
Characterizing Load Imbalance in Real-World Networked Caches

Qi Huang†‡, Helga Gudmundsdottir§�, Ymir Vigfusson§�, Daniel A. Freedman�
Ken Birman†, and Robbert van Renesse†

†Cornell University, ‡Facebook Inc., §Emory University, �Reykjavik University, �Technion – Israel Institute of Technology

Abstract
Modern Web services rely extensively upon a tier of in-mem-
ory caches to reduce request latencies and alleviate load on
backend servers. Within a given cache, items are typically
partitioned across cache servers via consistent hashing, with
the goal of balancing the number of items maintained by each
cache server. Effects of consistent hashing vary by associated
hashing function and partitioning ratio. Most real-world work-
loads are also skewed, with some items significantly more
popular than others. Inefficiency in addressing both issues
can create an imbalance in cache-server loads.

We analyze the degree of observed load imbalance, focus-
ing on read-only traffic against Facebook’s graph cache tier
in Tao. We investigate the principal causes of load imbal-
ance, including data co-location, non-ideal hashing scenarios,
and hot-spot temporal effects. We also employ trace-drive
analytics to study the benefits and limitations of current load-
balancing methods, suggesting areas for future research.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]:Distributed Applications; H.3.4
[Systems and Software]:Performance Evaluation

General Terms
Measurement; Experimentation

Keywords
Caching; Load Balancing; Networking

1 Introduction
In-memory caches are often used in modern Web services
to decrease request latency for users, as well as to relieve
load on storage and database servers. Instead of executing a
potentially resource-intensive operation on a backend server

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
HotNets ’14, October 27–28, 2014, Los Angeles, CA, USA
Copyright is held by the owner/authors. Publication rights licensed to ACM.
ACM 978-1-4503-3256-9/14/10...$15.00
http://dx.doi.org/10.1145/2670518.2673882

directly, Web front-ends first consult an appropriate cache
server for a copy of the desired data.

The raw aggregate request volume at popular websites
would significantly overwhelm the capacity of a single cache
server. As such, data is normally divided among hundreds
or thousands of cache servers [1, 5], typically by partitioning
the large space of possible data-object IDs into segments that
are then mapped onto cache servers. The segments — called
shards — commonly contain a large number of objects to
reduce the size of the object-to-server lookup map. Further,
“related” objects (i.e., those benefiting from co-location on
the same server) tend to be mapped to the same shard to
mitigate the impact of thundering herds [13] and decrease
query fan-out [1].

Ideally, cache servers would all observe similar request
rates (volume per unit time), since this would provide pre-
dictable request latencies [6] and reduce the over-provisioning
of resources necessary to withstand peak workloads [8, 15]. In
reality, however, segments confronted with real-world work-
loads often sustain variable and dynamic request rates that can
contribute to significant load imbalance. Imbalance can be
caused by the skewed access-popularity among different ob-
jects, as well as the decision to co-locate related data within
the same segment to support more advanced data queries.
While the skewed popularity applies for most Web sites traf-
fic, data co-location is often adopted for structural data (e.g.
Facebook’s social graph data.)

There are many options for balancing the number of objects
apportioned to distributed cache servers. Most mechanisms
randomly partition data across servers by hashing [10, 11],
while some additionally adapt to changes [4, 8]. Much recent
interest has also focused on understanding and mitigating hot
spots and load imbalance that arise in skewed workloads seen
in key-value stores and cache systems [5, 6], but, to the best
of our knowledge, no comprehensive analysis to date permits
online analysis of the key culprits based on a real workload.

In this paper, we investigate the nature of load imbalance
based on the real-world setting of Facebook’s social-graph
cache, Tao, where data have skewed access popularity and
cannot be randomly separated. We analyze the resulted im-
balance from each factor, explore how different categories of
approaches — fine-tuned consistent hashing and hot-content
replication (including the special case for front-end caching)
— might help to mitigate the impact of these factors, and
identify limitation of such approach categories.

Our paper offers the following contributions:

• We identify that the popularity skewness at object level is
not a major cause of cache load-imbalance.

1

X Get X (miss)

Get X

Hash / Route

Cache Detail for TAO

Caches

Web
Servers

Backend
Store/ DB

Get X X (hit)

Followers
(cluster)

Leaders
(regional)

Figure 1: Cache architecture: (L) Operation of read-through
cache between front-end Web servers and back-end data;
(R) Organization of Facebook’s Tao cache.

• We deduce that load imbalance in systems like Tao can
stem from a combination of load-insensitive partitioning,
extremely hot shards, and random temporal effects.
• We survey current approaches to load balancing and,

through simulation, assess their effectiveness on our real-
world traces in order to guide future research.

2 Analyzing Load Imbalance
In order to properly justify load imbalance within real-world
systems, we study in-memory cache-access traces from Face-
book’s graph-storage, Tao. Given that Tao’s general design
shares commonality with other caching solutions, our discov-
eries in Tao apply to the broader domain.

2.1 Environment
Figure 1 illustrates a typical architecture of in-memory caches
that facilitate the modern Web stack. When a front-end Web
server receives clients’ HTTP requests, it often spawns numer-
ous data-fetching requests to generate a content-rich response.
To reduce the fetching latency and database-querying over-
head, such data fetches are first directed to a tier of caches,
where popular content results reside in DRAM. A data request
reaches the backend of the stack only if the requested data is
not found in the caching space. Based on the manner in which
the backend request is redirected, there are two categories
of caching tiers: read-through and read-aside. The request
flow in Figure 1 follows the read-through style, in which
the cache serves as a proxy to fetch data from the backend
while interfacing with the Web server. In the read-aside style,
the Web server is responsible for requesting the data from
backend servers and subsequently inserting the content into
the cache. Facebook’s graph-storage solution Tao organizes
its cache tier as read-through caches, specifically with two
layers of caches: follower and leader. The follower cluster
co-locates with each Web front-end cluster, while a leader
cluster supports all follower clusters for an entire region1.

Sharding. Sharding or partitioning is a general approach to
scale a database beyond any single server’s capacity and is
commonly used in production caching systems [1, 13]. Shard-

1Region stands for a geographical location where one or multiple data
centers are located.

A

B

C

Shard 1

A

A B

Shard 2

C

C B

Shard 3

B

B A
B C

Figure 2: Dependent sharding (R) on directional graph (L):
edges are co-located with source vertices within same shard.

Trace Sampling DetailsMetric Ratio

TopShards Time 1 min Top 100 shards, 20 objs load per cache
ReqSample Request 105 reqs Requests sent to cache cluster
ServerRep Time 4 min Reported server load in req/sec

Table 1: Tao trace summary: TopShards reports hot-content
traffic on each cache; ReqSample samples requests from Web
servers; ServerRep contains cache-load snapshots.

ing can be achieved via two methods, based upon the require-
ment for co-locating related data — random sharding and
dependent sharding. In a normal key-value interface system,
such as memcached, random sharding is sufficient for dis-
tributing relatively similar numbers of objects to each shard,
and the independence of objects within the same shard does
not impact the system’s GET/SET operation performance.
However, dependent sharding is more appealing for systems
that provide advanced queries based on structural data. For
instance, Tao enables range queries on its social graph, consti-
tuting almost 44% [1] of its operations. By using dependent
sharding to co-locate socially-connected graph objects, Tao is
able to reduce the range-query fan-out and associated network
overhead. Moreover, dependent sharding also provides the
possibility of consistency tracking on related data. Our analy-
sis results in this paper are more relevant to these dependent-
sharding caches, where the access disparity between different
shards may be more profound than the disparity of different
cached items. Figure 2 shows an example of dependent shard-
ing for graph. Ignoring the sharding type, shard-to-server
mapping is often conducted through consistent hashing.

Traces. Throughout this paper, we rely upon three sets of
Tao production traces, collected between Facebook’s front-
end Web servers and Tao followers. Table 1 describes each
trace, and their usage within this paper is explained below.
• TopShards is directly reported by each cache server, con-

stituting the exact number of requests sent to the 100 most
popular shards and 20 most popular objects per server. This
trace gives us a high-quality source to analyze the impact
of load imbalance due to popularity skewness and the tem-
poral dynamics of popular objects and shards.
• ReqSample is sampled among the real read requests sent

from Web servers. While the per-request sampling gives
a less-detailed signal for a temporal analysis on popular
objects and shards, the full fidelity of the request flow
provides a solid basis for simulation.

2

�
�
�
�
�
�

����� ����� ����� �����

��
��
��
��
��
��
��
��
��

�������������������

�����
������

Figure 3: Load distribution (a cluster).

���

����

����

����

����

����� ���� �����
��
��
��
��
��
��
��
��
��

����������

�������������
�������������

Figure 4: Load disparity within a day.

���

���

���

���

���

��� ��� ��� ���

�
��
��
��
��
��
��
��
��
�

������������������

������
�������

Figure 5: Content popularity.

��

���

���

���

���

����� ���� �����
��
��
��
��
��
��
��
��
��

����������

����������������������
��������������

Figure 6: Traffic for hottest object.

���

����

����

����

����

����� ���� �����
��
��
��
��
��
��
��
��
��

����������

��
��

��
��

��
��

Figure 7: Traffic for hottest shards.

���

����

����

����

����

����� ����� �����
��
��
��
��
��
��
��
��
��

����������

������������
���������������

������
������

������
������
������

Figure 8: Tao reaction for surged shard.

• ServerRep is a per-cache traffic-rate report collected ev-
ery four minutes, as an adjunct to the TopShards. Thus,
ServerRep reports the entire cache traffic, instead of only
that of the hot contents. It serves as ground truth in our
study, validating the cache-load status from the TopShards-
driven analysis and the ReqSample-driven simulation.

2.2 Analysis
Though Tao already deploys several load-balancing tech-
niques [1], it still experiences a certain degree of load im-
balance within the caching tier. Figure 3 quantifies this over a
24-hour period, within a follower cluster from TopShards, by
revealing the statistical profile of load as a normal distribution,
with a mean of 247K ± 21K requests per second (p < 0.05,
A = 0.7767, Anderson-Darling normality test). ServerRep
confirms this result with full cache traffic. Figure 4 further
illustrates the traffic dynamics of both the hottest and coldest
servers from the same cluster. As can be seen, the disparity ex-
ists throughout the day, as both curves follow similar diurnal
patterns, though the contrast is greater at peak hours (>100K
requests per second [rps] difference) and smaller during the
idle period (<50K rps difference). In order to find the root
causes of this, we primarily examined traces to answer the
following questions:
• Does skewed content popularity impact load disparity in

the cache?
• Does imbalanced placement of similarly popular content

play a major role?

Skewed content popularity. We used our traces to con-
firm that content popularity, defined in terms of number of
accesses, resembles a power-law distribution across two dif-
ferent populations: distinct objects (vertex and edge in the

social graph), and different shards (each of which maintains
some partition of the graph). Figure 5 shows the number of
requests for each of the top-1000 objects and top-1000 shards,
as reported in TopShards. In light of this, does the hottest
object become a dominant resource bottleneck for a cache
server? Figure 6 shows the traffic dynamics of the most popu-
lar object and its associated shard. We note that a single hot
object can contribute almost the entire traffic for its hosting
shard, sufficient to push the shard into the top-100. However,
notice the level of imbalance: the traffic associated with this
hot object wouldn’t even be half the available capacity for
the coldest cache server (Figure 4). Accordingly, a skewed
popularity at object level does not signify a major cause of
cache-load imbalance for the request traffic between front-
end Web servers and cache servers. As discussed further in
Section 3, this explains the limited benefit in balancing cache
load via an additional layer of front-end cache.

The status is different for shard-level traffic. Figure 7 exam-
ines the traffic dynamics of the six top-ranked shards, based
on their popularity. Compared to object-traffic (Figure 6),
popular shards receive significantly higher load, due to the
combination of many related objects; these shards have much
greater impact on a cache server. It is noteworthy that each
curve in Figure 7 combines multiple reports from servers that
all hold replicas of the same shard.

Our question is made more complex because Tao itself
has an architectural feature that comes to bear here. Within
Tao, shard replication is such that a hot shard will be spread
over multiple cache servers, and the front-end router redirects
Web-server requests among them. Specifically, the hottest
shard has been replicated 10-fold throughout the 24-hour
period. Such replication starts when a server has less than
20% remaining CPU- and network- capacity, while more than

3

��

����

����

����

����

����

����

�� ���� ���� ���� ���� ���� ����

��
��
��
��
��
��
��
��
��
��

�����������������������

Figure 9: Load imbalance impact from shard placement.

25% of the request load comes from a “dominant” shard. In
other words, as long as a shard contributes 20% of a busy
server’s capacity cap it needs to be replicated. From our
analysis, Tao replication plays a significant role in keeping
servers’ loads below 200K rps.

Some aspects of the existing replication mechanism need
improvement: (1) if a shard becomes hot too quickly, repli-
cation is too slow to react, and (2) the current reverse routine
(de-allocating server space for no-longer-hot shards) is too
conservative. Figure 8 shows 48 hours of traffic dynamics
for a “popularity-surged shard,” depicting the involvement of
up to five extra replicas to split the request load. When the
traffic to the popularity-surged shard rises from <75K rps to
>175K rps within ten minutes, the replication process starts
(but only after the original server stays at that load for another
eight minutes); replication continues an hour later when the
shard is still causing too much load on its replicas. Moreover,
once all five replicas are created, they remain so situated for
another 14 hours — even as the shard’s popularity plummets
to <50K rps, wasting significant cache memory. In Section 3,
we further discuss the benefits and limitations of replication
techniques in general and propose a potential improvement.

Problematic content placement. While consistent hash-
ing is used in Tao to balance the mapping between data par-
titions (shards) and servers, studies of consistent hashing in
other settings suggest that often the implementation of this
mechanism is not sophisticated enough to overcome intrinsic
issues with consistent hashing: insufficient rounds of hashing,
low ratios between shards and servers, and poor choices of
hashing functions. As a result, the shards may not be evenly
distributed among different servers. To investigate the status
of content placement in Tao and possible impact on load im-
balance, we examined the correlation between the number of
shards hosted by a server and the total traffic it serves.

Figure 9 shows that there is a strong relationship between
the rank of cache servers by number of shards and their rank
by traffic load (Spearman’s ρ = 0.848, p < 10−5). This cor-
relation is especially true in the extreme cases: servers host-
ing the most shards tend to rank among the most-loaded
ones, and servers hosting the fewest shards rank among those
least-loaded. This demonstrates that, within the Tao system,
non-ideal shard placement plays an important role, alongside

skewed content popularity, in causing load imbalance at the
granularity of shards.

3 Mitigating Load Imbalance
Using simulations on Tao traces, we now evaluate two major
categories of techniques that seek to mitigate load imbalance:
(1) consistent hashing; and (2) hot-content replication, which
also includes front-end caching as a special case.

3.1 Trace Preparation
In order to properly evaluate traffic dynamics under different
load-balancing approaches, we favor our ReqSample trace,
due to its strong fidelity of actual cache requests. The origi-
nal trace is collected by the routing daemon, mcrouter [12],
on every Web front-end server; mcrouter randomly samples
and records one out of every million Tao requests (so as to
minimize measurement overhead on Facebook’s live infras-
tructure). Cross-validation shows that the trace successfully
captures all hot shards and hot objects contained in the Top-
Shards aggregate trace. However, ReqSample’s sampling is
too coarse to retain the traffic characteristics of every shard
within a single cluster.

To cope with this problem, we treat this entire ReqSample
trace as a trace for a single “canonical silo” cluster that has
been sampled at a higher frequency. This is feasible because
(1) every Tao follower cluster is an independent caching de-
ployment; and (2) graph queries to each Tao cluster behave
similarly for popular content since Web requests are randomly
distributed among all front-end clusters.

We verified these two properties on the TopShards by com-
paring the traffic dynamics of the top 1000 shards between
a single cluster and the entire tier. The full-tier trace in Req-
Sample is effectively an aggregate of multiple clusters serving
the same content (in different regions). Hence, we normalize
the traffic to our canonical silo cluster based on that of one of
the largest single clusters in the full trace. The manipulations
on the entire trace yield the same normalized load distribution
on the canonical-silo cluster as originally found (p < 10−5,
D = 0.2883, Kolmogorov-Smirnoff test), except with higher
sampling frequency.

3.2 Current Techniques
Our goals are twofold: (1) to understand how state-of-the-
art approaches, for mitigating load skew on a distributed
cache, complement one another on a real-world trace; and
(2) to identify which mechanisms suggest opportunities for
improvement. Two main classes of algorithms work in tandem
to balance load: hashing schemes for balancing the number
of shards allocated to servers, and replication schemes for
balancing the load of these shards.

Hashing. The concept supporting most partitioned services
is that hashing shard identifiers to an abstract ring, and then di-
viding segments of this ring among servers, will yield roughly
fair assignment of shards to servers. Assuming the ring state is
maintained in an up-to-date status on every server, all lookups

4

may be done locally — a property which facilitates distributed
implementation. As noted earlier, many existing systems
leverage consistent hashing [10] which minimizes disruptions
when servers are added or removed. Our experiments here
include the popular open-source libketama library, a ref-
erence implementation of consistent hashing for in-memory
networked caches [9].

Unfortunately, hashing schemes may impose significant
skew on the load distribution. This is partially explained by
consistent-hashing’s disregard of traffic on shards. However,
even if all shards carry the same volume of traffic, the server
with the highest load would still — with high probability
— be responsible for twice as many shards as an average
server [14].

Better distributed hashing schemes may yet be found. One
existing remedy for this uneven division of shards is to further
divide the ring space by hashing each server identifier many
times onto the ring as “virtual nodes” [3, 4, 11]. Recently,
Hwang and Wood proposed an adaptive hashing mechanism
based on consistent hashing, where the segments boundaries
of the ring space are dynamically adjusted according to load
and cache hit rate on the servers to which they are assigned
[8]. However, one must still address the problem of disparate
traffic rates on shards.

To understand the opportunity for improving hashing mech-
anisms, we include a “perfect hashing” baseline in our simu-
lations. In this baseline, a centralized controller ensures that
all servers are responsible for exactly the same number of
shards without concern for per-shard traffic.

Replication. We next add replication into the mix to com-
bat the heavy-tailed load on shards. In a somewhat simplified
summary, existing dynamic load-balancing techniques for dis-
tributed caching and storage systems operate in two phases:
(1) Detection: identify hot servers and their hot contents;
followed by (2) Replication: move data between servers to
alleviate high load, or divide traffic across multiple servers
by replicating hot content elsewhere, sometimes on many
nodes. We now survey several state-of-the-art detection and
replication techniques.

A front-end cache is normally a small cache deployed in
front of the tier experiencing the imbalanced load [5]. The
detection phase depends on the replacement algorithm used by
the cache, such as LRU (Least-Recently-Used), to detect very
popular objects which exhibit high temporal locality. Once
the hot object is detected, its replica is stored by the front-
end cache, which can then serve all traffic flowing through
it, via its local copy of the item and without burden on other
servers. Studies show that even small front-end caches can
substantially alleviate skewed object-access workload [5, 7].

Facebook’s front-end Web servers already embed a small
cache for popular Tao objects. Our traces, therefore, are
focused on load imbalance after caches higher up in the hi-
erarchy have already been applied [7]. Moreover, our earlier
analysis showed that after a layer of front-end caches, the
popularities of objects are no longer a significant factor in

Tao’s load-imbalance. Instead, the skew partly stems from
the popularity of shards that each comprise multiple corre-
lated objects connected through the social graph. However,
compared to objects, shards are just too large to be cached
on front-end Web servers: typical shard size in Tao is on the
order of hundreds of megabytes, while typical object size is
measured in kilobytes. Therefore, further improving the front-
end cache is unlikely to resolve the load-imbalance situation
in Tao— other solutions are needed.

Replicating hot content. Hong and Thettethodi [6] re-
cently proposed augmenting the cache infrastructure to ac-
tively monitor and replicate hot objects across multiple
servers. In their scheme, dubbed SPORE, each memcached
server monitors the popularity of its own content and in-
forms clients about replication and rerouting decisions. The
hotness-detection policy, in contrast to the “dominant” re-
source approach currently used in Tao, is implemented by
maintaining a list of ranked counters, updated with an expo-
nentially-weighted moving average for each item. Replication
reconciliation is then controlled through time-based leases.

As mentioned earlier, Tao’s replication component moni-
tors shard loads on servers, and it replicates dominant shards
every ten minutes. Our analysis already showed that flash
crowds and surges in popularity can destabilize an unfortunate
caching server within Tao’s 10-minute replication window.
Moreover, its reverse routine is too conservative, resulting in
unnecessary memory waste.

Streaming methods. Mounting interest has been seen
for streaming algorithms, which can process incoming data
streams in a limited number of passes to provide approximate
summaries of their data, including heavy-hitter identification
and frequency estimation for popular items [2]. Frequency-
estimation algorithms, useful for detecting hot shards, sample
requests from the data stream, often at a very low rate, and
carefully maintain a collection of candidates for hot shards.
Frequency estimates can then be used to adaptively repli-
cate shards based on their popularity. In an effort concurrent
with ours, Hwang and Wood utilize streaming algorithms to
reactively mitigate load balance [8].

Streaming algorithms feature high performance, while re-
quiring very small memory footprints and CPU overhead.
They can be parallelized through sharding, much like a cache
tier for scalability. The algorithms complement other solu-
tions, such as front-end caching, and they can be deployed
transparently in an existing cache implementation.

Streaming algorithms are generally faster than cache re-
ports at detecting hot shards, as they operate at a finer tempo-
ral granularity and can identify trends practically in real-time.
Cache reports effectively serve as snapshots over larger time
windows, whereas streaming algorithms maintain several sum-
maries of shorter time intervals, thus providing a longer and
more detailed access history of popular shards. This can be
further leveraged to identify patterns and make predictions
on upcoming access frequencies. In our streaming-algorithm
implementation, the most frequently requested shards in a

5

Replication
Hashing

libketama Tao Perfect (Theor.)

None 1.53 1.46 1.34
Tao 1.53 1.25 1.17
Perfect (Theor.) 1.41 1.18 1.00

Table 2: Comparison of max/avg statistic of various hashing
and replication schemes.

60-second time window are replicated to a constant number of
servers. A shard is de-replicated when it has not been deemed
hot within the last four minutes. With a higher sampling ratio,
hot shards can be identified at much finer granularity. More-
over, traffic estimates can be used to dynamically calculate
the appropriate number of replicas for a given shard.

3.3 Comparison and Evaluation
We now evaluate different hashing and replication schemes
for load balancing, using our ReqSample trace. For each
technique, we will examine the max/avg metric, which denotes
the volume of requests received on the most loaded server
relative to that of an average server, across the time period
(24 hours) of the full trace. Table 2 summarizes our max/avg
metric for the key hashing and replication schemes, while
Figure 10 visualizes the impact of replication schemes on
load imbalance in a single cluster.

When no replication mechanism is used, Tao has max/avg of
1.46, outperforming the consistent-hashing reference imple-
mentation of libketama [9], with its max/avg of 1.53. Even
with theoretically perfect hashing, the best load imbalance
one obtains without using any replication method is a max/avg
of 1.34, with the most loaded server 60% more burdened than
the one with the lightest load. If these methods also incorpo-
rate a perfect replication scheme, the difference is even more
stark: 41% more load on the most highly loaded server, than
on an average one, for libketama compared to only 17%
more for Tao. We also deduce that the hashing scheme within
Tao can be improved by up to eight percentage points, from
max/avg of 1.25 to 1.17.

Retaining Tao’s current hashing mechanism, there is an
opportunity to improve on Tao’s replication methods to de-
crease max/avg from 1.25 to 1.18. Figure 10 further details
how replication mechanisms affect load skew. We isolate
the impact of the replication algorithm by assuming shards
are uniformly distributed across servers. In this case, Tao’s
replication scheme achieves a max/avg of 1.17, slightly out-
performing, the lease-based replication scheme SPORE [6],
which has a max/avg of 1.18. The streaming algorithm per-
forms significantly better at detecting hot shards than Tao’s
replication mechanism, but the overall reduction in load bal-
ance has room for improvement, moving max/avg from 1.17 to
1.12. The streaming algorithm provided the most competitive
replication scheme by far, but the detection and replication

��

��

��

��

��

��

��

�� ��� ���� �����

�
��
��
��
��
��
���
��
��
��
��
�

������������������������

���������
�������������
���������������

����������������
�����������������

Figure 10: Load distribution of various hashing and replica-
tion schemes (denoted in such order in figure legend).

mechanisms can be substantially refined — part of our ongo-
ing work.

Takeaways. (1) Standard consistent hashing results in 53%
higher load on select servers relative to the average, and 240%
relative to the least loaded server. Even if this hashing tech-
nique is coupled with an optimal replication algorithm, the
most loaded server remains 41% more loaded than the aver-
age server. (2) Tao’s hashing algorithm improves upon plain
consistent hashing, but the most loaded server still sustains
18% more load than the average server, and 34% more than
the one with the lightest load, even if the replication scheme
balances per-shard load perfectly. (3) The use of streaming
algorithms for hot-spot detection outperforms other replica-
tion schemes, but a max/avg metric of 1.12 suggests room for
future improvement.

4 Conclusion
The scalability of today’s popular web sites is enabled by
large clusters of in-memory cache servers. Each server in a
cluster must be equipped to handle peak load, but this implies
extensive overprovisioning due to load imbalance across the
cache servers. We investigate the causes of the load skew on
real-world traces from Facebook’s Tao cluster: we identify
the major roles played both by imbalanced content placement,
and popularity disparity caused by dependent sharding, while
we dismiss the significance of the impact from object-level
popularity skewness. Through simulation, we recognize that
current load-balancing techniques — including consistent
hashing, and different flavors of replication — only partially
address such skewness, while an approach based upon stream-
ing-analytics holds promise for further improvement. In con-
clusion, our results pave the way for continued research into
more effective mitigation techniques for load skew — to curb
infrastructure resources and improve cache performance.

Acknowledgments
We thank our HotNets reviewers for their constructive feed-
back. Our work is supported, in part, by a grant from the
DARPA MRC program, a grant-of-excellence (#120032011)
from the Icelandic Research Fund, and additional funding
from both Emory University and Facebook.

6

References
[1] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Di-

mov, H. Ding, J. Ferris, A. Giardullo, S. Kulkarni, H. Li,
M. Marchukov, D. Petrov, L. Puzar, Y. J. Song, and
V. Venkataramani. Tao: Facebook’s Distributed Data
Store for the Social Graph. In Proc. of the 2013 USENIX
Annual Technical Conference (ATC ’13), pages 49–60,
San Jose, CA, USA, 2013.

[2] G. Cormode and M. Hadjieleftheriou. Methods for
Finding Frequent Items in Data Streams. The VLDB
Journal, 19(1):3–20, February 2010.

[3] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Wide-area Cooperative Storage with CFS. In
Proc. of the 18th ACM Symposium on Operating Systems
Principles (SOSP ’01), pages 202–215, Banff, Alberta,
Canada, 2001.

[4] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: Amazon’s Highly
Available Key-value Store. In Proc. of 21st ACM
SIGOPS Symposium on Operating Systems Principles
(SOSP ’07), pages 205–220, Stevenson, WA, USA,
2007.

[5] B. Fan, H. Lim, D. G. Andersen, and M. Kaminsky.
Small Cache, Big Effect: Provable Load Balancing for
Randomly Partitioned Cluster Services. In Proc. of the
2nd ACM Symposium on Cloud Computing (SOCC ’11),
pages 23:1–23:12, Cascais, Portugal, 2011.

[6] Y.-J. Hong and M. Thottethodi. Understanding and
Mitigating the Impact of Load Imbalance in the Memory
Caching Tier. In Proc. of the 4th ACM Symposium on
Cloud Computing (SOCC ’13), pages 13:1–13:17, Santa
Clara, CA, USA, 2013.

[7] Q. Huang, K. Birman, R. van Renesse, W. Lloyd, S. Ku-
mar, and H. C. Li. An analysis of Facebook photo
caching. In Proc. of the 24th ACM Symposium on Op-
erating Systems Principles (SOSP ’13), pages 167–181,
Farminton, PA, USA, 2013.

[8] J. Hwang and T. Wood. Adaptive Performance-Aware
Distributed Memory Caching. In Proc. of the 10th Inter-
national Conference on Autonomic Computing (ICAC
’13), pages 33–43, San Jose, CA, USA, 2013.

[9] R. James. libketama: a consistent hashing algo for
memcache clients. http://github.com/RJ/ketama
(accessed on 2014/07/15), April 2007.

[10] D. Karger, E. Lehman, T. Leighton, R. Panigrahy,
M. Levine, and D. Lewin. Consistent Hashing and Ran-
dom Trees: Distributed Caching Protocols for Relieving
Hot Spots on the World Wide Web. In Proc. of the
29th Annual ACM Symposium on Theory of Computing
(STOC ’97), pages 654–663, El Paso, TX, USA, 1997.

[11] D. Karger, A. Sherman, A. Berkheimer, B. Bogstad,
R. Dhanidina, K. Iwamoto, B. Kim, L. Matkins, and
Y. Yerushalmi. Web Caching with Consistent Hash-
ing. In Proc. of the 8th International World Wide Web
Conference (WWW ’99), pages 1203–1213, Toronto,
Ontario, Canada, 1999.

[12] A. Likhtarov, R. Nishtala, R. McElroy, H. Fugal, A. Gry-
nenko, and V. Venkataramani. Introducing mcrouter: A
memcached protocol router for scaling memcached de-
ployments. http://tinyurl.com/n5t338j, Septem-
ber 2014.

[13] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,
H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,
P. Saab, D. Stafford, T. Tung, and V. Venkataramani.
Scaling Memcache at Facebook. In Proc. of the 10th
USENIX Conference on Networked Systems Design and
Implementation (NSDI ’13), pages 385–398, Lombard,
IL, USA, 2013.

[14] X. Wang and D. Loguinov. Load-balancing Performance
of Consistent Hashing: Asymptotic Analysis of Random
Node Join. IEEE/ACM Transactions on Networking, 15
(4):892–905, August 2007.

[15] T. Zhu, A. Gandhi, M. Harchol-Balter, and M. A.
Kozuch. Saving Cash by Using Less Cache. In Proc.
of the 4th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud ’12), Boston, MA, USA, 2012.

7

http://github.com/RJ/ketama
http://tinyurl.com/n5t338j

	Introduction
	Analyzing Load Imbalance
	Environment
	Analysis

	Mitigating Load Imbalance
	Trace Preparation
	Current Techniques
	Comparison and Evaluation

	Conclusion

