
Toward Software-Defined Middlebox Networking

Aaron Gember, Prathmesh Prabhu, Zainab Ghadiyali, Aditya Akella
University of Wisconsin-Madison, Madison, WI, USA

{agember,pprabhu,zainab,akella}@cs.wisc.edu

ABSTRACT

Current middlebox (MB)managementmechanisms are clumsy

and unsuitable for taking full advantage of new MB deploy-

ment models and diverse MB functionality. Instead, we ad-

vocate for mechanisms that help exercise unified control over

the key factors influencing MB operations. Our goal is to re-

alize a software-defined MB networking framework to sim-

plify management of complex, diverse functionalities and

engender rich deployments. We discuss the major challenges

that arise—representing, manipulating, and knowledgeably

controllingMB state—and we present initial thoughts on the

appropriate abstractions and interfaces to address them.

Categories and Subject Descriptors

C.2.3 [Computer-CommunicationNetworks]: NetworkOp-

erations—Network management

General Terms

Design, Management, Standardization

1. INTRODUCTION

Middleboxes (MBs) are a crucial part of many enterprise

LANs, data centers, and clouds, enabling enterprises to en-

sure security, improve performance, and meet other sophisti-

cated goals. MBs fill a unique and important role in the net-

work: unlike networking equipment (e.g., switches), MBs

do more than just routing1, offering a variety of innovative

functions. Yet, MBs are not as general as application servers,

as MBs focus solely on examining and modifying traffic.

Recently, several new trends inMB deployment have arisen.

First, SDN has enabled MBs to be deployed at arbitrary lo-

1Modern switches tend to be powerful enough to also fulfill MB-
like roles, but this is not the equipment’s primary purpose.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Hotnets ’12, October 29–30, 2012, Seattle, WA, USA.
Copyright 2012 ACM 978-1-4503-1776-4/10/12 ...$10.00.

cations in LANs and data centers [2], no longer limiting

placement to network choke points. In some cases, MBs

can even be implemented within the SDN itself (e.g., chang-

ing IPs/ports like a NAT); although, the lack of support for

more complex MBs, such as those performing deep-packet

modification (e.g., WAN optimizers), means many MBs will

remain separate. Second, while MBs used to be deployed as

physical appliances or dedicated servers, MBs are now be-

ing deployed in a variety of additional forms: as VMs, in

hypervisors, on arbitrary end-hosts [4], and as collections of

processes [9]. Both of these trends lend themselves towards

a more dynamic model of MB deployment, e.g., launching

new MB VMs when network load is high [5].

Several factors influencing MB operations are crucial to

manage in such a dynamic setting. MBs must receive the

correct traffic, e.g., all inbound packets, and be configured

with the correct policies, e.g., firewall accept/drop rules, to

provide the intended enhancements. Additionally, changes

in a deployment, e.g., switching the MB a flow traverses due

to MB scaling, requires careful control over the data main-

tained byMBs’ internal logic, e.g, the state of a TCP connec-

tion, to ensure correct MB behavior. Ignoring one or more

of these aspects could have drastic consequences.

Today, each of these factors influencing the operations

of a dynamic MB deployment—configuration, traffic flow,

and internal data—is managed through ad hoc point mech-

anisms, including by-hand tweaking. This clumsy manage-

ment approach primarily results from the diversity of MBs

in enterprises [9] and the unique configuration and tuning

each requires. Moreover, this approach makes it difficult to

leverage new MB deployment models and diverse MB func-

tionality to enrich application deployments in sophisticated

ways (see examples in §2.1). Mechanisms that help exercise

unified control over all the factors can rectify this key issue.

Currently, no framework for unified control exists. SDN

provides a unified approach to control plane management fo-

cusing mainly on controlling traffic flow [6, 8]. Frameworks

like Stratos [5] address the ordering of MBs and load distri-

bution. However, little progress has been made with regard

to controlling the state—internal data, configured policies,

etc.—associated with MBs (SIMCO [1] is the closest).

Our ultimate goal is to realize an SDN-like framework for

1

MB management. Akin to how SDN has vastly simplified

control plane management and led to a variety of innovative

new applications for network control, a software-definedMB

networking framework that facilitates unified control can sim-

ilarly simplify management of complex, diverse functionali-

ties and engender rich, new applications. The key issues for

MBs, however, are that it is not clear what unified control

entails, to what extent it is possible, and how to achieve it.

In this paper, we examine in depth the issues relating to

a software-defined MB networking framework. We present

several dynamic scenarios, and classify theMB state involved,

to illustrate the major challenges that we believe need to be

addressed: representing, manipulating, and knowledgeably

controlling MB state (§2). We first explore the challenges

in representing MB state, proposing an abstraction based on

the inherent mapping of state to protocol header fields as

a mechanism for dealing with internal, shared, and diverse

state (§3). Next, we discuss the issue of state manipulation,

highlighting the need for a broad interface that enables ma-

nipulation of most MB state while keeping a sufficient level

of control in the hands of MBs themselves; we argue that

a properly detailed event abstraction is a necessary comple-

ment, allowing MBs to expose their internal state changes

and request missing or updated state (§4). Finally, we de-

scribe how specific control logics might utilize these inter-

faces and abstractions to achieve sophisticated control over

MB deployments (§5).

2. BACKGROUND AND CHALLENGES

2.1 Illustrative Examples

We begin by outlining a few scenarios where the need for

unified control of the state associated with MBs is evident:

VirtualMachine (VM) Provisioning. Enterprises have spe-

cific security and performance requirements for each appli-

cation server. Traditionally, when a server is deployed, MBs

are statically configured to meet these requirements. As data

centers become entirely VM-based, server changes occur

more frequently and MB management becomes a major bur-

den. Thus, MB control should happen automatically and in

concert with VM provisioning and migration: instantiating

new server-specific policies, e.g., firewall rules; migrating

MB state to ensure consistent, correct examination and mod-

ification of server traffic; verifying existing MB policies will

not conflict with server requirements.

MB Scaling. The traffic load imposed on MBs will change

over time, especially in cloud environments, motivating dy-

namic provisioning of MBs. While instantiating the neces-

sary compute resources and network forwarding paths is im-

portant [5], ensuring proper handling of MB state is also cru-

cial. MB state must be controlled at fine granularity2 to al-

low rebalancing of load during scale up—e.g., policies must

2Wrapping each MB, and its state, in a VM limits our choice of
deployment models and the extent to which scaling is beneficial.

Middlebox State

Firewall Rules; Connection records {IP-tuple, seq #s, status}
NAT Mappings {timer, internal IP-tuple, external IP-tuple};

Port forwarding rules; Timer duration; External address

Load
Balancer

Mappings {timer, destination, IP-tuple}; Destinations;
Balancing algorithm; Load measurements; Granularity

Redundancy
Elimination

Chunk cache; Fingerprinting algorithm; Cache size; Re-
placement policy

Intrusion
Prevention

Connection records {timer, IP-tuple, status, payloads, seq
#}; Rules; Pattern-matching algorithm; Alert level

Table 1: State associated with several common types of MBs

(IP-tuple includes addresses, ports, and protocol)

be replicated or split—and merging of MBs during scale

down—e.g., per-flow state must be aggregated.

Live NetworkMigration. The virtualization of compute re-

sources and networks, along with newMB deploymentmod-

els, makes live migration of an entire application deployment

possible. Such migrations require seamless MB operations

and consistent MB performance throughout the migration

(e.g., from a private data center to a public cloud). Some mi-

grations may necessitate complexMB changes: e.g., a phys-

ical MB appliance may be split into several MB VMs or the

entire network topology may change. These all require care-

fully dividing and migrating MB policies and internal data

at the right time and between the right MBs.

Current ad hoc point mechanisms for managing dynamic

MB deployments make supporting these scenarios complex

and, in some cases, impossible. Moreover, deep, flexible

control of layer 3-7 network services is a crucial component

of an entirely software-defined data center.

2.2 Classification of MB state

Before delving further into the problem of unified control,

we describe MB state in more depth.

MBs rely on complex and diverse state for proper oper-

ation. A single MB may receive dozens of “configuration”

inputs, and its internal logic may maintain detailed records

for thousands of flows. Moreover, the state a MB requires

for operation varies significantly across MB types (and ven-

dors), as shown in Table 1. In contrast, a network depends

only on the forwarding information bases (FIBs) for proper

traffic forwarding, which, in SDNs, is created and managed

by a controller running SDN applications. Note that MB

state will continue to increase in diversity and complexity as

new MB functionality emerges and competing MB vendors

try to specialize their offerings.

Pieces of MB state can be classified along several possible

dimensions—source, structure, fluidity, etc.—but we believe

the most salient classification is based on the role the state

plays in a MB’s operation. Accordingly, we divide MB state

into four classes, listed and defined in Table 2. Each class

of state has several properties: Some MB state is provided

as external “configuration” input, while other state is created

and manipulated by a MB’s internal logic during operation.

Some MB state pertains to specific flows3, while other state

3Flow may refer to a transport connection, an application session,
a source/destination pair, or any another traffic subset.

2

is shared by all, or an unknown subset of, traffic. Finally,

for a specific type of MB, some classes of state have many

possible structures and meanings while others have few.

We argue that it is crucial, and possible, to control two

of the four classes—action and supporting—since both are

critical to a MB’s operation; hereafter MB state refers to

these two classes. We don’t consider designing control over

tuning state because: (i) A MB could rely on a default or

simpler form of tuning state—albeit at the cost of efficiency

and performance—and still perform its basic operations cor-

rectly. (ii) Tuning state tends to bemore fine-grained, vendor-

specific (i.e., has many forms), and consistent over long time-

scales, making it more appropriate to manage this state out-

of-band. Similarly, we eschew monitoring state because it’s

primarily intended for observing and tweakingMB behavior.

2.3 Three Challenges

Given an understanding of what is amenable to unified

control, we argue that there are three major challenges that

must be addressed in achieving this control and moving to-

wards a model of software-defined MB networking.

1. How do you view and interpret MB state?

2. How do you manipulate what state exists and where?

3. How do you make informed state control decisions?

While these challenges are similar to those faced by SDN,

addressing these challenges for MBs is harder due to the di-

versity and complexity of MBs. We discuss these issues in

more depth in the sections that follow, and we present ini-

tial thoughts on the appropriate abstractions and interfaces

that help address them. Additional challenges that require

further research are discussed in §7.

3. STATE REPRESENTATION

We believe that viewing and interpreting MB state is one

of the foremost issues in unified control: we need to know

whatwe are controlling beforewe try to control it. However,

there are several challenges in doing so:

• Some state is established and manipulated by a MB’s

internal control logic, causing the structure of this state

to only be known to the MBs themselves. Such con-

cealment arises from both vendors’ desire to protect

intellectual property and the disregard for this state in

ad hoc MB management.

• Some state is shared by all (or an unknown subset of)

flows and impacts the MB’s operations on all of these

flows. This conflicts with the per-flow operations com-

mon in applications and the network.

• There is high diversity in the structure and semantics of

state across several types of MBs. This diversity leads

to complexity if not properly contained.

We believe these challenges can be addressed by exposing

the right abstraction for viewing and interpreting MB state.

The abstraction should hide the intricacies of individual MB

Source Destination Proto Other Action

10.10.0.0/16 * TCP dport 22 ACCEPT
* 10.20.1.0/24 TCP dport 80 ACCEPT
* * TCP state ESTABLISHED ACCEPT

(a) Rules (Action)

SrcIP DstIP Proto SPort DPort State

10.10.54.51 10.20.1.23 TCP 12983 22 ESTABLISHED
10.10.12.37 192.168.0.2 TCP 25483 22 SYN RCVD
192.168.0.1 10.20.1.73 TCP 52342 80 ESTABLISHED

(b) Connection Records (Supporting)

Table 3: Action and supporting state for a firewall

offerings while still allowing for specialization between MB

types and vendors.

Fortunately, an inherent commonality exists in the oper-

ations of many MBs that can aid the formation of such an

abstraction: many MB operations are a function of the val-

ues in packet headers. For example, a stateful firewall cre-

ates and updates connection records for each flow based on

the values in the network- and transport-layer headers of re-

ceived packets (Table 3b). Likewise, the decision to accept

or drop a packet is based on these header values4 (Table 3a).

These are akin to SDN’s use of protocol header fields to de-

fine forwarding behaviors.

3.1 View Abstraction

We propose an abstraction that leverages this inherent map-

ping of state to protocol header values to provide a myopic

view of the complex and detailed state associated with a

MB. The view abstraction (Figure 1) uses pertinent proto-

col header fields as a key for each distinct chunk of action

and/or supporting state. Figures 2 and 3 show examples of

state encoded using this abstraction.

The key is carefully constructed to identify exactly the

traffic subsets to which a piece of state applies. A basic 5-

tuple (source/destination network addresses, transport pro-

tocol, and source/destination transport ports) is a sufficient

key for most state, but the protocol fields that form the key

are flexible. Defining keys in this way enables us to leverage

the ubiquity of common protocols to counteract MB diver-

sity. Moreover, it provides an inherent hierarchy (e.g., IP

addresses are hierarchical by design) for identifying subsets

and supersets of state.

Action state is more challenging to represent because of

its intrinsic tie to MBs’ internal logic. For example, ac-

tion state for firewalls is accept/drop rules, while action state

for NATs is a mapping from public addresses/ports to pri-

vate addresses/ports. We could represent action state as a

binary blob. However, this would make creation and ma-

nipulation of action state complex because of the need for

a deep understanding of MB semantics for the target MB.

Instead, we propose to represent action state as a transfor-

mation function that changes specific packet header fields to

new constants (or discards the packet). This more generic

4Along with extra values calculated or inferred by the MB, e.g.,
TCP connection state.

3

Class Definition Intrusion Prevention

(IPS) Example

Internal/

External

Shared/

Per-Flow

Many/

Few Forms

Should

Manage

Action Defines operations to apply to packets/flows Rules Both ? Few Yes

Supporting Helps decide between multiple possible actions Connection Records Internal Both Many Yes

Tuning Tunes MB algorithms for performance, efficiency, etc. Alert level External Shared Many No

Monitoring Quantifies MB operations Packet counters Internal Both Many No

Table 2: Classes of MB state, and its properties

Figure 1: Abstract view of MB state

representation can encode most of the actions of firewalls,

NATs, load balancers, and (partially) IPSs, which are among

the most common MBs [9]. MBs with different operational

semantics require alternative representations of action state,

which we leave for future investigation.

Supporting state is always represented as a binary blob,

since its structure depends on a MB’s deep internal logic.

In special cases, where the structure of the binary blob is

known, the blob may be analyzed by logic external to the

MB, but the blob should never be changed by external logic

to avoid inducing unintended MB behavior.

Note that by basing our view abstraction primarily on pro-

tocol header fields, we provide a mechanism for encoding

only per-flowMB state. SharedMB state is muchmore chal-

lenging to represent because it is unclear how this state might

be controlled. For example, the cache on a redundancy elim-

ination (RE) MB is shared across all flows and synchronized

between source and destination RE MBs; it is unclear how

an RE MB’s cache should be changed to ensure redundancy

is correctly removed and restored when a flow is re-routed

through a different RE MB. Therefore, our current state ab-

straction exposes all shared state as a single binary blob.

Takeaways. The internal or shared nature of some MB state

makes representing MB state challenging. A view abstrac-

tion provides a uniform and well-structured representation

of diverse MB state for the purposes of examining, defin-

ing, and facilitating migration of data that influences MBs’

behavior. It does not entirely solve the challenge of how to

manipulate what MB state exists and where; we address this

challenge in the next section.

4. STATE MANIPULATION

Influencing a MB’s behavior requires manipulating the

state residing at the MB.5 Today, this manipulation can only

occur through narrow, MB-specific configuration interfaces.

Moreover, these interfaces exclude significant subsets of state

that are established and leveraged by theMB’s internal logic.

This limited interface severely constrains the flexibility and

potential sophistication of a MB deployment: e.g., a flow’s

packets must traverse the same IPS for the duration of the

flow because a record of the connection, required for proper

5A MBs’s behavior can also be influenced through changes in its
internal logic, but we assume this is fixed.

attack detection, cannot be moved between IPSs. We argue

that MBs should expose a broad state manipulation interface,

complementary to our view abstraction. Unfortunately, this

is complicated by several factors:

• Manipulation of some MB state is at the discretion of

the MBs themselves: e.g., an IPS may establish a drop

rule for flows believed to be malicious. This contrasts

with SDNs where all state6 is established and manipu-

lated by the SDN controller.

• The state manipulation required to achieve a desired

MB behavior varies significantly by MB type, and in

some cases the objective behind the manipulation: e.g.,

scaling a firewall requires an interface for migrating

connection records from an existing firewall and in-

stalling rules to apply to packets; scaling a load bal-

ancer requires transferring a partial list of potential des-

tination servers. This is in contrast to SDNs, where

state manipulation is restricted to forwarding entries.

These factors highlight the importance of carefully harmo-

nizing a MB’s internal manipulation and use of state with

the external interfaces provided for state manipulation.

One extreme point in the design space is to create and

modify allMB state externally. With this approach, the bulk

of MBs’ internal logics are reimplemented by a controller

application, and MBs become nothing more than “dumb”

packet modifiers, akin to SDN switches being “dumb” packet

forwarders. While this very SDN-like approach provides

significant flexibility, we believe it removes too much control

from the MBs themselves, thereby constraining innovation.

Instead, we believe that state manipulation interfaces on

MBs should be multi-faceted. First, MBs should expose

a generic interface, which builds on our view abstraction,

for externally accessing and updating diverse pieces of state.

Second, MBs should announce internal state changes and be

able to request external state changes. We present our ini-

tial thoughts on these interfaces in this section. Decisions

on what the state should contain, when it should be changed,

and where it should reside are best addressed by scenario-

specific control logic (§5) which leverages these interfaces.

4.1 Operations

We propose a broad, generic interface, complementary to

our view abstraction, for manipulating the state residing at

MBs. A broad interface accommodates MB diversity and

sophisticated MB control without introducing undue com-

plexity. In contrast, narrow, state-specific interfaces, e.g., a

6With the exception of state like flow counters and timers.

4

Figure 2: get operation applied to firewall

Source Destination Proto Other Action

* 10.20.1.0/24 TCP * DROP

Figure 3: add operation applied to firewall

firewall with one interface for updating rules and another for

changing connection records, provide none of these benefits.

We believe three basic operations are sufficient:

• get(filter,MB) – Obtains from aMB all chunks of state

whose key matches the filter and encodes the state us-

ing our view abstraction. Figure 2 shows an example

get operation applied to the firewall state depicted in

Table 3. One firewall rule applies to all traffic match-

ing the filter, so one piece of action state is returned;

one matching connection record is also returned.

• add(state, MB) – Adds a chunk of state, encoded us-

ing our view abstraction, to the MB. Figure 3 shows an

example add operation that instantiates a firewall rule

to drop traffic for a specific subnet.

• remove(filter,MB) – Removes from theMB all chunks

of state whose key matches the filter.

A downside of these operations is their failure to com-

municate what types of state are available and required at

a specific MB. For example, if a get operation applied to a

firewall returns no action state, the control logic must know

that some state (i.e., a rule) must be added for proper MB

operation; in contrast, a NAT will automatically create an

address/port mapping for new flows, so state need not pre-

exist. This issue does not arise in SDNs because the state

required is always the same: a matching forwarding entry

for each flow traversing a switch.

An additional downside of this generic interface is the po-

tential for invalid manipulations of MB state. For exam-

ple, an outdated connection record could be obtained from

one IPS and added to another; the second IPS will operate

under the assumption that the connection record accurately

portrays the full connection history, which it does not, allow-

ing attacks to occur undetected. Methods for detecting such

invalid state manipulations requires further research.

MBs’ internal logic must be carefully enhanced to support

the state manipulation operations proposed above without

introducing consistency or performance issues. Add/remove

operations may require manipulated, or related, state to be

merged, split, or transformed in some other complex way.

At a minimum, MBs need additional logic to translate be-

tween our view abstraction and their own internal structures.

4.2 Events

We believe that the operations discussed above must be

complemented by an event abstraction to guide external state

manipulation. This abstraction should expose the two types

of interactions that occur between a MB’s internal logic and

state: (i) the MB’s internal logic establishes or manipulates

state at the MB; or (ii) the MB’s internal logic reaches an

operation that requires a piece of state. In SDNs, only the

latter form of interaction occurs at network elements and is

exposed via events.

The same diversity issues that plague the abstractions dis-

cussed thus far also make an event abstraction challenging

to design. In SDNs, a few common events are raised by all

networking equipment; MBs, in contrast, are highly special-

ized. We borrow ideas from our view abstraction (§3.1) and
define the scope of an event based on protocol header fields.

However, the structure used to convey the type, parameters,

and semantics of an event requires further research.

One of the most difficult aspects in designing an event

abstraction is exposing the right level of introspection into

MBs’ operations. Several distinct events could be raised

during the processing of even a single packet: e.g., received

first packet of flow, created connection record, updated state

of TCP connection, etc. Exposing all these events could

quickly overwhelm a controller. Moreover, only a subset

of these events may be required in any given scenario. At

the same time, exposing too few of the events could result

in missing a crucial control operation: e.g., not knowing a

TCP connection has been reset may result in unnecessary

pinholes rules remaining on a downstream firewall.

Takeaways. MBs should expose a broad interface for ma-

nipulating both internally and externally constructedMB state.

A few basic operations are sufficient, but MBs must be en-

hanced to support these operations without introducing con-

sistency, performance, or state validity problems. Event ab-

stractions serve as a necessary complement, exposing MB’s

internal state manipulations and allowing MBs to request

missing or updated state. Operations performed in response

to events are determined by the control logic, discussed next.

5. CONTROL LOGIC

Sophisticated control logics can be run atop the abstrac-

tions and interfaces discussed in the previous sections to re-

alize rich control over dynamic MB deployments. In this

section, we discuss the design of control logics for the first

two scenarios presented in §2.1. These example control log-

ics illustrate how our proposed mechanisms fit together and

highlights the challenges that emerge in control logic design.

VMProvisioning. When a new VM is provisioned, the con-

trol logic holds the responsibility for identifying the MBs the

VM’s traffic should traverse and instantiating the required

state on these MBs. This is similar to the common SDN con-

trol task of identifying switches and installing forwarding

state to establish a path through the network. However, the

task is more complex becauseMBs’ capabilities and state are

5

not uniform. The control logic requires an augmented net-

work graph, akin to those maintained by SDNs, with special

MB nodes that identify each MB’s capabilities (e.g., using a

MB-specific modeling language [6]) and current state. The

control logic must search this graph to identify MBs pro-

viding the necessary functionality, and select specific MBs

based on location (e.g., select a firewall close to the server

to minimize the potential for insider attacks), the presence

of existing state (e.g., use the load balancer already used by

related VMs), and other factors.

Appropriate action state must be established at each of

the selected MBs to achieve the security and performance an

enterprise requires. A get operation can be used to determine

if the required state already exists, e.g., because a similar

VM is already using the MB. New state can be instantiated,

when necessary, by defining a transformation function using

the view abstraction and installing the state using the add

operation. It is imperative that the state added to each MB

considers the modifications made by other MBs the VM’s

traffic passes through: e.g., if the VM’s traffic passes through

a firewall and then a load balancer, the state added to the

firewall must contain the IP address of the load balancer, not

the IP of the VM. In some cases, the action state may not

be known a priori: e.g., if outbound application flows pass

through a NAT followed by a firewall, the necessary firewall

pinholes are dependent on the port mapping selected by the

NAT. In this case, the control logic can monitor for events

raised by the NAT, e.g., indicating a new port mapping has

been established, and subsequently add the corresponding

state to the firewall.

Finally, to ensure traffic passes through the chosen MB

sequence, the control logic (or an SDN controller) must in-

stall the appropriate forwarding rules in network switches.

Again, careful attention must be paid to the manipulations

MBs perform to ensure the right traffic is forwarded.

MB Scaling. The control logic for MB scaling is more com-

plex because of the need to migrate state between MBs.

When a MB is scaled down, all supporting state for active

flows traversing that MB (MB E) must be moved to the re-

maining MBs (MB R) using get and add operations. The

flows cannot be switched to traverse MB R until the state is

moved. Care must be taken to ensure consistency: e.g., if a

new packet for an active flow arrives (signaled by an event)

at MB E after the flow’s state has been moved, the packet

must either be forwarded to MB R or the state from MB E

must be moved again.

Similar design patterns and challenges arise in control ap-

plications developed for other scenarios.

6. RELATED WORK

Prior works have sought to provide specific forms of con-

trol over MBs. Sekar et. al present optimization formula-

tions for dividing intrusion detection responsibilities based

on traffic paths and IPS processing capabilities [10]. PLayer [7]

passes traffic through specific MBs based on high-level poli-

cies. Both of these could be implemented as specific con-

trol logics in our framework. SIMCO [1], a protocol for dy-

namic configuration of NATs and firewalls, has goals similar

to ours but only offers minimal control.

NewMB deploymentmodels, e.g. CoMB [9] and ETTM [4],

are orthogonal to our framework’s design, but unified control

enables them to be better leveraged.

Our framework is grounded in the principles of SDN, which

has a rich body of work ranging from specific control frame-

works [2, 8] to high-level concepts [3].

7. CONCLUSION

Enriching enterprise application deployments in sophisti-

cated ways requires taking full advantage of new MB de-

ployment models and diverse MB functionality. Current ad

hoc mechanisms for MB control, including by-hand tweak-

ing, are clumsy and unsuitable for this task. Instead, we

have advocated for the design of a software-defined MB net-

working framework capable of supporting scenarios like MB

scaling and live network migration. We have examined in

depth the major challenges in moving towards this control

model—representing,manipulating, and knowledgeably con-

trolling MB state—and presented our initial thoughts on the

appropriate abstraction and interfaces to help address them.

Moving closer towards our goal of flexible, unified control

requires further research into many additional issues, such

as: representing the state associated with a broader range of

MBs using well defined primitives, standardizing the rep-

resentation of MB events, facilitating deep control of MB

functionality, preventing invalid manipulations of MB state

and ensuring consistency, augmentingMBs’ internal logic to

facilitate adequate manipulation of shared state, and design-

ing control logics for a wide range of scenarios. More impor-

tantly, we believe that continued innovation in MB function-

ality and operation hinges on the development of SDN-like

frameworks for MB management.

8. REFERENCES
[1] Rfc 4540: Nec’s simple middlebox configuration (simco) protocol version 3.0.

http://tools.ietf.org/html/rfc4540.
[2] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker.

Ethane: taking control of the enterprise. In SIGCOMM, 2007.
[3] M. Casado, T. Koponen, R. Ramanathan, and S. Shenker. Virtualizing the

network forwarding plane. In PRESTO, 2010.
[4] C. Dixon, H. Uppal, V. Brajkovic, D. Brandon, T. Anderson, and

A. Krishnamurthy. Ettm: A scalable fault tolerant network manager. In NSDI,
2011.

[5] A. Gember, R. Grandl, A. Anand, T. Benson, and A. Akella. Stratos: Virtual
middleboxes as first-class entities. Technical Report TR1771, University of
Wisconsin-Madison, 2012.

[6] D. Joseph and I. Stoica. Modeling middleboxes. IEEE Network, 2008.
[7] D. A. Joseph, A. Tavakoli, and I. Stoica. A policy-aware switching layer for

data centers. In SIGCOMM, 2008.
[8] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner. OpenFlow: Enabling innovation in
campus networks. ACM SIGCOMM CCR, 38(2), 2008.

[9] V. Sekar, N. Egi, S. Ratnasamy, M. Reiter, and G. Shi. Design and
implementation of a consolidated middlebox architecture. In NSDI, 2012.

[10] V. Sekar, R. Krishnaswamy, A. Gupta, and M. K. Reiter. Network-wide
deployment of intrusion detection and prevention systems. In CoNEXT, 2010.

6

