
Corybantic: Towards the Modular Composition of SDN
Control Programs

Jeffrey C. Mogul*§, Alvin AuYoung†, Sujata Banerjee†, Lucian Popa†,
Jeongkeun Lee†, Jayaram Mudigonda*‡, Puneet Sharma†, Yoshio Turner†

†HP Labs, Palo Alto, *Google, Inc.
†{FirstName.LastName}@hp.com, §jeffmogul@acm.org, ‡jmudigonda@google.com

ABSTRACT

Software-Defined Networking (SDN) promises to enable

vigorous innovation, through separation of the control plane

from the data plane, and to enable novel forms of network

management, through a controller that uses a global view

to make globally-valid decisions. The design of SDN con-

trollers creates novel challenges; much previous work has

focused on making them scalable, reliable, and efficient.

However, prior work has ignored the problem that mul-

tiple controller functions may be competing for resources

(e.g., link bandwidth or switch table slots). Our Corybantic

design supports modular composition of independent con-

troller modules, which manage different aspects of the net-

work while competing for resources. Each module tries to

optimize one or more objective functions; we address the

challenge of how to coordinate between these modules to

maximize the overall value delivered by the controllers’ de-

cisions, while still achieving modularity.

Categories and Subject Descriptors

C.2.3 [Network Operations]: Network Management

General Terms

Design, Economics, Management

Keywords

Software-Defined Networking

1. INTRODUCTION

Software Defined Networking (SDN) promises a better

approach, not just for network innovation, but also for man-

aging a network. By separating the control plane from the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Hotnets ’13, November 21–22, 2013, College Park, MD, USA.

Copyright 2013 ACM 978-1-4503-2596-7 ...$10.00.

data plane, via a protocol such as OpenFlow, SDN allows

the use of an arbitrarily complex, central controller that can

dynamically make decisions that can maintain global poli-

cies and objectives.

Of course, the promise of SDN relies on the creation of

reliable, scalable, and efficient controller software. Many re-

searchers and developers have worked on this problem (e.g.,

[5, 14, 21, 20]).

For a production network, however, an SDN controller

must simultaneously respect many concerns, possibly with

competing objectives. For example, a power manager’s ob-

jective might be to re-route traffic onto a smaller set of links,

so that it can turn off a switch, while a QoS manager might

want to maintain as many live links as possible, to ensure

that its SLAs are met. Other examples of objectives in-

clude routing, flow-level traffic engineering, support for fast

failover, middlebox insertion, VM migration, etc.

One might build a monolithic controller that can juggle all

of these issues, but we believe that without modularity, such

a controller will be hard to build, maintain, and extend, and

perhaps just as resistant to further innovation as traditional

hardware-defined networks.

In this paper, we propose a controller framework design,

Corybantic, that focuses on both achieving modular com-

position and maximizing the overall value delivered by the

controller’s decisions. Our goal is for modules to expose suf-

ficient information about their local objectives and policies

so that, operating collaboratively through Corybantic, they

maximize system-wide objectives while meeting all of their

policy constraints. At the same time, the inter-module inter-

faces should be as narrow as possible, to support modularity

and composition.

We contrast our work with Frenetic [8, 9] and Pyretic [18]:

both systems support composition of modules by resolving

conflicts over specific OpenFlow rules. Corybantic supports

composition of modules that might conflict over higher-level

policies and objectives. In other words, Frenetic, Pyretic,

and all the prior work that we know of, aims at better ways

to get the network to do what you want it to do; Corybantic,

in contrast, is aimed at deciding what you want it to do. As

a consequence, Corybantic operates at a higher layer of the

controller stack, and is mostly complementary to prior work.

1

Solving this kind of constrained multi-objective optimiza-

tion problem can be difficult. Corybantic sidesteps several

hard problems. First, it converts a multi-objective problem

into a single-objective problem by expressing objectives in

a common currency. Second, it explores the use of fast

heuristics, with an iterative, domain-specific approach that

explicitly represents topology to improve allocation deci-

sions quickly, instead of requiring an optimal solution.

Corybantic is a work in progress. We have an early im-

plementation of various modules and present an initial eval-

uation of the composition of these modules.

2. CONTEXT

Corybantic could be useful, for example, in a cloud

(Infrastructure-as-a-Service) network, which provides ser-

vice to an ever-changing set of users, each of whom is explic-

itly charged for the services they request, and whose needs

vary dynamically. Any such network must consider its costs

and revenues when making policies governing resource allo-

cation. For simplicity, we assume that a provider’s revenues

come as explicit payment from its users1.

A network provider would start by choosing a set of mod-

ules (e.g., from a “module store”) as appropriate for its spe-

cific network. We would not expect any network to use all of

the possible modules. We assume that there is just one net-

work provider, so the controller modules are not malicious.

2.1 Per module policies and objectives

Our vision is that the central controller can integrate the

opportunities provided by its constituent modules to approx-

imate a globally-optimal objective, while meeting all of the

policies (e.g., firewall rules) imposed by these modules.

Each individual module will have its own policies and ob-

jectives. Policies express constraints on what is allowed; ob-

jectives express the costs and benefits of specific controller

actions. Consider, for example, a QoS-control module. Its

objectives include maximizing the revenue from bandwidth

promises made to customers; one of its policies might be

“never renege on a promise.”

We believe that, in order to compare costs and bene-

fits across a range of independent modules, the controller

as a whole must express these using a common currency.

AuYoung et al. [2] point out the value of using money as a

single metric for expressing “all the QoS-‘ilities’ that matter

in a particular circumstance.” The actual currency units do

not matter; AuYoung et al. chose to use “florins.”

2.2 Examples of controller modules

To illustrate our motivation for supporting composition

of controllers with competing policies and objectives, we

briefly sketch some examples, focused on data-center net-

1We have not carefully considered whether our approach applies to
a wider set of businesses, such as ISPs, or those where IT costs and
benefits are not well-quantified.

works. All of these examples have been described previ-

ously as independent controllers:

• Bandwidth allocator: A module that allocates guaranteed

bandwidth to a set of endpoints. Examples include Gate-

keeper [19], Oktopus [3], and many others.

• Flow latency controller: A module to support end-to-end

latency bounds for flows or flow classes (as by Kim et

al. [13].

• Flow-level traffic engineering: A module that re-routes

flows to achieve an objective, like load balance (as in Hed-

era [1]).

• VM-migrator: A module that migrates VMs between

servers, e.g., for consolidation (as in SecondNet [10],

Virtue [16], etc).

• Power control manager: A module that reduces energy

costs by attempting to turn off under-utilized resources (as

in ElasticTree [12]).

• Bypass-link controller: A module, such as Flyways [11],

that looks for over-utilized paths and opportunities to cre-

ate wireless bypasses. Similarly, Helios [6] looks for

opportunities to create optically-switched high-bandwidth

bypasses.

3. DESIGN OF CORYBANTIC

A Corybantic system consists of a set of modules, which

might vary among different installations, and a central coor-

dinator function, all running on top of a typical SDN con-

troller, as shown in Fig. 1(a). Our goal is to allow multiple

controller modules to operate in concert, rather than pulling

in opposing directions. The basic insight behind Coryban-

tic is that the use of a common currency can allow modules

to express high-level objectives independently, and a central

coordinator to resolve potential conflicts.

3.1 Expressing objectives

A network has an underlying physical topology. Cory-

bantic represents the physical topology of the network as a

graph of resources including switches and links. Some of

these resources can be subdivided into virtual slices; e.g., a

10Gbit link could be sliced, using rate limiters, into a set of

slower virtual links. Moreover, each of these resources has

a reservation state representing what (share) belongs to each

tenant.

We find it natural to express module goals in terms of vir-

tual subset topologies (possibly a disconnected graph) of the

underlying network topology, rather than in terms of only

the specific collection of individual link and switch resources

relevant to each module. For example, the current goals of

a bandwidth allocator module could be satisfied by one of

several collections of network paths formed from slices of

the physical links. The goals of an energy manager could

be satisfied by any of several subset topologies that exclude

specific switches or links, which can then be powered off.

We can thus view Corybantic as a means to agree on a

single virtual subset topology that is acceptable with respect

2

SDN controller

Corybantic

Coordinator

Module1 Module2 ModuleN

Public interfaces

Reservation

state DB

OpenFlow API

Corybantic API

Northbound

API

(a) Relationship between Corybantic and SDN controller.

Network owner

(IaaS)

GPB QoS MIG

Flow1 Flow 2

Accepted

proposal

PC

$$ flow

revenue

$$ SLA

revenue

$$ switch

energy

$$ VM

consolidate

Per!module

values

Aggregate value

of proposal

Maximal $$

in outin in

(b) Example proposal and value flows in Corybantic.

Figure 1: Context for Corybantic.

to the goals of all modules. (Because “virtual subset topol-

ogy” is unwieldy, generally in this paper we use “topology”

to imply that term.)

3.2 An iterative approach

Do we first look for a topology that meets the customer

demands, or do we first find a placement of demand that as-

sumes a specific topology? Exploring all of the possible op-

tions seems like it would result in an infeasibly-large search

space. To avoid this chicken-or-egg problem, Corybantic

uses a multi-phase iterative approach.

The Corybantic coordinator proceeds in periodic rounds.

In each round, the coordinator and its modules execute four

phases:

• Phase 1 – some modules propose topology changes: A

proposal is a change in the reservation state or activity

(on/off) of a resource in the topology. Each module may

make one or more proposals to modify the topology. A

“topology” change may involve turning servers, switches,

or links on or off, adding a switch table entry, or moving

VMs.These proposals should be “small” deltas from the

current state, not huge changes.

Making good proposals is the key challenge for Cory-

bantic. We discuss this key challenge in Sec. 4.1.

• Phase 2 – each module evaluates every current pro-

posal generated in phase 1, assigning a value to it (top of

Fig. 1(b)). The value considers the benefits that the module

gains from a proposal, the costs imposed on the module,

including the cost of making changes (e.g., moving a VM)

and any “costs” created by unfairness. For example, a QoS

controller would express value as the revenue collected by

the flows it can support within the proposal. Some modules

might give a negative value to a proposal.

By distributing the task of proposal evaluation to all of

the modules in the system, we modularize the computa-

tion of the values that derive from various points of view.

For example, the power module only needs to consider the

electricity-related costs and benefits of turning off a switch,

while the QoS-related benefits (which might be negative)

are measured entirely within other modules.

Also, by separating the proposal-generation phase from

the proposal-evaluation phase, we relieve the proposal gen-

erators from having to understand the value models of

other modules.

Fig. 1(b) illustrates how values flow in Corybantic. For

concreteness, we assume that all values are expressed in

terms of dollars (or some other real-world currency), to re-

flect the grounding of these values in the real-world money

flowing into and out of the provider.

• Phase 3 – the coordinator picks the best proposal: An

overall coordinator function assigns a global value to each

proposal, for example, a sum over the phase-2 values and

picks the best proposal (if any have positive values).

• Phase 4 – the modules instantiate the chosen proposal:

Once the coordinator has chosen a proposal, any module

that is affected by that proposal is directed to instantiate

it. This might mean changing a topology element, moving

a VM, or perhaps just informing a user that its VMs now

have more or less access to spare capacity, so that the user’s

application can adapt.

The goal of this iterative loop is to constantly adapt to new

customer demands, not to focus on convergence to a fixed

point.

3.3 Alternative approaches

Casting the search for improved value as an iteration

avoids having to impose an a priori ordering on the mod-

ules; any fixed ordering would over-determine the pruning

of the search space, and inhibits modularity. Instead, we

express “priority” not as an explicit property of a module,

3

but through the valuations placed on its specific proposals.

This allows dynamic changes in the relative merits of assign-

ing a resource to one module or another. For example, load

balance might be more important during peak hours, while

power reduction might matter more during off-peak hours,

as reflected entirely in the values that these modules place on

proposals during those periods (rather than via static module

priorities.)

4. DESIGNING MODULES

The success of Corybantic will depend on the design of

the controller modules. Ideally a module generates both

high-value proposals to deliver value towards its objective

function, as well as a variety of proposals to allow better

coverage of the allocation space.

4.1 Making good proposals

What makes a proposal “good”? We list some high-level

principles:

Make small proposals, but not tiny ones: If a proposed

topology change is too large, most likely the other modules

in the system will give it a very negative value, either be-

cause it disrupts their own needs too much, or the cost of

change is too high. Modules should propose changes that are

small enough to be acceptable. However, there is little point

in making a proposal that is too small: it should not leave

the network mid-way between useful states. For example, if

a VM-migrator module wants to move 10 VMs away from a

server, a proposal that moves just one VM probably has little

or no value.

Make a reasonable number of proposals: Providing

multiple topology options gives the coordinator more op-

tions to evaluate and should lead to faster convergence to

a useful state.

Offer variety: When making multiple proposals, don’t

make them too similar; otherwise, the benefits of having

more options to evaluate would not justify the extra cost of

evaluating them.

Don’t give up too late or too soon: A module should

build upon iterations to make informed counter proposals

that differ enough from rejected proposals and relate to

higher-valued proposals.

4.2 Search strategies

During each round, a control module may need to con-

tinually generate a counter-proposal, or look for other op-

portunities to meet its objectives. This search mechanism, if

naively implemented, risks locking onto local optima. There

are two basic approaches to avoid this problem.

The first approach is inspired by search heuristics often

used in genetic algorithms: occasional jumps can be injected

into the search space to avoid local optima. For example,

the coordinator can inject occasional jumps in the current al-

location. The coordinator decides when an iteration round

should make a jump, of what magnitude, and (prior to phase

1) informs modules that they should offer “big-delta” pro-

posals with some probability. Likewise, each module can

inject such jumps within its own proposal generation search

in order to provide such big-delta proposals.

The second approach avoids local optima by carefully

crafting a module’s objective function. If it can define an

objective function that is convex, it guarantees convergence

in its search heuristic. Indeed, well-known methods, such as

gradient descent, are often used in implementations of solv-

ing these optimization functions [4]. Using a convex func-

tion may require a trade-off between optimality (i.e., since

the convex function may merely be a proxy for the original

optimization function) and convergence.

These two techniques are complementary. Balancing the

value delivered by proposals and the risks of search oscilla-

tions or local optima may require further investigation.

There is no magic formula for implementing a module

that obeys these principles. We realize that it might be quite

difficult, in practice, to engineer a good proposal generator,

and that this may require domain-specific engineering – each

module may be quite different.

5. MODULE PROTOTYPES

Thus far, we have implemented prototypes of several

Corybantic controller modules. These modules are written

in Python in order to eventually interface with the suite of

available OpenFlow software that are also implemented in

Python [15, 18]. It is important to note that these prototypes

represent proof-of-concepts based on control modules in the

literature, but likely require more detail if deployed in a real

network.

5.1 Guaranteed Pipe-Bandwidth Module

The Guaranteed Pipe-Bandwidth (GPB) module provides

minimum bandwidth guarantees for tenants in a shared data

center. Tenants are customers who pay for VM hosting

on the data center, and whose VMs require a minimum

intra-network bandwidth guarantee. Similar modules might

support “hose-model” guarantees, which cover the aggre-

gate bandwidth into and out of one endpoint (e.g., Gate-

keeper [19]), or other guarantee forms (e.g., Virtual Over-

subscribed Clusters [3]), but a pipe-model module is the eas-

iest to describe and implement.

Evaluation function: GPB values a proposal based on the

expected income it will receive for guarantees it has given

to customers. This expected income may include the net

present value of expected future customer requests, as well

as the potential penalty (i.e., negative value) for being unable

to honor a previously guaranteed request, or for having to

update routes and rate limiters to shift traffic.

Making Proposals: Currently, GPB attempts to get all

resources and satisfy all flows (active flows, pending flows

and projected flows) in the flow table.

4

5.2 Bandwidth Availability Module

The Bandwidth Availability Module (BAM) tries to con-

serve core bandwidth by re-routing traffic2. This module

is motivated by bandwidth-constrained environments and is

based upon the requirements described by Bodik et al. [4].

Evaluation function: BAM considers the value of band-

width it conserves. It measures (and in some cases, esti-

mates), the client traffic that traverses the network core and

tries to minimize this value. Based on the same informa-

tion used by GPB to place a dollar value on bandwidth, the

amount of available bandwidth “slack” in the core is the met-

ric used to evaluate a proposed topology.

Making proposals: BAM attempts to re-route traffic by

migrating VMs that generate and receive traffic. This mod-

ule uses a procedure similar to that described by Bodik et al.

to cluster the machines in racks within clusters based upon

a minimum k-cut, where k is the number of available edge

switches in the network.

5.3 Fault Tolerance Module

The Fault Tolerance Module (FTM) tries to increase the

worst-case survivability (WCS) of a tenant’s hosted services.

We borrow the definition and model of WCS directly from

Bodik et al. as the fraction of hosted services (i.e., VMs)

that survive any single failure in the network.

Evaluation function: FTM calculates the average WCS

of an allocation across all services. Based on the WCS, it

computes the revenue lost from the host services due to ex-

pected downtime. We expect the values required for these

calculations to be provided externally to the module. More-

over, we expect that these measurements are typical book-

keeping for a typical IaaS provider.

Making proposals: At a high level, FTM attempts to

“spread” VMs across failure domains. Proposals are made

as long as improvements can continue, for example, until all

VMs are in separate fault domains. Each proposal is greedy

in that it attempts to move a single VM at a time to a differ-

ent fault domain, when it resides in the same fault domain as

another.

6. SIMULATIONS

In this section, we evaluate the performance and conver-

gence of our BAM and FTM controllers. As described in

Section 5, BAM attempts to minimize core bandwidth con-

sumption, and FTM attempts to increase the fault tolerance

of tenant applications. As described by Bodik et al., these

objectives are directly at odds [4].

In order to balance these competing concerns, Bodik et

al. define a single optimization function that is parameter-

ized by the variable α. α, in essence, establishes a weighted

priority between these two concerns and defines how these

competing objectives should be resolved.

2In our implementation, it accomplishes this by moving the source
and destination VMs generating traffic.

We argue that setting α correctly requires detailed under-

standing of how each of these concerns relates to the global

value delivered to the system. Accordingly, we have imple-

mented the BAM and FTM modules independently to relate

their individual optimization functions to the revenue model

in the network (Table 1). Note that this definition is merely

for illustrative purposes and can easily be adapted for a more

realistic scenario.

α Equivalent Corybantic defi-

nition

0 <α < 1/2 A unit loss of availability costs
$α more than an equivalent
unit loss in core bandwidth.

α = 1/2 Availability and core band-
width are equally important.

1/2 <α A unit loss of availability costs
$α less than an equivalent unit
loss in core bandwidth.

Table 1: Interpretation of α for FTM and BAM Cory-

bantic modules.

Using these modules, we simulate the Corybantic alloca-

tion process in a simple network topology with two aggre-

gation switches and four racks, with each rack containing a

maximum number of 4 VMs. The simulation began with an

initial random allocation and the numbers reflect an average

over 10 runs.

Table 2 compares the performance of FTM and BAM to

an optimal, monolithic controller for various values of α.

We did a straightforward offline calculation for the specific

topology and workload to obtain this optimal value.

We see that in most of these settings, the values converge

within a few rounds, and the value delivered by the alloca-

tion is within 10% of optimal in most cases. These standard

deviation for total value is less than 10% of the average; the

standard deviation for the number of rounds until conver-

gence is less than 1 round.

These instances correspond to larger and smaller values

of α. This result is due to the fact that in such cases, the

convergence is heavily dependent on the search path of a

single module’s objective function.

The instances where convergence does not result in the

optimal value can be improved with simple search heuris-

tics (i.e., genetic algorithm-based “jumps”, as mentioned in

Section 4.2). We do not know if the effectiveness of these

techniques generalizes, as these are simply preliminary re-

sults.

α Average fraction of optimal value Average rounds until convergence

1/5 0.93 2

1/4 0.91 2.4

1/3 0.83 1

1/2 0.83 1.2

2/3 1.0 1.4

4/5 1.0 1.3

Table 2: Average quality and speed of allocation when

composing FTM+BAM modules.

5

7. ADDITIONAL DESIGN ISSUES

In this section, we discuss additional design issues that we

have considered, but have not fleshed out in implementation.

7.1 Enforcing constraints

In emergencies, “goals” might become constraints: for ex-

ample, a thermal overload must be resolved immediately,

even at the cost of violating some network performance

guarantees. Other constraints might be tagged to indicate

that they can be temporarily violated during emergencies.

7.2 Time-related issues

So far, we have ignored how Corybantic deals with the

concept of time. We need to explicitly consider time for

several reasons:

• Implementation delays: Many proposals cannot be in-

stantiated instantaneously. For example, a VM-migrator

might take several minutes to move a large VM. Thus, pro-

posals made in phase 1 must specify the expected delay-to-

instantiate.

• Deadlines: Conversely, some modules might tag their pro-

posals with deadlines. For example, a VM-migrator that

needs to respond to thermal overloads may require very

rapid changes.

• Evaluation time: Because Corybantic proceeds in small

steps, each round must finish quickly. Obtaining a short

cycle time may require some careful optimization. For ex-

ample, since proposals are expressed as deltas, the eval-

uates method in modules might use an incremental algo-

rithm, rather than re-computing the value over the entire

proposed topology.

• Time-dependent valuations: Suppose a QoS module

wants to admit a high-bandwidth flow that will last for 2

minutes. If making room for this flow incurs a cost, such

as turning on a switch, that will last for at least 5 minutes,

the benefit of admitting the flow may not justify this cost.

Therefore, proposals and evaluations must both include

time-frames over which they are desirable or valid.

7.3 Security

Corybantic does not, as of now, provide any inter-module

security mechanisms. In this respect, it does not differ from

a monolithic controller implementation with the same func-

tionality. All of the modules are installed by, and run on be-

half of, the provider, as is the case with most existing system

and network management tools. Therefore, just as with a

monolithic controller, the module implementers will attempt

to cooperate with each other to achieve the best possible re-

sult, rather than try to hog resources or to game Corybantic’s

evaluation function.

In a system where some modules are provided by third

parties, it would be useful to protect the modules from each

other, and (more important) to prevent rogue or buggy mod-

ules from interfering with resource allocation. We can treat

this as a motivation for good debugging support (see §7.4),

or as an opportunity for future work – for example, the Co-

ordinator might impose quotas on the resources that a third-

party module could obtain.

7.4 Debugging

Networks, even with central controllers, are complex, dy-

namic beasts; they will have bugs. Corybantic will not elim-

inate bugs; any such system should have debugging support

built into its design.

Corybantic’s use of modularity can prevent invisible in-

teractions between modules, but even the “visible” interac-

tions (exposed through the proposal and evaluation phases)

can lead to bugs. And, as we have already noted, design-

ing modules to generate “good” proposals could be challeng-

ing. Because all interactions between modules are exposed

to Corybantic in the proposal and evaluation phases, the sys-

tem can therefore expose, in a debugging console, details

such as which modules propose which topologies, the val-

uations assigned to each proposal, any policy violations, or

why a controller is otherwise not behaving as expected (e.g.,

from human observation).

8. RELATED WORK

Most of the prior work on SDN controllers has focused

either on enabling more flexible and rapid innovation (e.g.,

Frenetic [8, 9], Pyretic [18] and Trema [21]), or on im-

proving the performance or scalability of the controller plat-

form (e.g., Maestro [5], Mirage [20], HyperFlow [22], and

Onix [14].)

Ford [7] observed that non-transparent layering of mul-

tiple control functions, between cloud-provider controllers

and cloud-tenant controllers, can lead to “potentially catas-

trophic” interactions over shared resource dependencies.

Corybantic might not directly resolve that, but perhaps ten-

ants could benefit from a narrow interface into the provider’s

Corybantic system, analogous to the Mirage interface pro-

posed by Rotsos et al. [20].

Network economists have explored related issues (e.g.,

[17]) but have focused on obtaining accurate prices, not on

software modularity.

9. REFERENCES

[1] M. Al-Fares, S. Radhakrishnan, B. Raghavan,

N. Huang, and A. Vahdat. Hedera: Dynamic Flow

Scheduling for Data Center Networks. In Proc. NSDI,

Apr. 2010.

[2] A. AuYoung, L. Grit, S. Wiener, and J. Wilkes.

Service contracts and aggregate utility functions. In

Proc. HPDC, pages 119–131, 2006.

[3] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron.

Towards predictable datacenter networks. In Proc.

SIGCOMM, pages 242–253, 2011.

[4] P. Bodk, I. Menache, M. Chowdhury, P. Mani, D. A.

Maltz, and I. Stoica. Surviving failures in

6

bandwidth-constrained datacenters. In Proc.

SIGCOMM, pages 431–442. ACM, 2012.

[5] Z. Cai, A. L. Cox, and T. S. E. Ng. Maestro: Balancing

Fairness, Latency and Throughput in the OpenFlow

Control Plane. Tech. Rep. TR11-07, Rice Univ., 2011.

[6] N. Farrington, G. Porter, S. Radhakrishnan, H. H.

Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and

A. Vahdat. Helios: A Hybrid Electrical/Optical Switch

Architecture for Modular Data Centers. In Proc.

SIGCOMM, 2010.

[7] B. Ford. Icebergs in the Clouds: the Other Risks of

Cloud Computing. In Proc. HotCloud, 2012.

[8] N. Foster, M. J. Freedman, R. Harrison, J. Rexford,

M. L. Meola, and D. Walker. Frenetic: A High-Level

Language for OpenFlow Networks. In Proc. PRESTO,

pages 6:1–6:6, 2010.

[9] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto,

J. Rexford, A. Story, and D. Walker. Frenetic: A

Network Programming Language. In Proc. ICFP,

pages 279–291, 2011.

[10] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun,

W. Wu, and Y. Zhang. SecondNet: A Data Center

Network Virtualization Architecture with Bandwidth

Guarantees. In Proc. Co-NEXT, 2010.

[11] D. Halperin, S. Kandula, J. Padhye, P. Bahl, and

D. Wetherall. Augmenting Data Center Networks with

Multi-Gigabit Wireless Links. In Proc. SIGCOMM,

pages 38–49, 2011.

[12] B. Heller, S. Seetharaman, P. Mahadevan,

Y. Yiakoumis, P. Sharma, S. Banerjee, and

N. McKeown. ElasticTree: Saving energy in data

center networks. In Proc. NSDI, 2010.

[13] W. Kim, P. Sharma, J. Lee, S. Banerjee, J. Tourrilhes,

S.-J. Lee, and P. Yalagandula. Automated and Scalable

QoS Control for Network Convergence. In Proc.

INM/WREN, Apr. 2010.

[14] T. Koponen, M. Casado, N. Gude, J. Stribling,

L. Poutievski, M. Zhu, R. Ramanathan, Y. Iwata,

H. Inoue, T. Hama, and S. Shenker. Onix: A

Distributed Control Platform for Large-scale

Production Networks. In Proc. OSDI, 2010.

[15] B. Lantz, B. Heller, and N. McKeown. A network in a

laptop: rapid prototyping for software-defined

networks. In Proceedings of the 9th ACM SIGCOMM

Workshop on Hot Topics in Networks, Hotnets-IX,

2010.

[16] L. Liu, H. Wang, X. Liu, X. Jin, W. B. He, Q. B.

Wang, and Y. Chen. GreenCloud: A New Architecture

for Green Data Center. In Proc. ICAC-INDST, pages

29–38, 2009.

[17] B. Lubin, A. Juda, R. Cavallo, S. Lahaie,

J. Shneidman, and D. C. Parkes. ICE: An Expressive

Iterative Combinatorial Exchange. J. Artificial

Intelligence Research, 33:33–77, 2008.

[18] C. Monsanto, J. Reich, N. Foster, J. Rexford, and

D. Walker. Composing Software-Defined Networks.

In USENIX NSDI, 2013.

[19] H. Rodrigues, J. R. Santos, Y. Turner, P. Soares, and

D. Guedes. Gatekeeper: supporting bandwidth

guarantees for multi-tenant datacenter networks. In

Proc. WIOV, 2011.

[20] C. Rotsos, R. Mortier, A. Madhavapeddy, B. Singh,

and A. W. Moore. Cost, Performance & Flexibility in

OpenFlow: Pick Three. In Proc. IEEE SDN Workshop,

2012.

[21] H. Shimonishi, Y. Chiba, Y. Takamiya, and K. Sugyo.

Trema: An Open Source OpenFlow Controller

Platform. In GEC-11 Poster, 2011.

[22] A. Tootoonchian and Y. Ganjali. HyperFlow: A

Distributed Control Plane for OpenFlow. In Proc.

INM/WREN, Apr. 2010.

7

