-path user interface (§5.2)

microkernel / host OS (§5.1)

memory

allocator
scheduler

framebuffer,

overlapping

windows

focus

& label
PKI for labels

keyboard &

pointer input

tear-off gesture

communication

gestures

IPv6 allocation

(IPv4 NAT)

Layer 3 router

(§5.4)

NIC device

driver

process launch

(§5.3)

high seas /

consent

Figure 3—The Zoog CEI design is guided by the shape it imposes
on the client implementation, shown here. Dark regions are part of
the safety TCB; vulnerabilities in these modules can compromise
the safety of every application. Light regions also implement the
CEI, but failures only affect liveness: A failure in the network stack
is no worse than a failure of the next-hop router.

for displaying images and executing scripts from any site, al-
though not for reading the image or script content. The rea-
sonableness of these exceptions is called into question by
standards such as JSON that encode data as script, specifi-
cally working around SOP restrictions.

Because of these complex exceptions, it is not possible to
implement the SOP in a browser without incorporating very
high-layer knowledge about HTTP, MIME, JavaScript, the
DOM, and even image decoding. Since this would vastly
complicate the CEI, Zoog takes a radically different ap-
proach: Each application’s IP pipe is connected logically out-
side any firewall; therefore, there are no other host nearby on
the network. To implement this arrangement, the web client
requires a mechanism to ensure that packets are routed to
outside the firewall. We envision the client acquiring network
access from a modified DHCP server or internet proxy that
vouches its connection is high-seas. Any app that needs ac-
cess to firewalled enterprise resources establishes its own se-
cured connection from logical outside, analogous to the use
of a VPN from a remote host.

For protecting other hosts on the internet, the threat is not
in packet content but in packet volume: An attacker can lever
many clients’ resources to mount a DDoS attack. To protect
against this threat, a Zoog client enforces correct source ad-
dresses in outgoing packets, and it can also employ source-
side throttling mechanisms [8].

6 BENEFITS

6.1 A Clean CEI Frees Developers

Today’s web DPI restricts developers to the HTML/CSS/
JavaScript stack or a few plug-in alternatives, such as Flash
or Java. The developer must test on four different brands
of browser, as the wide interface is not consistently imple-
mented. With Zoog, a developer can stick with this same
DPI, but need only test against the one browser library in-
corporated into the application.

Even better, developers are free to program against other

DPIs, such as C#/.Net or C++/GTK/X. Technologies and
toolchains may evolve independently and compete exclu-
sively on their merits to developers. For instance, a devel-
oper can target a new version of Flash without waiting for
the Flash runtime to be adopted explicitly by end users.

6.2 A Clean CEI Improves Robustness

The Zoog CEI pushes innovation from the client to the devel-
oper’s side of the interface. This philosophy keeps the TCB
small and evolving slowly. Prior research [6, 13, 19] sug-
gests that the components in §5 might be implemented so
compactly that formal verification is feasible [12].

A robust TCB fulfills the promise of isolation, that users
need not worry whether it is safe to click a link. Users will
still face authorization decisions, but at higher levels of ab-
straction, inside applications.

6.3 A Clean CEI Improves Predictability

Strong isolation offers predictability to developers. An app
will not be affected by the presence of other applications on
a client machine, because the CEI provides no opportunity
for the user to approve a unilateral violation of isolation. In-
stead, the developer can be certain that any interactions with
outside applications occur through channels that the app ex-
plicitly supports.

7 CONSIDERATIONS

This proposal changes a number of aspects of today’s web,
raising questions to answer and issues to consider.

7.1 Cross-Architecture Compatibility

Being minimal and low-level, our proposed CEI appears to
lack a benefit of today’s web API: Zoog assumes that ap-
plications provide executable code in the client machine’s
instruction set and thus has a binary format dependency.

This problem can be addressed with several mechanisms
of competing merits. For example, vendors starting with C or
C++ applications can compile for several architectures. A de-
veloper writing code in a managed language (Java, C#, Flash,
JavaScript) can depend on the runtime supplier to transpar-
ently provide an appropriate architecture-specific implemen-
tations. LLVM can bring the same benefit even to C/C++
sources [23]. Binary rewriting works without help from the
compiler toolchain.

The problem must be addressed, but by leaving its solution
to a layer above the web’s CEI, the CEI itself stays cleaner
and exerts fewer constraints on the developer.

7.2 Mashups and Serendipitous Extension

A benefit of today’s open web API is that third parties can
arrive, inspect the client-server traffic, and create a new ap-
plication or service that interacts with the original. In Zoog,
the CEI no longer forces specific client-server protocols. We
doubt this will ruin serendipitous enhancement. The few ap-
plications that would obfuscate in Zoog are obfuscating to-
day in JavaScript. The majority of applications that stumble

into standard serialization protocols (XML, JSON) included
in today’s DPI will continue to do the same or an equivalent
(e.g., Python pickles or Java RMI).

7.3 Navigation and History

Today’s browser is so named because it provides the user
model of navigating through pages of disparate content, with
facilities like history and coloring of visited links. In Zoog,
navigation facilities are encoded as a protocol between par-
ticipating applications, not specified by the CEI. A parent
tells the child its identity, and when the user clicks a link in
the child, the child asks the parent to destroy it and launch
the new app in its place. Another protocol lets a user-trusted
history aggregator render links for participating applications.
Apps agree voluntarily to such protocols and to the degrees
of information they share with other apps.

7.4 Adversarial Vendor Relationships

Who has the final say about how applications behave? The
conventional answer is the user: She can flip a browser pri-
vacy setting, or install AdBlockPlus or NoScript, to control
application behavior even when it is adversarial. Zoog takes
the opposite stance, giving developers the final say.

The merits of the conventional approach are well-
understood; what are the costs? When application behavior is
ultimately determined by the user, then when that configura-
tion breaks, only the user can repair it. A naı̈ve user installing
an extension may not anticipate or diagnose its negative in-
teractions with other applications.

We hope that most vendors will behave non-adversarially.
For exceptions, a third party can offer a “wrapper” service
that interposes on the adversarial vendor. This is similar to
the sort of system-wide extension a user can install today,
but it affects only a single application. More importantly, its
presence is clear to the user, because the user must provide
the interposing service with his credentials for the adversar-
ial service. We hope this escape valve is used rarely, since it
erodes the benefits of developer predictability (§6.3).

7.5 Cross-Application Communication

Although the foundation of an IRON platform is isolation,
applications will want to interact, as today’s desktop soft-
ware does. We wish to enable this interaction without widen-
ing the CEI and eroding isolation.

Since Zoog provides no communication other than net-
work communication, we imagine reinventing conventional
desktop application communication patterns as network pro-
tocols. Each application may independently decide whether
to accept the risk of implementing a given protocol, and it
may select the protocol implementation that best balances
functionality against security.

7.6 Performance

The Zoog CEI seems to imply that every web page must
download a whole browser. However, we anticipate that there

will be only a few common runtime stacks across most ap-
plications. By using content-based naming, a cache of these
components can be shared while isolating execution [4]. Any
app that uses an uncommon stack will incur an initially long
load time, but this is far less of a penalty than an app faces
today if it relies on an uncommon plug-in.

8 RELATED WORK

Java was an early purpose-built CEI. However, it was not
very small, including the JVM and a growing set of security-
sensitive libraries. Java also restricted developers to its own
toolchain, which took years to mature.

The first project to propose a narrower CEI for today’s web
was Tahoma [5], which suggested a hardware virtual ma-
chine (VM) interface for web applications. Tahoma admitted
arbitrary DPIs, but made no effort to characterize a minimal
CEI. The Tahoma paper is mute on whether to preserve the
SOP (which would confound the architecture’s simple isola-
tion story) or somehow replace it.

Xax [10] and NaCl [23] demonstrate that rich, desktop-
evolved DPIs can run on very small CEIs. These projects
make no effort to identify a minimal CEI; instead, they ex-
pand the web CEI with yet another content container. Draw-
bridge [16] makes no claim to reshape the web, but shows a
very rich DPI (Windows) running on a small CEI. We con-
sider these projects evidence that one well-chosen narrow
CEI admits a wide variety of DPIs.

Another school of research [9, 17, 20, 21] refactors the
browser into a trusted kernel and untrusted rendering com-
ponents, narrowing the TCB while keeping the conventional
web DPI. This TCB could evolve into a refactored CEI as im-
plementations admit new DPI code above their TCBs. How-
ever, to remain strictly web-compatible, a CEI must enforce
convoluted rules (§5.4) that cross software layers (network-
ing, script execution, font rendering, etc.), which limits how
small such a TCB may become. We advocate a much more
severe refactoring that admits a tighter CEI and admits a
broader variety of DPIs.

Chrome is a good example of the difficulty of cleaning up
the web CEI abstraction: Chrome defends the host machine
with a strong outer boundary. Protection between adversarial
web principals within the same tab and against attacks ex-
ploiting the host’s network position (SOP) come only from
a weaker “inner” boundary whose design is contaminated by
the layer-crossing violations of the web’s CEI.

Atlantis also separates DPI from CEI [14]. It uses a mi-
crokernel analogy to describe its CEI, and then reconstructs
the complexity of existing browsers’ rendering components
above the CEI. The Atlantis CEI, however, uses a high-level
computation model (an AST-based logical machine) and
high-level UI primitives (renderText, renderWidget). At-
lantis allows extension of the browser-like DPI, but cannot
support diverse runtimes (e.g., C#, Java, C++, Python).

In contrast with these proposals, we argue for a CEI (§5)
smaller and much closer to the raw hardware. This choice

both enables implementations with smaller TCBs, and a ad-
mits a wider variety of DPIs. This choice is only feasible
if we also abandon the web SOP; our high-seas networking
(§5.4) is a novel alternative that solves the same problems
without introducing high-level abstractions into the CEI.

9 SUMMARY AND CONCLUSION

The web is attractive as an application platform because it
satisfies the IRON properties. By separating the web’s Devel-
oper Programming Interface from its Client Execution Inter-
face and making the latter as small as possible, we can enable
developers to choose arbitrary toolchains, and we can im-
prove the robustness and predictability of web applications.

REFERENCES
[1] Adobe. Cross-domain policy file specification. http://www.adobe.com/

devnet/articles/crossdomain policy file spec.html.
[2] S. Chen, J. Meseguer, R. Sasse, H. J. Wang, and Y.-M. Wang. A systematic

approach to uncover security flaws in GUI logic. In IEEE Symp. on Security and
Privacy, 2007.

[3] S. Chen, D. Ross, and Y.-M. Wang. An analysis of browser domain-isolation
bugs and a light-weight transparent defense mechanism. In ACM Computer and
Communications Security, 2007.

[4] C. Collberg, J. H. Hartman, S. Babu, and S. K. Udupa. Slinky: static linking
reloaded. In USENIX ATC, 2005.

[5] R. S. Cox, S. D. Gribble, H. M. Levy, and J. G. Hansen. A safety-oriented
platform for Web applications. In IEEE Symp. on Security and Privacy, 2006.

[6] N. Feske and C. Helmuth. A Nitpicker’s guide to a minimal-complexity secure
GUI. In IEEE ACSAC, 2005.

[7] I. Fette. The WebSocket protocol. http://tools.ietf.org/html/draft-
ietf-hybi-thewebsocketprotocol, 2011.

[8] J. M. Gregory, G. Prier, and P. Reiher. Attacking DDoS at the source. In IEEE
ICNP, 2002.

[9] C. Grier, S. Tang, and S. T. King. Secure web browsing with the OP web browser.
In IEEE Symp. on Security and Privacy, 2008.

[10] J. Howell, J. R. Douceur, J. Elson, and J. R. Lorch. Leveraging legacy code to
deploy desktop applications on the web. In USENIX OSDI, 2008.

[11] E. Kıcıman and B. Livshits. AjaxScope: A platform for remotely monitoring the
client-side behavior of Web 2.0 applications. In ACM SOSP, 2007.

[12] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, K. En-
gelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4:
Formal verification of an OS kernel. In ACM SOSP, 2009.

[13] J. Liedtke. Toward real microkernels. CACM, 39(9):70–77, Sept. 1996.
[14] J. Mickens and M. Dhawan. Atlantis: Robust, extensible execution environments

for Web applications. In ACM SOSP, 2011.
[15] NIST Vulnerability Database. http://nvd.nist.gov/nvd.cfm.
[16] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and G. C. Hunt. Rethink-

ing the Library OS from the Top Down. In ACM ASPLOS, 2011.
[17] C. Reis and S. D. Gribble. Isolating Web Programs in Modern Browser Archi-

tectures. In ACM EuroSys, 2009.
[18] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J. Wang, and C. Cowan. User-

driven access control: Rethinking permission granting in modern operating sys-
tems. Technical Report MSR-TR-2011-91, Microsoft Research, Aug. 2011.

[19] J. S. Shapiro, J. Vanderburgh, E. Northup, and D. Chizmadia. Design of the
EROS Trusted Window System. In USENIX Security Symposium, 2004.

[20] S. Tang, H. Mai, and S. T. King. Trust and Protection in the Illinois Browser
Operating System. In USENIX OSDI, 2010.

[21] H. J. Wang, C. Grier, A. Moshchuk, S. T. King, P. Choudhury, and H. Venter.
The multi-principal OS construction of the Gazelle web browser. In USENIX
Security Symposium, 2009.

[22] Z. Weinberg, E. Y. Chen, P. R. Jayaraman, and C. Jackson. I still know what
you visited last summer: User interaction and side-channel attacks on browsing
history. In IEEE Symp. on Security and Privacy, 2011.

[23] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S. Okasaka,
N. Narula, and N. Fullagar. Native client: A sandbox for portable, untrusted
x86 native code. In IEEE Symp. on Security and Privacy, 2009.

[24] K.-P. Yee. Aligning Security and Usability. IEEE Security and Privacy, 2(5):48–
55, September 2004.

http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html
http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html
http:// tools. ietf.org / html/ draft-
ietf-hybi- thewebsocketprotocol

	1 Introduction
	2 The IRON properties of the web
	3 Weaknesses of the current web API
	4 Deconstructing the web API
	5 A minimal CEI for the web
	5.1 Support for Isolated Applications
	5.2 Support for Rich Applications
	5.3 Support for On-demand Applications
	5.4 Support for Networked Applications

	6 Benefits
	6.1 A Clean CEI Frees Developers
	6.2 A Clean CEI Improves Robustness
	6.3 A Clean CEI Improves Predictability

	7 Considerations
	7.1 Cross-Architecture Compatibility
	7.2 Mashups and Serendipitous Extension
	7.3 Navigation and History
	7.4 Adversarial Vendor Relationships
	7.5 Cross-Application Communication
	7.6 Performance

	8 Related Work
	9 Summary and conclusion

