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ABSTRACT
Contemporary network stacks are masterpieces of general-
ity, supporting a range of edge-node and middle-node func-
tions. This generality comes at significant performance cost:
current APIs, memory models, and implementations drasti-
cally limit the effectiveness of increasingly powerful hard-
ware. Generality has historically been required to allow in-
dividual systems to perform many functions. However, as
providers have scaled up services to support hundreds of mil-
lions of users, they have transitioned toward many thousands
(or even millions) of dedicated servers performing narrow
ranges of functions. We argue that the overhead of gener-
ality is now a key obstacle to effective scaling, making spe-
cialization not only viable, but necessary.

This paper presents Sandstorm, a clean-slate userspace
network stack that exploits knowledge of web server seman-
tics, improving throughput over current off-the-shelf designs
while retaining use of conventional operating-system and
programming frameworks. Based on Netmap, our novel ap-
proach merges application and network-stack memory mod-
els, aggressively amortizes stack-internal TCP costs based
on application-layer knowledge, tightly couples with the NIC
event model, and exploits low-latency hardware access. We
compare our approach to the FreeBSD and Linux network
stacks with nginx as the web server, demonstrating ~3.5x
throughput improvement, while experiencing low CPU uti-
lization, linear scaling on multicore systems, and saturating
current NIC hardware.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Ar-
chitecture and Design—Network communications

General Terms: Design, performance

Keywords: Network stacks, network performance

1. INTRODUCTION
Conventional network stacks were designed in an era where
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individual systems had to perform multiple diverse func-
tions. In the last decade, the advent of cloud computing
and the ubiquity of networking has changed this model; to-
day big content providers serve hundreds of millions of cus-
tomers. To scale their systems, they are forced to employ
many thousands of servers, with each providing only a sin-
gle network service. Yet most content is still served with
conventional general-purpose network stacks.

These general-purpose stacks have not stood still, but to-
day’s stacks are the result of numerous incremental updates
on top of codebases that were originally developed in the
early 90’s. Arguably these network stacks have proved to be
quite efficient, flexible and reliable and this is the reason that
they still form the core of contemporary networked systems.
They also provide a stable programming API, simplifying
software development. But this generality comes with sig-
nificant costs, and we argue that the overhead of generality
is now a key obstacle to effective scaling, making special-
ization not only viable, but necessary.

In this paper we will revisit the idea of specialized net-
work stacks. In particular we develop Sandstorm, a special-
ized user-space stack for serving static web content. Impor-
tantly, however, our approach does not simply shift the net-
work stack to userspace: we also promote tight integration
and specialization of application and stack, achieving cross-
layer optimizations antithetical to current design practices.

Servers such as Sandstorm could be used to serve images
such as the Facebook logo, or as front end caches to popu-
lar dynamic content. This is a role that conventional stacks
should be good at: nginx uses the sendfile() system call
to hand over serving static content to the operating system.
FreeBSD and Linux then implement zerocopy stacks, at least
for the payload data itself, using scatter-gather to directly
DMA the payload from the disk buffer cache to the NIC.
They also utilize the features of smart network hardware,
such as TCP Segmentation Offload (TSO) and Large Re-
ceive Offload (LRO) to further improve performance. With
such optimizations, nginx should be hard to beat.

Our userspace web server implementation is built upon
FreeBSD’s Netmap [20] framework, which directly maps
the NIC buffer rings to userspace. We will show that not
only is it possible for a specialized stack to beat nginx, but
it can achieve more than three times the throughput on data-
center-style networks when serving small image files typical
of many web pages. Our implementation does not currently
take advantage of TSO, so we believe that further perfor-
mance improvements may also be possible.

1



The demonstrated performance improvement comes from
three places. First, we achieve a complete zerocopy stack,
so sending data is very efficient. Second, we allow aggres-
sive amortization that spans traditionally stiff boundaries –
e.g., application-layer code can request pre-segmentation of
data intended to be sent multiple times, and extensive batch-
ing is used to mitigate system-call overhead from userspace.
Third, our implementation is synchronous, clocked from re-
ceived packets; this improves cache locality and minimizes
the latency of sending the first packet of the response.

In this paper we discuss many of the issues that affect
performance in conventional stacks, present a complete sys-
tem design that avoids these pitfalls, and analyze where the
performance improvements come from compared to a con-
ventional stack that uses sendfile(). Further, we argue
that the stack-as-library approach does actually support soft-
ware reuse; for example, most of our TCP implementation
could be reused, and would especially suit applications such
as RPC that demand low latency.

2. SPECIAL PURPOSE ARCHITECTURE
What is the minimum work that a web server can perform

to serve static content at high speed? It must implement a
MAC protocol, IP, TCP (including congestion control) and
HTTP. However, the implementations of these do not need
to conform to the conventional sockets model, split between
userspace and kernel, or even implement features such as
dynamic TCP segmentation. For a web server that serves
static content such as the Facebook logo to huge numbers of
clients, essentially the same functions are repeated again and
again. We wish to explore just how far it is possible to go to
improve performance. In particular:

• Conventional network stacks support zerocopy for OS-
maintained data – e.g., file-system blocks in the buffer
cache, but not for application-provided HTTP headers.
Can we implement a complete zerocopy stack where packet
buffers are passed from the NIC all the way to the appli-
cation and vice versa for all data?

• Conventional stacks make extensive use of queueing and
buffering in order to mitigate context switches and keep
CPUs and NICs busy, at the cost of substantially increased
cache footprint. Can we adopt a bufferless event model
that reimposes synchrony and avoids large queues that ex-
ceed cache sizes? Can we expose link-layer buffer infor-
mation, such as available space in the transmit descriptor
ring, to prevent buffer bloat and reduce wasted work con-
structing packets that will only be dropped?

• Conventional stacks amortize expenses internally, but can-
not amortize repetitive costs spanning application and net-
work layers – e.g., they amortize TCP connection lookup
using Large Receive Offload (LRO) but they cannot amor-
tize the cost of repeated TCP segmentation of the same
data transmitted multiple times. Can we design a network-

stack API that allows cross-layer amortizations to be ac-
complished so that after the first client is served, no work
whatsoever is repeated when serving subsequent clients?

• Conventional stacks embed the majority of network code
in the kernel to avoid the cost of domain transitions, limit-
ing two-way communication flow through the stack. Can
we make heavy use of batching to allow device drivers to
remain in the kernel while collocating stack code with the
application and avoiding significant latency overhead?

• Can we avoid any data-structure locking, and even cache-
line contention, when dealing with multi-core applications
that do not require it?

Finally, while performing the above, is there a programming
abstraction that allows components to be reused for other
applications that may benefit from server specialization?

2.1 A zerocopy web server
Luigi Rizzo’s Netmap provides a general purpose API that

allows received packets to be mapped directly to userspace,
and packets to be transmitted to be sent directly from userspace
to the NIC’s DMA ring. Combined with batching to re-
duce system call overhead, this provides a high-performance
framework on which to build packet processing applications.
A web server, however, is not normally thought of as a packet
processing application, but one that handles TCP streams.

To serve a static file we can load it into memory, and a-
priori generate all the packets that will be sent, including
TCP, IP and link-layer headers. When an HTTP request for
that file arrives, the server must allocate a TCP protocol con-
trol block (TCB) to keep track of the connection’s state, but
the packets to be sent have already been created.

The majority of the work is performed while processing
an incoming TCP ACK. The IP header is checked; if it is
acceptable, a hash table is used to locate the TCB. The off-
set of the ACK number from the start of the connection is
used to directly locate the next pre-packaged packet to send
and, if permitted by the congestion and receive windows,
any subsequent packets that also can be sent. To transmit
these packets, the destination address and port are rewrit-
ten, and the TCP and IP checksums incrementally updated.
The packet is then sent directly to the NIC using Netmap.
All reads of the ACK header and modifications of the trans-
mitted packet are performed in a single pass, ensuring both
headers and the TCB remain in the CPU’s L1 cache.

Under high workloads it is possible that a second connec-
tion may need to send the same packet before it has finished
being DMAed to the NIC. Thus more than one copy of each
packet will need to be prepared to allow two packets con-
taining the same data but different destinations to be in the
DMA ring at a time. Our current implementation does this in
advance, but it would be better to copy on demand whenever
the high-water mark is raised, and then retain and reuse the
new copies to avoid copying for subsequent connections.
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Figure 1: Several tradeoffs are visible in these packet traces taken from busy (but unsaturated) Linux and Sandstorm servers.

Figure 1 illustrates the tradeoff space through traces taken
from busy (but unsaturated) Linux and Sandstorm servers.
A batched design has a measurable effect on TCP round-trip
time. On the other hand, Sandstorm amortizes or eliminates
substantial parts of per-request processing through a more
efficient architecture. Under this light load, these benefits are
pronounced; at saturation the effect is even more significant.

2.2 Microkernel services on monolithic kernels
Although monolithic kernels are the de facto standard for

networked system deployment, robustness and flexibility con-
cerns continue to drive development towards microkernel-
like approaches. Sandstorm offers several of their qualities:

Rapid deployment & reusability: Our prototype stack is
highly modular, and synthesized from bottom-up using tra-
ditional dynamic libraries as building blocks (components)
to construct a special-purpose system. Each library com-
ponent corresponds to a stand-alone service that exposes a
well-defined API. Sandstorm is built by combining three ba-
sic components (see Figure 2):

• The Netmap I/O (libnmio) library that abstracts tra-
ditional data-movement and event-notification primitives
needed from higher levels of the stack.

• libeth, a lightweight Ethernet-layer implementation.

• libtcpip, our optimized TCP/IP layer.

Splitting functionality into reusable stand-alone compo-
nents does not require us to sacrifice the benefits of exploit-
ing cross-layer knowledge to optimize performance. For
example, the presented web server application interacts di-
rectly with libnmio to preload and push segments into the
appropriate packet-buffer pools. This preserves a service-
centric approach.

Developer-friendly: Despite seeking inspiration from mi-
crokernel design, our approach maintains most of the bene-
fits of conventional monolithic systems:

• Debugging is as easy, if not easier, than conventional sys-
tems, as application-specific performance-centric code shifts
out of the kernel into more accessible userspace.

• Our approach integrates well with the general-purpose op-
erating systems: rewriting basic components such as de-
vice drivers or filesystems is not required.

• Instrumentation in Sandstorm is a simple and straightfor-
ward task that allows us to explore potential bottlenecks as
well as necessary and sufficient costs in network process-
ing across application and stack. In addition, off-the-shelf
performance monitoring and profiling tools “just work”,
and a synchronous design makes them easier to use.
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Figure 2: High-level architecture view

3. EVALUATION
We evaluated the performance of Sandstorm through a set

of experiments and compare our results against the nginx
web server running on both FreeBSD and Linux. Nginx is
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Figure 3: Serving a ˜22KB image on a single-core server over 10GbE

a high-performance, low-footprint web server that adopts a
non-blocking, event-driven model: it relies on OS primitives
(e.g. kqueue()) for readiness event notifications as well
as data movement (e.g. sendfile()) and asynchronously
processes requests.

Contemporary web pages are immensely content-rich, but
they are mainly comprised of smaller web objects such as
images and scripts. The distribution of requested object sizes
for Yahoo! CDN, reveals that 90% of the content is smaller
than 25KB [5]. The conventional approach taken by the net-
work stack and web server application has been tuned to
perform well when delivering large content by utilizing OS
primitives and NIC hardware features. On the contrary, mul-
tiple simultaneous short-lived HTTP connections are consid-
ered a heavy workload that stresses the kernel-userspace in-
terface and reveals performance bottlenecks: the size of the
transmitted data is not enough to compensate for the system
cost. Based on this insight, we have tailored the testbed setup
to explore the behaviour of our system when faced with these
challenges.

To explore possible Sandstorm performance gains, we eval-
uated using both older and more recent hardware. On older
hardware, we employed Linux 3.6.7 and FreeBSD 9-STABLE.
On newer hardware, we used Linux 3.10.10 and FreeBSD
10-CURRENT with NetFlix-originated patches optimizing
the kernel flowtable and sendfile(). For all the bench-
marks presented, we have configured nginx to serve content
from a ramdisk in order to eliminate any disk bottlenecks.
We used weighttp [3] for load generation.

For the old hardware, we use three systems, two clients
and one server, all of which are connected to a 10G crossbar
switch. All test systems are equipped with Intel 82598EB
dual port 10GbE NIC, 8GB RAM, and two Intel Xeon X5355
CPUs. In 2006, these were high-end servers.

For the new hardware, we use seven systems, six clients
and one server, all directly connected via dedicated 10GbE
links. The server has three dual-port Intel 82599EB 10GbE

NICs, 128GB RAM and a quad-core Intel Xeon E5-2643
CPU. In 2013, these are well-equipped contemporary servers.

3.1 Old hardware
In Figure 3, we present network throughput as a func-

tion of concurrent requests. Sandstorm achieves substan-
tially higher throughput than the conventional model, even
for the minimum number of concurrent connections tested.
For example, it exhibits a 35% performance gain with just
two simultaneous connections. The limiting factor for such
a workload is not link capacity but rather latency, which is
significantly lower with our stack even though a little trans-
mit delay is intentionally introduced so as to achieve efficient
batching.

One of the key design decisions in our system architec-
ture is the use of zerocopy transmissions. To evaluate the
effectiveness of this choice, we explore the performance of
a Sandstorm variant which relies on a single memory copy
to create the packets for transmission. Figure 3 shows a
30% network throughput decrease as result of the associated
memory copy overhead.

In order to confirm this observation, we experimented with
a different setup: we invoked two memcopy-Sandstorm in-
stances on two different 10GbE NICs and pinned them to
different CPUs. This time the requests from each client sys-
tem were served by a single stack instance. The rationale be-
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Figure 5: Serving a ˜22KB file over HTTP

hind this scenario was that memory-associated bottlenecks
would manifest as increased CPU load for both stack in-
stances, although each of them was actually serving only
half the workload compared to the single core case (one
client system per Sandstorm instance instead of two). Fig-
ure 4 confirms our intuition; we observe only 10% CPU load
improvement compared to the single-core instance while only
serving half the previous load on each CPU core.

It was not feasible to fully saturate the single NIC with
the available clients and such small files, although the zero-
copy Sandstorm comes close. As the file size increases, the
gap closes somewhat, but at 100KB file size, our single-core
Netmap stack is still 54% faster than nginx, and has satu-
rated the 10Gbps link.

3.2 New hardware
One of the key differences of the newer hardware over the

old one is the support for Data Direct I/O, a feature that al-
lows Direct Memory Access (DMA) originating over PCIe
from the NIC to access the processor’s Last-Level Cache
(LLC). With this hardware the performance improvements
over the conventional stacks are even greater: Sandstorm
saturates a single 10GbE NIC at only 13% CPU load and
scales linearly up to six NICs achieving ˜55Gbps at ˜73%

CPU load (see Figure 5). Both Linux and FreeBSD manage
to saturate a single NIC, although the actual throughput at
medium loads is significantly lower than the one achieved by
Sandstorm due to latency (see Figure 6). Moreover, the con-
ventional stacks prove unable to scale with multiple NICs:
they both top at ˜16Gbps with four NICs. Interestingly, we
have experienced a collapse on Linux with six NICs.

Memory copies on newer hardware prove to be less ex-
pensive than on older hardware. Our microbenchmarks re-
veal that the reason the memcopy variant achieves slightly
lower throughput than the zerocopy variant is that it uses
5-10% more CPU cycles per request. It has not saturated
the memory, but memory latency does show up as increased
CPU cycles per request. The configuration only uses three
cores (one per two NICs) and so the cores are saturated at
approximately 75% CPU load. Slightly higher throughput
might be possible with asymmetric allocation of NICs to
cores, but it would make a direct comparison harder - in any
event the zero copy variant is already saturating all six NICs.

We could not evaluate Sandstorm’s scalability for more
than six NICs since we did not have available PCIe slots;
however, due to the low CPU utilization and no evidence
of memory bandwidth bottlenecks, we believe there are still
available resources to scale to seven and perhaps eight NICs.
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4. RELATED WORK
Web server and network stack performance optimization

is not a new research area. Past studies have come up with
several optimization techniques as well as completely dif-
ferent design choices. Existing approaches in HTTP server
and network stack designs range from user-space and kernel-
based implementations up to specialized operating systems.

With conventional approaches, userspace applications [1,
2] utilize the native general-purpose network stacks by heav-
ily relying on operating-system primitives to achieve data
movement and event notification [15]. Several proposals [6,
12, 19] focused on reducing the overhead of such primitives
(e.g. KQueue, epoll, sendfile). IO-Lite [16] unifies the data
management between OS subsystems and userspace appli-
cations by providing mechanisms to safely and concurrently
share data. Pesterev and Wickizer [8, 17] proposed efficient
techniques to improve performance of commodity stacks by
controlling network connection locality and taking advan-
tage of modern multicore systems. Similarly, MegaPipe [11]
shows significant gains by introducing a bidirectional, per-
core pipe to facilitate data exchange and event notification
between kernel and user space applications.

A significant number of research proposals follow a sub-
stantially different approach: they propose partial or full
implementation of network applications in kernel, aiming
to eliminate the cost of communication between kernel and
userspace. Although this design decision improves perfor-
mance significantly, it comes at the cost of limited security
and reliability. A representative example of this category
is kHTTPd [7], a kernel-based web server which uses the
socket interface. Similar to kHTTPd, TUX [13] is another
noteworthy example of in-kernel network applications. TUX
achieves great performance by eliminating the socket layer
and by pinning the static content it serves in memory. We
have adopted several of these ideas in our prototype stack,
although it is not a kernel-based approach.

Microkernel designs such as Mach [4] have long appealed
to OS designers, pushing core OS services (such as network
stacks) into user processes so that they can be more eas-
ily developed, customized, and multiply-instantiated. The
Cheetah webserver was built on top of the Exokernel [10]

library operating system that provides a filesystem and an
optimized TCP/IP implementation. Lightweight libOSes en-
able application developers to exploit domain-specific knowl-
edge and improve performance. Unikernel designs such as
MirageOS [14] likewise blend operating-system and appli-
cation components at compile-time, trimming unneeded soft-
ware elements to accomplish extremely small memory foot-
prints – although not necessarily implying application-specific
specialization of OS services. OS-bypass with userspace
network processing is another technique explored by the aca-
demic community with several studies such as Arsenic [18],
U-Net [21], Linux PF RING [9] and Netmap [20].

5. CONCLUSIONS
We have described Sandstorm, a high-performance web

server based on a specialized network stack exploiting a total-
system zerocopy design, aggressive cross-layer amortization
and information flow, and a synchronous structure simulta-
neously promoting simple design and extremely high perfor-
mance. The performance impact of these specializations is
particularly noticeable in data center environments due to a
dramatic drop in the effective round-trip time (across inter-
connect and server-side software) allowing short TCP con-
nections to fill the available pipe much more quickly than
conventional designs.

General-purpose operating system stacks have been around
a long time, and have demonstrated the ability to transcend
multiple generations of hardware. We believe the same should
be true of special-purpose stacks, but that tuning for particu-
lar hardware should be easier. We examined performance on
servers manufactured seven years apart, and demonstrated
that although the performance bottlenecks were now in dif-
ferent places, the same design delivered significant benefits
on both platforms. It is our belief that a blend of specialized
network stacks with performance-critical applications such
as web services, can dramatically improve the scalability of
current hardware, reducing costs and energy demands, offer-
ing a practical alternative to general-purpose designs.
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