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ABSTRACT
Network management relies on an up-to-date and accurate
view of many traffic metrics for tasks such as traffic engi-
neering (e.g., heavy hitters), anomaly detection (e.g., entropy
of source addresses), and security (e.g., DDoS detection).
Obtaining an accurate estimate of these metrics while using
little router CPU and memory is challenging. This in turn
has inspired a large body of work in data streaming devoted
to developing optimized algorithms for individual monitor-
ing tasks, as well as recent approaches to make it simpler
to implement these algorithms (e.g., OpenSketch). While
this body of work has been seminal, we argue that this tra-
jectory of crafting special purpose algorithms is untenable
in the long term. We make a case for a "RISC" approach
for flow monitoring analogous to a reduced instruction set
in computer architecture—a simple and generic monitoring
primitive from which a range of metrics can be computed
with high accuracy. Building on recent theoretical advances
in universal streaming, we show that this “holy grail” for
flow monitoring might be well within our reach.

Categories and Subject Descriptors
C.2.3 [Computer Communication Networks]: Network Op-
erations—Network Monitoring

General Terms
Algorithms, Measurement, Design

1 Introduction
Network management requires accurate and timely statistics
on a wide range of traffic measurements. Metrics such as the
flow size distribution [29], heavy hitters [4], entropy mea-
sures [30, 42] are used for a range of management appli-
cations ranging from traffic engineering [5, 26], attack and
anomaly detection [40], and forensic analysis [37].
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Figure 1: Sketch-based traffic monitoring requires care-
ful algorithm and data structure design customized for
each measurement task

Given the limited memory and computation power avail-
able for such measurements on routers, some form of sam-
pling is inevitable. In this respect, there are two classes of ap-
proaches by which these metrics can be obtained. The first
class of approaches rely on generic flow monitoring which
may be deterministic (e.g., counters for active flows in Open-
Flow [32] ) or use classical packet sampling (e.g., NetFlow [16]).
While generic flow monitoring is good for coarse-grained
visibility, it provides poor accuracy for more fine-grained
metrics [6, 22, 23, 33]. This has spawned a rich body of
work in sketching or streaming methods, where sophisticated
data streaming algorithms with provable resource-accuracy
tradeoffs are designed for specific metrics of interest (e.g.,
[8, 9, 11, 23, 24, 28, 31, 33]).

A key practical challenge that has hindered the adoption
of sketch-based algorithms is that each measurement task of
interest requires carefully crafted algorithms. As the number
of monitoring tasks grows, sketch-based monitoring requires
significant investment in algorithm design and hardware up-
grades to support new metrics of interest (Figure 1). While
recent approaches like OpenSketch [38] provide libraries to
reduce the implementation effort, they do not address the
fundamental need to design new custom sketches for each
task, nor do they provide a roadmap to support new sketch-
ing algorithms that require functions outside the library.

To break away from this undesirable trajectory of having
to craft a custom algorithm for each monitoring task, we ar-
gue that we need a capability akin to “RISC” architectures or



a reduced instruction set. Our vision is a UNIVMON (Uni-
versal Monitoring) architecture, where a simple and generic
monitoring primitive runs on a router. Based on the data
structures this UNIVMON primitive collects, we should be
able to obtain high accuracy estimates for a broad spectrum
of monitoring tasks, such that the accuracy is equivalent (if
not better) than running custom sketches for each task run-
ning with comparable compute and memory resources.

To date, however, this vision has been an elusive open
question in both theory [27] (Question 24) and in practice [35].
However, recent theoretical advances in universal streaming
have, for the first time in 20 years of research in sketching
algorithms, suggested a promising approach for creating a
single universal sketch that is provably accurate for a broad
spectrum of monitoring applications [7, 10, 13].

Our contribution in this paper is to bring to light these re-
cent theoretical advances to the networking community and
to show that universal streaming can be a viable basis for the
UNIVMON vision. To this end, we provide the first imple-
mentation and evaluation of the universal streaming primi-
tives from prior work [7, 10, 13]. We demonstrate that sev-
eral canonical flow monitoring tasks [24, 28, 30] are natu-
rally amenable to universal streaming. Finally, we use a
trace-driven analysis to quantitatively show that the UNIV-
MON approach can provide comparable accuracy and space
requirements compared to custom sketches.

The generality of universal streaming essentially delays
the binding of data plane computation and primitives to spe-
cific monitoring tasks, and thus UNIVMON provides a truly
software-defined monitoring approach that can fundamen-
tally change network monitoring analogous to SDNs. If our
research agenda succeeds, then it will naturally motivate hard-
ware vendors to rally around and develop optimized hard-
ware implementations, in the same way that a minimal data
plane in the (original) SDN architecture was key to get ven-
dor buy-in [25, 32]. Finally, this agenda opens up a range of
exciting new research directions in both theory and practice:
What other network monitoring tasks can we cover? Are
there distributed versions of universal streaming [35]? Can
we do universal streaming over multidimensional network
aggregates [17, 41]? Can we use this primitive to adaptively
zoom in to subspaces of interest [39]?

2 Background and Overview
In this section, we briefly review related work in the areas of
streaming algorithms and network monitoring before outlin-
ing the overarching vision of the UNIVMON approach.

2.1 Related Work
Many network monitoring and management applications de-
pend on sampled flow measurements from routers (e.g., Net-
Flow or sFlow). While these are useful for coarse-grained
metrics (e.g., total volume) they do not provide good fidelity
unless these are run at very high sampling rates, which is
undesirable due to compute and memory overhead.

This inadequacy of packet sampling has inspired a large

body of work in data streaming or sketching. This derives
from a rich literature in the theory community on streaming
algorithms starting with the seminal “AMS” paper [3] and
has since been an active area of research (e.g., [10, 15, 18,
20]). At the high level, the problem they address is as fol-
lows: Given an input sequence of items, the algorithm is al-
lowed to make a single or constant number of passes over the
data stream while using sub-linear, usually poly-logarithmic
space compared to the storage of the data to estimate de-
sired statistical properties of the stream (e.g., mean, median,
frequency moments, and so on). Streaming is a natural fit
for network monitoring and has been applied to several mea-
surement tasks including heavy hitter detection [24], entropy
estimation [31], and change detection [28].

A key limitation that has stymied the practical adoption of
streaming approaches is that the measurements from each al-
gorithm are tightly coupled to the intended metric of interest.
This forces vendors to invest time and effort in building spe-
cialized hardware components without knowing if these will
be useful for their customers. Given the limited resources
available on network routers and business concerns of router
vendors, it is difficult to support a wide spectrum of moni-
toring tasks in the long term.

The efforts closest in spirit to our UNIVMON vision is the
minimalist monitoring work of Sekar et al. [36] and OpenS-
ketch by Yu et al., [38]. Sekar et al, showed empirically that
flow sampling and sample-and-hold [25] can provide com-
parable accuracy to sketching when equipped with similar
resources. However, this work is purely trace-driven and
offers no analytical basis for this observation and does not
provide guidelines on what metrics are amenable to this ap-
proach. OpenSketch [38] addresses an orthogonal problem
of making it easier to implement sketches. Here, the router
is equipped with a library of predefined functions in hard-
ware (e.g., hash-maps or count-min sketches [18]) and the
controller can reprogram these as needed for different tasks.
While OpenSketch reduces the implementation burden, it
does not address the problem that many concurrent sketch
instances are needed to perform a diverse set of monitoring
tasks and that future tasks may fall outside the library.

In summary, prior works present a fundamental dichotomy:
generic approaches that offer poor fidelity and are hard to
reason about analytically vs. sketch-based approaches that
offer good guarantees but are practically intractable given
the wide range of monitoring tasks of interest.

2.2 UNIVMON Vision
Drawing an analogy to reduced instruction set architecture,
our overarching research agenda is to develop a truly “software-
defined” monitoring approach called UNIVMON as shown in
shown in Figure 2. In the data plane, UNIVMON employs
an online streaming primitive that populates a compact data
structure of counters. The key difference from traditional
streaming is that the UNIVMON data plane delays the bind-
ing between the work done in the online stage and the ulti-
mate measurement task. That is, given this set of counters



Figure 2: The architecture of Universal Monitoring

we can support a broad spectrum of statistical queries. In the
control plane, UNIVMON periodically retrieves the counters
being maintained by the data plane and then uses a set of es-
timation functions. These functions essentially translate the
specific query of interest into a specific computation on the
counters. Note that since this is “offline”, we can potentially
use more compute power in the control plane.

Given this vision, there are two fundamental challenges:

1. Do such data plane and control plane primitives exist to
support this vision?

2. Will this architecture be comparable in terms of accuracy
and overhead relative to custom sketches?

The answer to both questions, surprisingly, is yes. For
(1), we show that recent advances in universal streaming can
serve as an enabler for the UNIVMON vision. For (2), we
show a preliminary trace-driven evaluation that empirically
confirms that UNIVMON can offer comparable accuracy-resource
tradeoffs vs. custom sketches.

3 UNIVMON Design
In this section, we discuss recent theoretical advances in uni-
versal streaming [7, 10, 13] and how this can serve as a basis
for UNIVMON. We also show how several classical network
measurement tasks are amenable to this approach.

3.1 Theory of Universal Streaming
For the following discussion, we consider an abstract data
stream D(m,n) which is a sequence of length m with n
unique elements. Let fi denote the frequency of the i-th
unique element in the stream.

The intellectual foundations of many streaming algorithms
can be traced back to the celebrated lemma by Johnson and
Lindenstrauss [19]. This shows that N points in Euclidean
space can be embedded into another Euclidean space with an
exponentially smaller dimension while approximately pre-
serving the pairwise distance between the points. Alon, Ma-
tias, and Szegedy used a variant of the Johnson Lindenstrauss
lemma to compute the second moment (or the L2 norm of a
frequency vector) in the streaming model [3]. Namely, they
approximate with high probability the function

∑
i f

2
i , while

only using a small (poly logarithmic) amount of memory.
A natural question in a quest for universal streaming is

whether such methods [3] can be extended to more general
statistics of the form

∑
g(fi). We denote this statistic as the

function G-sum .

Class of Stream-PolyLog Functions: We begin by charac-
terizing the class of G-sum functions amenable to stream-
ing. Informally, streaming algorithms using a polylogarith-
mic amount of space complexity, are known to exist for G-
sum functions, where g is monotonic and upper bounded by
the function O(f2i ) [7, 10]. This is an informal explanation;
the precise characterization is more technically involved and
can be found in [10].1 Note that this only suggests that some
custom sketching algorithm exists if G ∈ Stream-PolyLog;
this makes no claim of universality.

Intuition Behind Universality: The surprising recent the-
oretical result of universal sketches is that for any function
g() where G-sum belongs to the class Stream-PolyLog de-
fined above can now be computed by using a single universal
sketch.

The intuition behind universality stems from the following
argument about heavy hitters in the stream. Informally, fi is
a heavy hitter if changing its value significantly affects the
G-sum value as well. For instance, consider the frequency
vector (

√
n, 1, 1, . . . , 1); here f1 is the L2 heavy hitter. Let

us call the set of these g-heavy elements the G-core.
Now, let us consider two cases:

1. There is one sufficiently large g-heavy hitter in the stream:
Now, if the frequency vector does have one (sufficiently)
large heavy hitter, then most of mass is concentrated in
these value. Thus, we can simply use the output of some
algorithm for detecting heavy hitters and this can estimate
G-sum . It can be shown that a heavy hitter for a (com-
putable) g is also a heavy hitter for the L2 norm [7, 10].
Thus, to computeG-core for g, we simply need to find L2

heavy hitters. In our implementation, we use the Count
Sketch [15] algorithm to find L2 heavy hitters.

2. There is no single g-heavy hitter in the stream; i.e., no
single element contributes significantly to the G-sum:
When there is single large heavy hitter, it can be shown
that G-sum can be approximated w.h.p. by finding heavy
hitters on a series of sampled substreams of increasingly
smaller size. The exact details can be found in [10] but
the main intuition comes from standard tail bounds such
as Chernoff or Hoeffding. Each substream is defined re-
cursively by the substream before it, and is created by
sampling the previous frequency vector by replacing each
coordinate of the frequency vector with a zero value with
probability 0.5. Repeating this procedure k times reduces
the dimensionality of the problem by a factor of 2k. Then,
summing across heavy hitters of all these recursively de-
fined vectors, we create a single “recursive sketch’ which
gives a good estimate of G-sum [12].

1While streaming algorithms are also known for functions that
grow asymptotically faster than g = f2

i [8] they cannot be com-
puted in polylogarithmic space due to the lower bound from [14].



Figure 3: High-level view of the universal sketch con-
struction that inspires the UNIVMON Design

Universal Sketch Construction: Combining the ideas for
the two cases described above, we now have the following
universal sketch construction. In the online stage, we main-
tain log(n) parallel copies of Count Sketch, one for each sub-
stream as described in case 2 above. Observe that the num-
ber of unique elements in the input stream for each copy of
Count Sketch is expected to be half the number of elements
of the Count Sketch before it. This is shown in the “Data
Plane” section of Figure 3. In the offline estimation stage,
we use the output of these Count Sketches and applying the
function g we wish to approximate, we are able to obtain our
result as shown in the “Control Plane” section of Figure 3.

We can show that with this is in fact a universal sketch
construction that can efficiently estimate any function in Stream-
PolyLog. The proof of this theorem is outside the scope
of this paper and we refer readers to the previous work of
Braverman et al [10].

3.2 UNIVMON Data Plane
The UNIVMON data plane essentially follows the structure
of the online phase described above. We maintain many par-
allel instances of our Count Sketch data structure. Next, we
describe the procedure of the algorithm for the j-th instance,
but the procedure is the same for instances.

For instance j, the algorithm processes incoming 5-tuples
and uses an array of j hash functions hi : [n] → {0, 1} to
decide whether or not to sample the tuple. When 5-tuple tup
arrives in the stream, if for all h1 to hj , hi(tup) = 1, then
the tuple is added toDj , the sampled sub-stream. Otherwise,
the value is thrown out. Then, for sub-stream Dj , we run
an instance of Count Sketch as shown in Algorithm 1, and
visualized in Figure 3. This creates substreams of decreasing
lengths as the j-th instance is expected to have all of the
hash functions agree to sample half as often as the (j− 1)-th
instance. This simple data structure is all that is required for
the online computation portion of our algorithm. The output
of the Count Sketches is then aggregated in the control plane.

3.3 Control Plane Design
The UNIVMON control plane’s goal is to estimate different
G-sum functions of interest. The algorithm used by the con-
trol plane to aggregate the various sampled sketches for a
2In this way, we obtain log(n) streams D1, D2 . . . Dlog(n); i.e., for
j = 1 . . . logn, the number of unique items n in Dj+1, is expected
to be half of Dj

Algorithm 1 UNIVMON Data Plane Algorithm

1. Generate log(n) pairwise independent hash functions
h1 . . . hlog(n) : [n]→ {0, 1}.

2. For j = 1 to log(n), in parallel:

(a) when a packet ai in D arrives, if all
h1(ai) . . . hj(ai) = 1, sample and add ai toDj .2

(b) run Count Sketch on Dj .

3. Output heavy hitter counters Qj from Count Sketch.

Algorithm 2 UNIVMON Control Plane Algorithm

1. Construct a set of Q′
j with entries w′

j(i) = g(wj(i)).

2. Compute Ylog(n) = |Q′
log(n)|.

3. For each j from log(n)− 1 to 0:

Compute Yj=2Yj+1+
∑

i∈Q′
j
(1−2hj+1(i))w

′
j(i)

4. Return Y0.

givenG-sum is shown in Algorithm 2. This method is based
on the Recursive Sum Algorithm from [12].

The input to the control plane algorithm is the output of
the data plane from Algorithm 1; i.e., a set of {Qj} buckets
maintained by the Count Sketch from parallel instance j. Let
wj(i) be the counter of the i-th bucket in Qj . hj(i) is the
hash of the value of the i-th bucket in Qj corresponding to
the hash function for instance j as instantiated in Algorithm
1. The output of Algorithm 2 is an unbiased estimator of
G-sum .

In this algorithm, each Y is recursively defined, with Yj is
function g applied to each bucket of Qj , the Count Sketch
for substream Dj , and the sum taken on these values. Note
that Qlog(n) is the sparsest substream, and we begin by com-
puting Ylog(n). Thus, Y0 can be viewed as computingG-sum
in parts using these sampled streams.

3.4 Application to Network Measurement Tasks
As discussed earlier, if a function G ∈ Stream-PolyLog, then
it is amenable to estimation via the universal sketch. Here
we show that a range of network measurement tasks can be
formulated via suitable some G ∈ Stream-PolyLog, and thus
can be efficiently captured using the UNIVMON approach.
The network traffic is a stream D(n,m) with m packets and
at most n unique flows. For simplifying the discussion, we
consider the case where all flows have the same destination
address; however, this does not impact correctness in the
general case.

Heavy Hitters: To detect ‘heavy hitters’ in the network traf-
fic, our goal is to identify the flows that consume more than
a fraction α of the total capacity [25]. Consider a function
g(x) = x such that the corresponding G-core outputs a list
of heavy hitters with(1± ε)-approximation of their frequen-
cies. For this case, G is in Stream-PolyLog and we have an
algorithm that provides G-core. This is technically special
case of the universal sketch; we are not ever computing a



G-sum function and using G-core directly in all cases.

DDoS: Suppose we want to identify if a host X that may
be experiencing a Distributed Denial of Service (DDoS) by
checking if more than k unique flows from different sources
are communicating with X [38]. To show that the simple
DDoS problem is solvable by the universal sketch, consider
a function g that g(x) = x0. Here g is upperbounded by
f(x) = x2 and sketches already exist to solve this exact
problem. Thus, we know G is in Stream-PolyLog and we
approximate G-sum in polylogarithmic space using the uni-
versal sketch. In terms of interpreting the results of this mea-
surement, if G-sum is estimated to be larger than k, a spe-
cific host is a potential DDoS victim.

Change Detection: Change detection is the process of iden-
tifying flows that contribute the most to traffic change over
two consecutive time intervals. As this computation takes
place in the control plane, we can store the output of the
universal sketches from multiple intervals without impacting
online performance.

Consider two adjacent time intervals tA and tB . If the
volume for a flow x in interval tA is SA[x] and SA[x] over
interval tB . The difference signal for x is defined as D[x] =
|SA[x] − SB [x]|. A flow is a heavy change flow if the dif-
ference in its signal exceeds φ percentage of the total change
over all flows. The total difference is D =

∑
x∈[n]D[x]. A

flow x is defined to be a heavy change key iff D[x] ≥ φ ·D.
The task is to identify these heavy change flows. We assume
the size of heavy change flows is above some threshold T
over the total capacity c.

We can show that the heavy change flows areL1 heavy hit-
ters on interval tA (a1 · · · an/2) and interval tB (b1 · · · bn/2),
where L1(tA, tB) =

∑
|ai − bi|. L1 norm is in Stream-

PolyLog, andG-sum/G-core can be solved by universal sketch.
The G-sum outputs the estimated size of the total change D
and G-core outputs the possible heavy change flows. By
comparing the outputs from G-sum and G-core, we can de-
tect and determine the heavy change flows that are above
some threshold of all flows.

Entropy Estimation: We define entropy with the expres-
sion H ≡ −

∑n
i=1

fi
m log( fim ) [30] and we define 0 log 0 = 0

here. The entropy estimation task is to estimate this H for
source IP addresses (but could be performed for ports or
other features).

To compute the entropy,H = −
∑n

i=1
fi
m log( fim ) = log(m)

− 1
m

∑
i fi log(fi). As m can be easily obtained, the diffi-

culty lies in calculating S =
∑

i fi log(fi). Here the func-
tion g(x) = x log(x) is bounded by g(x) = x2 and is sketch-
able, thus it is in Stream-PolyLog and S can be estimated by
universal sketch.

4 Preliminary Evaluation
In this section, we present a preliminary trace-driven evalua-
tion comparing the performance of our UNIVMON approach
vs. specialized sketches.

Setup: We have implemented (in software) the key algo-
rithms and data structures for the online and offline compo-
nents of UNIVMON. This is a preliminary and unoptimized
implementation and there is room for much improvement
in memory and CPU consumption. We have implemented
the offline translation functions for four monitoring tasks:
Heavy Hitter detection (HH), DDoS detection (DDoS), Change
Detection (Change), and Entropy Estimation (Entropy). We
compare against corresponding optimized custom sketch im-
plementations from the OpenSketch software library for HH,
Change, and DDoS [2]. OpenSketch does not yet support
Entropy and thus we do not report results for OpenSketch
for Entropy. For brevity, we focus on each of these metrics
computed over one feature, namely the source IP address.

For the purposes of this evaluation, we use a one-hour
backbone trace collected at backbone link of a Tier1 ISP be-
tween Chicago, IL and Seattle, WA in 2015 [1]. We have
repeated these experiments on other traces and found quali-
tatively similar results and do not report these due to space
constraints. We assume that we have a single switch process-
ing this trace and that in both cases the “controller” period-
ically polls the switch for the sketch every 5 seconds. That
is, the memory numbers reported are roughly for a 5-second
trace. Both UNIVMON and OpenSketch are randomized al-
gorithms; we run the experiment 20 times and report the me-
dian and standard deviation over these 20 independent runs.

 0.1
 1

 10

0.1 0.2 0.35 0.6

E
rr

o
r 

R
a
te

 (
%

)

Memory Usage (MB)

Universal Sketch
OpenSketch

(a) Relative error rate

 0.1

 1

 2

 3

0.1 0.5 1 1.5 2 2.5F
a
ls

e
 P

o
s
ti
v
e
 R

a
te

 (
%

)

Memory Usage (MB)

Universal Sketch
OpenSketch

(b) False positive rate
Figure 4: HH result

Accuracy vs. Memory: First, we evaluate the accuracy
vs. memory tradeoff of UNIVMON vs. OpenSketch for HH,
DDoS, and Change. Figures 4 and 5 show the results for
HH and DDoS respectively. In each case, we report the false
positive and negative rates separately. For HH, we config-
ured the sketches so that we are interested in reporting any
destination that consumes more than α = 0.5% of the link
capacity. In both figures, we see that UNIVMON consumes
slightly more memory to reach a similar error rate. The key
takeaway however is that the absolute error rates are quite



small for both applications and the error rates are compa-
rable to OpenSketch once we cross 1MB. Furthermore, the
small increased memory consumption of UNIVMON comes
at a dramatically increased flexibility and generality across
the suite of applications. That is, OpenSketch is in effect us-
ing K-times as many resources if there are K distinct tasks
as it instantiates a separate sketch when we look at the set
of applications, whereas UNIVMON uses a single universal
sketch instance.

Figure 6 shows the error rate for Change Detection appli-
cation. Here, we observe an interesting reversal of trends—
UNIVMON is actually better. This is because the universal
streaming approach is inherently better suited to capturing
“diffs” across sketches, whereas traditional sketches need to
explicitly create a new complex sketch for the change detec-
tion task. Finally, Figure 7 shows that the error of UNIV-
MON for the entropy estimation task is also quite low even
with limited memory.
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Figure 5: DDoS detection

Overhead: One concern might the computational cost of
the universal streaming primitive vs. custom sketch primi-
tives. To understand this, we used the Intel Performance
Counter Monitor (PCM) [21] to evaluate various compute
overhead measures (e.g., Total cycles on CPU). For data plane
performance, UNIVMON takes 1.407×109 total cycles on
CPU to support all simulated applications while OpenSketch
needs in total 2.941×109. In general, we found that the cost
of OpenSketch was quite variable across applications. In the
worst case, our unoptimized implementation was only 10-
15% more expensive and in some cases it was more than 2X
more efficient. We leave a more systematic analysis of the
computation cost of universal streaming and techniques to
optimize it as a direction for future work.

In summary, our preliminary evaluations are quite promis-
ing —we observe comparable or sometimes even better ac-
curacy and overhead relative to custom sketches.
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Figure 6: Change detection error
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5 Discussion

We conclude by highlighting a subset of new and exciting
opportunities for further research that UNIVMON opens up.

Reversibility: The reliance on hash functions, and a result
of using hash functions with small memory algorithms, is
that the ‘keys’ are thrown out to save space. For network
monitoring tasks such as change detection, it is important
to understand which keys have caused anomalous network
traffic. A natural question is whether we can reverse the uni-
versal sketch using reversible hash functions [34].

Multidimensional data: We can consider the IP 5-tuple a
piece of high-dimensional data and the various n < 5 tuples
to be subsets. Ideally, we want to avoid explicitly creating a
sketch per subset of features (e.g., src-dst combination). This
area relates closely to hierarchical heavy hitters [17,41], and
is a potential area for extending UNIVMON.

Dynamic monitoring adjustments: Operators may want
the ability to adjust the granularity of the measurement dy-
namically to adaptively zoom in on sub-regions of interest [39].
One approach may involve dynamically increasing or de-
creasing the size of the sketches per switch to increase reso-
lution in certain parts of the network.

Distributed monitoring: In spite of the lightweight nature
of sketches, some switches may get overloaded while other
locations have a lighter load. A natural direction would be to
distribute the workload across multiple devices [35].

Feasibility of hardware implementation: Finally, our cur-
rent work shows that the in-software overhead of UNIVMON
is comparable to OpenSketch. A natural extension is to ex-
plore if this translates into efficient implementations on com-
modity switch hardware.
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