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ABSTRACT
As datacenter speeds scale to 100 Gb/s and beyond, tradi-
tional congestion control algorithms like TCP and RCP con-
verge slowly to steady sending rates, which leads to poorer
and less predictable user performance. These reactive al-
gorithms use congestion signals to perform gradient descent
to approach ideal sending rates, causing poor convergence
times. In this paper, we propose a proactive congestion con-
trol algorithm called PERC, which explicitly computes rates
independently of congestion signals in a decentralized fash-
ion. Inspired by message-passing algorithms with traction
in other fields (e.g., modern Low Density Parity Check de-
coding algorithms), PERC improves convergence times by
a factor of 7 compared to reactive explicit rate control pro-
tocols such as RCP. This fast convergence reduces tail flow
completion time (FCT) significantly in high speed networks;
for example, simulations of a realistic workloads in a 100
Gb/s network show that PERC achieves up to 4× lower 99th

percentile FCT compared to RCP.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Ar-
chitecture and Design

Keywords
Datacenter network, Flow scheduling, Congestion control

1. INTRODUCTION
Over the past decade, link speeds have grown steadily from

1 Gb/s to 10 Gb/s and now 100 Gb/s. Network transfers are
completing faster and in fewer RTTs; given this trend, al-
locating flows their proper rates as quickly as possible be-
comes a priority. More precisely, we assert that convergence
time must become a primary, low-level metric for congestion
control in high speed networks. Convergence time impacts
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higher level flow metrics like flow completion time (FCT):
at higher link rates, a majority of flows last only a few RTTs,
and if they take longer to converge to ideal rates, some of the
flows end up spending more time in the network than needed,
affecting the tail FCTs.

Convergence time has been a secondary consideration in
the design of today’s congestion control algorithms. Exist-
ing protocols like TCP, DCTCP [1], RCP [12], XCP [18],
etc. are reactive in nature, iteratively reacting to congestion
signals from the network. For example, TCP treats packet
drops as a signal of network congestion and uses AIMD to
iteratively converge to a sending rate [16]. Reactive algo-
rithms fundamentally have long convergence times because
they need to measure congestion signals before they can re-
act to them; moreover, rate adjustment is generally performed
over several iterations, resembling a gradient descent proce-
dure which gradually approaches the target sending rates.1

In the early 2000s, researchers recognized that conges-
tion control algorithms such as TCP which uses binary con-
gestion signals (e.g., packet drops), converge slowly. This
spurred the development of algorithms designed to converge
faster than TCP, such as XCP [18] and RCP [12]; in these al-
gorithms, the routers along a flow’s path calculate a current
rate estimate and explicitly feed it back to the source.

Despite these improvements, XCP and RCP are reactive
gradient descent algorithms too; both advertise rate changes
(in XCP’s case, congestion window changes) every RTT af-
ter measuring how the previous iteration has performed using
traffic and/or queue measurements. Because of the interde-
pendency between flows on different paths sharing congested
links, the routers do not know the correct final converged
rate; they only update the rate feedback to react to the most
recent information they have passively gained about local
congestion. Furthermore, reactive algorithms have to adjust
rates cautiously to keep the system stable. XCP, RCP and
other reactive algorithms use gradient descent steps towards
the final rates, carefully chosen to strike a balance between
convergence speed and stability.

This paper advocates proactive congestion control mech-
anisms that explicitly calculate sending rates based on flow

1Refer to [24, 9, 19] for elaboration on the connection between rate
control algorithms and distributed optimization.



Ta
il 

FC
T

(n
or

m
. b

y 
ID

E
A

L)

M
ea

n 
FC

T
(n

or
m

. b
y 

ID
E

A
L)

RCP
DCTCP
CHARNY
PERC

Small Flows Medium Flows Large Flows0
3.

5
7

0
4

8.
5

13
17

Figure 1: FCT on 100 Gb/s link with 60% load and 120 µs RTT:
99th percentile for small (< 10 KB) and medium (10− 1000 KB)
flows, and mean for large (> 1 MB) flows. Normalized by respective
statistics for ideal instantaneous max-min rate allocation.

demands. Unlike reactive algorithms adjust rates gradually
based on indirect signals like local congestion at each link,
proactive algorithms compute optimal rates based on global
information about which flows are active at each link and
their rate demands. While proactive algorithms also need
multiple iterations to compute the optimal rates in a decen-
tralized fashion, the use of global information allows signifi-
cantly fewer iterations; each iteration can also be much faster
because proactive schemes can skip the slow measurement
steps of reactive congestion-based algorithms.

In high speed networks, a majority of the flows are short
enough to complete in a few to a few tens of RTTs. We show
that in such scenarios, proactive algorithms achieve signif-
icantly lower tail FCTs than reactive algorithms because of
their quick convergence.

As a quick preview of our results, consider the follow-
ing simple experiment where we run a standard web-search
workload [1] on a single 100 Gb/s link with a 120 µs round-
trip delay. Figure 1 shows the tail FCT for small and medium
sized flows, and the mean FCT for large flows. The results
are normalized with respect to an ideal scheme that instan-
taneously allocates the optimal max-min fair rates. For now
we focus on PERC, our proactive design, and RCP, a repre-
sentative reactive algorithm. We discuss other schemes and
different network settings later (Section 4).

We see that for small and medium flows, RCP’s tail FCT is
almost four times that of PERC. Thus PERC provides more
predictable delays for these flows than the reactive RCP. In-
tuitively, the large tail FCT with RCP is caused by some
flows getting smaller rates when new flows arrive due to poor
convergence times. For large flows these transient periods of
under-utilization have less impact, but they adversely impact
small and medium sized flows. This intuition is confirmed
by a second experiment shown in Figure 2. Notice the sharp
dip in the sending rate for RCP at 600 µs as the second flow
starts and causes congestion, and the slow climb to max-min
fair rates. During the climb, RCP underutilizes the link.

We proceed by presenting a model for congestion control
in Section 2, describing PERC in Section 3, and providing a
detailed evaluation in Section 4 .

2. MODELS
All congestion algorithms, whether reactive or proactive,

have a target set of flow rates to which they are trying to

0
20

40
60

80
10

0

Time (us)

Tr
an

sm
is

si
on

 R
at

e 
(G

bp
s)

0 600 1000 1500

0
20

40
60

80
10

0

PERC (solid)
 RCP (dashed)
Ideal (dotted)

Flow 1 (start=0)
Flow 2 (start=600us)

Figure 2: Evolution of datarates over time in RCP and PERC. The
100 Gb/s link initially has Flow 1 with length 10K packets. At 600 µs,
short Flow 2 begins transmitting 1K packets. The red and blue, step
like, solid curves are the rates with PERC.

converge. As a concrete example, we focus on congestion
control algorithms that target max-min fairness [5]. Other
generalizations such as co-flow sharing [10] are possible, and
the faster convergence times of proactive algorithms can also
benefit these algorithms.

Consider a network with a static set of flows and links,
where each flow a traverses a path (i.e., set of links), P (a),
and each link l has a set of flows, F (l), that pass through it.
If each flow a sends at a rate ra, then we define a feasible rate
allocation as one that satisfies the link capacity constraints:∑

a∈F (l) ra ≤ Cl, for all links l. A max-min fair allocation
is a feasible allocation in which for any flow a, increasing its
rate ra forces a decrease in the rate for a different flow a′,
where ra ≥ ra′ . A defining characteristic for such an allo-
cation is that for every flow a, there is at least one bottleneck
link l such that:

• Bottleneck link l is saturated:
∑

a′∈F (l) ra′ = Cl.

• Flow a sends at the fair-share rate λl of link l, defined
as the maximum rate among all flows in F (l): ra =
λl = maxa′∈F (l) ra′ .

It can be shown that for a given set of links and flows, there
exists a unique max-min fair allocation [5]. In a dynamic
network, the max-min allocation changes as new flows enter
the network and old flows exit. We say that a max-min fair
algorithm has converged when all flows are sending at the
fair-share rate of their bottleneck links.

2.1 Reactive congestion control: RCP
We use RCP as a canonical reactive congestion control al-

gorithm [12] where each link l explicitly computes a rate Rl

and advertises this rate to each flow a ∈ F (l). Each flow
a sends at the rate ra = minl∈P (a)Rl, and eventually each
rate Rl converges to the fair-share rate λl. While other re-
active rate control algorithms for max-min fairness such as
XCP [18] have been proposed, we focus on RCP which has
superior FCTs across all flow sizes [12, 20].

RCP is reactive because links adjust their advertised rates
Rl based on congestion signals, such as the input traffic rate
yl(t) and queue length ql(t) at the link at time t. Every RTT,
d, RCP updates Rl at each link as follows:

Rl(t) = Rl(t− d)

(
1 +

α(Cl − yl(t))− β ql(t)
d

Cl

)
,



where Cl is the link capacity, yl(t) and ql(t) are measured
over the last update interval, d, and α and β are positive pa-
rameters. The intuition behind this equation is that if there
is spare capacity (i.e., Cl − yl(t) > 0), Rl is increased to
distributed the remaining capacity among the current flows.
Conversely, if the link is congested or there is queue buildup,
Rl is reduced. RCP is max-min fair; that is, all Rl advertise-
ments converge to the fair-share rates, λl, and thus flow rates
converge to the max-min fair allocation.

RCP’s update equation highlights the two phases of reac-
tive congestion control algorithms:

In the measurement phase, the algorithm receives noisy
congestion signals and must average out the noise over sev-
eral packets. RCP measures queue size ql(t) and input traffic
arrival rate yl(t) over an RTT d.

In the reaction phase, the algorithm takes a “step” to tune
the rates in reaction to signals from the measurement phase,
similar to a gradient descent algorithm moving in the direc-
tion of the gradient towards the optimal point. The time that
the algorithm takes to converge depends on the number and
size of such tuning steps. In RCP, the step sizes of the update
equation are controlled by the α and β parameters. In most
reactive algorithms there is a tradeoff between convergence
speed and stability; for example, RCP can try to converge
quickly by taking large steps towards the target rate, but this
risks perpetual overshooting and system instability.

2.2 Proactive congestion control
We focus on a proactive congestion control algorithm that

calculates the max-min fair rates for the flows directly. This
differs from reactive congestion in two ways: first, there is no
measurement phase; the rates are calculated independently
of congestion signals like queues and traffic volume. Thus,
rate calculation is only limited by the time it takes for the
network to register a change in the set of active flows — such
as a flow arrival or departure — which is itself proportional
to the propagation delay. Second, there is no notion of a
step size as in gradient descent; rates are calculated explicitly
based on which flows are active, thus avoiding the gradual
adjustments that a reactive algorithm needs to converge to
the target rates. The lack of a measurement phase and fast,
explicit rate calculations help proactive algorithms converge
very quickly.

An obvious way to implement proactive congestion con-
trol is via a centralized rate allocator, which knows all of
the flows’ sending rates and their paths through the network.
When a flow joins or leaves the system, the allocator adjusts
the rates of all affected flows. However, such a centralized
scheme may be difficult to scale; thus, for the rest of this
paper, we pursue a distributed proactive congestion control
scheme based on message passing [21]. Each flow a ex-
changes rate information with each link in its path P (a), and
asynchronously each link l returns its fair share rate based on
its current knowledge of the flow set F (l). We now explain
our algorithm (PERC) in detail.

3. PROACTIVE EXPLICIT RATE CONTROL
We first describe a synchronous version of PERC and its

convergence behavior. We then discuss a practical asyn-
chronous implementation, which we evaluate in Section 4.

3.1 Synchronous PERC
As in RCP, a link l in PERC computes a fair share rate,

fl, that it then advertises to all flows F (l) traversing it. Each
flow a sends at the rate ra = minl∈P (a){fl}; in addition,
it also advertises a rate demand, dal , for each link l ∈ P (a)
within its packet headers. PERC is a proactive congestion
control algorithm: it does not measure congestion signals,
nor adjust its advertised rates in incremental steps. Instead,
the fair share rate fl at each link l is computed explicitly by
solving an equation involving the link capacity and the de-
mand information conveyed by the flows in packet headers.

The algorithm is inspired by message passing schemes [21]
that are popular for various inference tasks such as for de-
coding Low Density Parity Check Codes [23]. Each flow a
calculates its demand dal per link as the sending rate it would
have used had link l been absent from its path, or simply:

dal = min
l′∈P (a),l′ 6=l

{fl′}. (1)

Single-hop flows demand an infinite rate. The demand is es-
sentially the largest rate at which the flow can send,2 ignoring
any constraint from link l.

Meanwhile, each link l picks its advertised fair share rate
fl to be the max-min fair share rate for the link, given the
advertised flow demands. More precisely, it computes fl as
the solution to the following equation:∑

a∈F (l)

min(dal , fl) = Cl. (2)

Notice that if flow a has demand dal ≤ fl, then it is bottle-
necked elsewhere and can send at its demanded rate dal . On
the other hand, if flow a’s demand is higher than fl, then
link l is responsible for assigning it a fair share of the link. It
is not difficult to see that fl calculated above maximizes the
fair share rate for flows bottlenecked at link l.

In the event that the aggregate flow demand is less than the
link capacity (i.e.,

∑
a∈F (l) d

a
l < Cl), Equation 2 does not

have a solution. In this case, the link is not bottlenecked and
must advertise that it has spare capacity to all flows in F (l).
To do so, a non-bottlenecked link l simply advertises fl = Cl

to signal to all flows in F (l) that there is room to increase
their sending rates. When the aggregate flow demand equals
the link capacity, the link still advertises Cl.

In the synchronous version of PERC, flows and link al-
ternate expressing demands and advertising fair share rates,
respectively. We define an iteration of synchronous PERC
as one single exchange of flow and link information. In
each iteration, the flows compute their demands from the fair
2For simplicity, we assume here that all flows are bottlenecked in
the network. If a flow is limited at the host or application, it can
simply demand a lower rate.
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Figure 3: Flow C joins at time 0, and synchronous PERC takes two
iterations to converge. For simplicity, an iteration takes 1 timestep.

shares of the previous iteration using Equation (1), and sub-
sequently the links update the fair shares using the new de-
mands according to Equation (2). Each iteration takes one
RTT, which we define as twice the longest propagation delay
for any flow in the network.

Evidently, if link l is the only link in the network, fl will
converge to Cl/N , where N is the number of flows, and it
will reach this fair-share rate after one iteration. However,
the situation is more complicated when multiple links are in-
volved. An example is shown in Figure 3, where flow C joins
the network after flows A and B have converged. At time 0,
in the first iteration of PERC, link 2 throttles the sending rate
of the multi-hop flow B.This changes flow B’s demand to
link 1 at the beginning of the second iteration, where flow A
can now use a higher fraction of the bandwidth.

Notice that the bottleneck link for flow B shifted from
link 1 to link 2 in the above example, affecting fair-share
rates across different iterations and extending convergence
time. We call this a dependency chain; as flows are added
or deleted and advertised fair-share rates are adjusted, bot-
tleneck links for flows may change, which may in turn af-
fect other bottleneck links, and so on, potentially weaving
through all links in the network.

3.2 Asynchronous PERC
In the synchronous version of PERC, each link waits to

get all updated flow demands before calculating the next fair
share; conversely, a flow waits to get all updated fair share
rates before it decides its sending rate. However, in a real
topology, two flows may cross different links and therefore
have different propagation delays; thus, with a synchronous
algorithm, low-latency flows may have to suffer delays at
the expense of other slower or multi-hop flows. Further-
more, flows may want to join and leave in-between a PERC
iteration . Thus some links may be underutilized or over-
subscribed during this time.

In this paper we therefore implement an asynchronous ver-
sion of PERC, in which links update their advertised fl as
soon as a new demand arrives. Also, each flow sets its send-
ing rate3 and demands using the most recently received set
of advertised fair share rates.

3 Flows that must increase their sending rate wait 2 RTTs for other
flows to first decrease their rates and make capacity available.

A second practical consideration is calculating rates for
mice flows. Short flows will require much less than their
fair share rate to send all the traffic. One solution is to let
flows advertise a demand that conveys the maximum rate
they require over the next RTT (i.e., their size divided by
the RTT). Thus, all links will assume that the short flows
are bottlenecked elsewhere when calculating their advertised
fair-share rates. Hence, if these flows end within one RTT,
the links will not have sacrificed more bandwidth than nec-
essary to other longer flows.

4. EVALUATION
Our evaluations are based on OMNET++ [26] implemen-

tations of reactive (RCP [12]), proactive (PERC, CHARNY [8]),
and ideal schemes for max-min rate allocation, and ns2 [15]
simulations of DCTCP [1]. We evaluate three main claims:
(1) Slow convergence times lead to long FCTs, especially
with higher speeds and round-trip delays; (2) PERC con-
verges faster than Charny’s state of the art proactive con-
gestion control algorithm introduced in 90s, and therefore
has smaller FCTs at higher link speeds; (3) All schemes
take longer to converge when “dependency chains” between
flows get longer; but reactive schemes fare much worse than
proactive schemes. We now evaluate each claim in turn.

4.1 Slow convergence times lead to long FCTs
We test our claim by comparing FCTs of reactive vs proac-

tive schemes for various flow sizes on a single link. We ex-
plore the effect of higher link capacities and longer RTTs.
Setup: We use the same workload based on a Microsoft web
search datacenter cluster used in prior work [1, 3]. Flows ar-
rive according to a Poisson process and the flow size is cho-
sen based on empirically observed distributions. The work-
load has a diverse mix of small (1-10KB), medium (10KB-
1MB), and large (1MB-100MB) flows. By this definition,
14% of the flows are small, 56% are medium, and 30% are
large. We generate the workload over a simple dumbbell
topology with a single bottleneck link. We present results
for an average load of 60%; the results at other loads are
qualitatively similar.

Schemes compared: We compare the FCT for small, medium,
and large flows for reactive (RCP [12], DCTCP [1]) and
proactive (CHARNY [8], PERC) congestion control algo-
rithms. We normalize the results for each algorithm with an
IDEAL reference algorithm in which all flows always trans-
mit at the correct max-min rate. The normalization gives us
a common benchmark and lets us see how close different
schemes are to the ideal max-min FCT. In all of our experi-
ments, RCP uses a default initial advertised rate of 0.5 times
the link capacity, and the α and β parameters for the rate
update are set to 0.5 each (as suggested in [12]).

Results and Analysis
PERC performs reasonably for moderate link speeds and
round-trip times: With a 10G link speed and 12µs RTT (Fig-
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ure 4), PERC’s FCT is comparable to that of RCP across all
flow sizes. DCTCP performs better than RCP and PERC in
this case, but its performance degrades significantly at higher
link speeds and round-trip delays (see below).
PERC performs much better than RCP/DCTCP at higher
link speeds: If we increase link speed to 100G (Figure 5)
PERC outperforms the reactive algorithms, keeping the tail
FCT very low for medium flows. Because flows can be sent
much faster, medium flows that previously took 60 RTTs
now finish in as few as 6 RTTs. PERC quickly converges
to the optimal rates within the shorter lifetime of flows, but
the reactive algorithms have a much harder time. For some
flow rates DCTCP never reaches the fair share and this shows
up in the long tail FCT. For RCP, all flows get the same rate,
but it might be too low or too high (causing long queues).
The difference in tail FCT between PERC and reactive al-
gorithms is even more significant at higher RTTs: At higher
RTTs (Figure 1), reactive algorithms react more slowly since
the time from measurement to reaction increases. It takes
more steps to converge, and FCT grows. Note that the large
bandwidth-delay product at 100G and 120µs RTT causes
DCTCP to completely break down because the ramp-up time
for medium and large flows becomes prohibitively slow.

4.2 PERC converges faster than reactive and
state of the art proactive schemes

Setup: We consider a topology with one TOR connected to
four hosts. All 8 links, i.e., one up-link and one down-link
per host, have capacity 100G each. The RTT between hosts
is 12µs. We start with 32 flows between random pairs of
hosts, and then alternately add a new random flow or remove
an old one (randomly) after the transmission rates for the old
set of flows have converged.
Metric: We define convergence as the first time when each
of the flow rates have been within 10% of the optimal value
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Figure 6: CDF of convergence times for PERC, Charny’s algorithm
and RCP on an 8-link topology with 100G links. RTT is 12µs.

for at least 10 consecutive RTTs. We look at the number of
RTTs to converge for each of 3000 such flow changes.
Schemes compared: We compare the CDFs of convergence
times over all flow changes for RCP and the two proactive
schemes PERC and CHARNY in Figure 6.

Results and Analysis
PERC converges faster than other proactive algorithms: With
PERC, more than 99% of the flow changes take less than
10 RTTs to converge, whereas with CHARNY convergence
takes 50% longer. The median shows a similar trend. We
think PERC converges faster because in the PERC algorithm,
control messages carrying demands from flows to links carry
more information. In CHARNY, control messages contain a
single stamped rate for all links, which is updated by a link
if its fair share is smaller. On the other hand, in PERC, a
flow expresses a different demand for each link, which is the
maximum it can send based on what it has heard from all
other links.
Proactive schemes converge faster than reactive schemes:
The median convergence time for RCP is 14 RTTs, which
is twice that of CHARNY and more than 3x that of PERC.
The 99th percentile convergence times is comparatively even
worse at 71 RTTs, which is more than 5x that of CHARNY
and 7x that of PERC. RCP’s tail performance is particularly
poor if there are long dependency chains, as we show in the
next example.

4.3 Convergence times of reactive schemes scale
poorly with long dependency chains

While proactive schemes scale linearly with the length of
dependency chains [8], our initial simulations suggest that
reactive schemes are much worse.

For example, consider the three bottleneck-link scenario
shown in Figure 7. Links 1-3 are each shared by two flows,
of which one is bottlenecked at a later link (except flow D).
There is a dependency chain that spans three links. Figure 8
shows the time-series of the sending rates of the four flows
for PERC, RCP and IDEAL.

PERC converges to the correct rates for all flows within
100µs. At around 50 µs, flow C converges to 5 Gb/s at the
bottleneck, then at 100 µs, flows A and B use up all the spare
capacity on the 30 Gb/s and 60 Gb/s links. As the depen-
dency chains grow, the bottleneck information takes longer
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to propagate, growing lineraly with chain length.
RCP takes much longer to converge: flows C and D take

almost 600µs to converge, and flows A and B oscillate within
20% of the target rates for milliseconds (Figure 8 only shows
up to 1 ms). The bottleneck information takes time to propa-
gate in RCP too but the convergence behavior is much worse
with longer dependency chains.

5. DISCUSSION
Enhancements to PERC: In the basic message passing al-
gorithm, each flow a advertises a demand dal for each link l ∈
P (a) on its path in the packet headers. Fortunately, a demand
per hop is not necessary. Recall that the demand for a partic-
ular link is computed as: dal = minl′∈P (a),l′ 6=l{fl′}, where
(fl : l ∈ P (a)) are the fair share rates fed back by the links
on flow a’s path. We observe that the demands take only one
of two values: either the minimum or the second minimum
of the fair shares. Specifically, if link l∗ is the bottleneck link
on path P (a) (fl∗ is the smallest fair share), then dl = fl∗
for any link l 6= l∗; and dl∗ = minl′∈P (a),l′ 6=l∗{fl′} (second
minimum). This suggests a simple optimization where the
packet header carries only two demand values correspond-
ing to the minimum and second minimum fair share values.

Similarly, sending one control packet every RTT for each
flow can become untenable. For example, for a 3.2µs RTT,
a 40B packet each RTT corresponds to 100 Mb/s of con-
trol traffic per flow. The control overhead can be reduced by
piggybacking and only communicating values that change.
Note that control overhead is less important at higher speeds.
Implementing PERC in programmable switches: PERC
requires switches to compute their fair shares explicitly from
the advertised flow demands. The algorithm will need fur-
ther simplifications to be practical. Nonetheless, flexible ar-
chitectures such as Reconfigurable Match Action (RMT) [7]

and switch programming languages such as P4 [6] provide
avenues for PERC to be deployed.
Centralized Implementation: Proactive congestion control
could be implemented using a central rate allocator. Upon
each change (flow start or end), the central allocator would
calculate all sending rates in accordance with a rate allo-
cation policy (e.g., max-min fairness, earliest deadline first,
etc) and send the allocated rates to all affected flow. The cen-
tral implementation is conceptually simple and can support
arbitrary allocation policies but has challenges around scala-
bility and responsiveness. The central allocator may need to
scale to millions of flows with microsecond response times.
Yet, a central rate allocator would be more scalable than Fast-
pass [22], a recently proposed system that advocates central
control for every packet transmission (instead of every flow).

6. RELATED WORK
The tradeoff between convergence speed and stability has

long been recognized in the congestion control literature [18,
13]. XCP [18] and RCP [12] replaced TCP’s window size
adaptation with a more direct calculation at the switch to
achieve the right rates more rapidly. However, as we have
shown, these schemes are still rather slow and require many
round-trips to converge. Kelly [19] was the first to recog-
nize that congestion control can be thought of as solving an
optimization problem for resource allocation; this viewpoint
makes precise the intuition that reactive congestion control
protocols like TCP and RCP are distributed implementations
of a gradient descent procedure.

Many datacenter transports are optimized for different al-
location objectives, e.g., network latency [2, 1], bandwidth
guarantees [4, 17] , deadlines [27, 25], flow completion time [3,
14], and coflow completion times [10, 11]. While we focus
on max-min policy in this paper (the simplest objective most
general purpose congestion control objectives strive for), we
expect that our main observations regarding reactive vs proac-
tive schemes to apply to other objectives.

7. CONCLUSIONS
This paper makes three points: convergence time will be

an important metric for congestion control schemes as we
scale to higher speeds, proactive congestion control algo-
rithms can provide fast convergence times, and message pass-
ing algorithms like PERC can outperform traditional explicit
rate control algorithms. We also argue that faster conver-
gence times impact higher level metrics such as the tail la-
tency of medium and small flows. Given the new milieu
of programmable networks, we believe that proactive algo-
rithms like PERC are both needed and possible to deploy, at
least within high speed data centers.
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