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ABSTRACT
What determines the eventual success of a protocol?
Are certain features or properties more important? Do
those vary according to a protocol’s type? We explore
these questions by applying data mining techniques to
a rich repository of protocol specifications; IETF RFCs.
While the investigation is still preliminary, some inter-
esting findings have emerged. It confirms a number of
intuitive results such as backward compatibility being
key for protocol extensions and new versions, but not
for new protocols. Similarly, the ability to improve per-
formance is the single most important factor in the suc-
cess of data plane protocols. Less intuitive findings,
however, also emerge. Adding value to other protocols
was the most significant factor in the success of new
protocols, while extensions targeting security were the
most likely to fail among new application and transport
layer protocols. The paper offers a brief overview of our
methodology and of the initial results it has afforded.
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1. INTRODUCTION
Over the past decades, the networking community has

learned much about protocol design. However, we know
much less about what controls a protocol’s success in the
“real world”. IPv6 is a well-known instance, which more
than two decades after its introduction still struggles
to achieve wide adoption. And there are many other
examples. Since 1969 the Internet Engineering Task
Force (IETF) has produced over 3100 standards track
Request for Comments (RFCs). However, in spite of a
rigorous vetting process, success, i.e., wide adoption by
their target audience, has eluded close to half of them1.

This raises important questions that, except for the
investigation of RFC 5218 [10], have received little at-
tention to-date2. In particular, are specific features or
properties more important than others when it comes to
influencing a protocol’s success? Clearly, technical cor-
rectness is important, but we have arguably made much
progress in weeding out flawed protocols. External fac-
tors such as luck or commercial interests will always be
present, but are unlikely to translate into systematic bi-
ases. The question is whether it is possible to carry out
a quantitative and statistically rigorous investigation of
protocols and protocol extensions3 to identify factors
with a significant influence on their success (or failure).

In this paper, we apply statistical tools to mine a
rich and diverse repository of protocols, namely stan-
dards track RFCs. Standards track RFCs correspond to
protocols that have progressed through rounds of dis-
cussions in an IETF Working Group (WG), and been
deemed stable and significant enough to warrant formal
publication. This should, therefore, eliminate techni-
cally flawed protocols, as well as those with little com-
munity support. Our goal is to identify statistically sig-
nificant features that play an important role in a pro-
tocol’s success, with success defined as “broad-based”

1A random sample of close to 200 standard tracks RFCs
yields a success rate of about 60%.
2The other related body of works is “network economics”,
e.g., [6], that has a very different focus.
3For conciseness and unless otherwise warranted, we use the
term protocol to refer to both new protocols and extensions
or new versions of existing protocols.



adoption among its intended users. Note that in iden-
tifying such features, we do not seek to build a predic-
tion tool. Instead, we aim to offer guidance to protocol
designers by highlighting features that may be of par-
ticular significance for different types of protocols.

Our approach is three-prong. We first identify fea-
tures that reflect protocol characteristics, which may
play a role in their success. Crafting such a list is a
somewhat subjective process that borrows on our expe-
rience with protocols and protocol design. We discuss
our approach and its outcome in Section 2. Next, we
construct a data set for our statistical analysis. This
data set is built from a sample of standards track RFCs
(Section 3 discusses the selection process), which are
then characterized in terms of their features and labeled
as successful or not. Finally, as described in Section 4,
we apply a well-established classification framework to
extract protocol features that show statistically signifi-
cant correlation with the success or failure of protocols.
The results are analyzed in Section 5 to explore their
implications, as well as perform limited validation.

2. PROTOCOL ADOPTION FEATURES
Network protocols span many functionalities, designs,

and implementations. How do we capture features that
set them apart, possibly influencing adoption outcomes?
In this section, we put forward a nomenclature that
incorporates both traditional differentiators used when
describing protocols, e.g., the layer they target, and as-
pects of value and dependencies on other protocols.

2.1 Characterizing Protocols
We characterize features that may affect a protocol’s

adoption along three axes: (i) functionality and role;
(ii) impact and/or dependency on other protocols; and
(iii) value and how it is realized. A protocol’s function-
ality and role affect when and where it is needed. How
and how much a protocol interfaces to other protocols
or requires them to change can make adoption harder
or easier. Finally, the benefits that a protocol affords its
users and when it allows them to accrue those benefits
likely also plays a major role in its adoption.

The first axis partitions protocols according to the
position (layer) they occupy in the protocol ecosystem.
The second characterizes a protocol based on its interac-
tions with other protocols, including earlier versions of
itself, when applicable. The third axis reflects the pro-
tocol’s functionality and its ability to realize its value.

Before detailing the resulting list of features, we first
highlight two key properties we enforce to facilitate sta-
tistical analysis. Specifically, protocol features must be:
(i) Binary4: This is to lower the “noise” inherent when
measuring continuous valued functions.

4Categorical features (e.g., protocol type) can be trans-
formed to binary features.

(ii) Objectively measurable: This is again intended to
limit the measurement noise that arises when subjective
assessments are used to set a feature’s value.

2.2 Features List
In investigating factors that may be influencing adop-

tion, we consider the following twenty protocol features:

2.2.1 Protocol Functionality
The concept of layering has played a strong role in

the design of communication protocols, and accordingly
layers provide rough boundaries along which to parti-
tion protocols and their functionalities. Additional cat-
egories are, however, necessary to distinguish between
protocols with similar functionality but targeting dif-
ferent users, e.g., end-users vs. the network itself. This
led to the formulation of the following six features or
categories under which to classify protocols:

(1) Application (A): Protocols that provide differ-
ent means of network communication to users, e.g., ssh;

(2) Transport (T): Protocols that deal with end-
to-end connectivity functionality, e.g., TCP;

(3) Network Services (S): Protocols that target
services that facilitate network use, e.g., DNS;

(4) Network Control Plane (C): Protocols that
affect network configuration, e.g., RSVP;

(5) Network Routing Plane (R): Protocols that
determine packet forwarding, e.g., BGP;

(6) Network Data Plane (D): Protocols that deal
with packet format and handling, e.g., IPv6

This classification omits Link and Physical layer pro-
tocols. The primary reason is that the IETF targets
very few protocols in these categories, with IEEE and
other bodies the main venues for their standardization.

2.2.2 Impact or Dependency on Other Protocols
These features capture the impact or dependency of

a protocol on other protocols or network components,
as well as its interactions with them. The information
needed to identify them can be extracted from the pro-
tocol’s RFC and accompanying documents.

(7) New protocol vs. extension/version of an
existing protocol: A new protocol is a clean design,
while an extension/version of a protocol inherits and/or
builds on its predecessor. This creates different adop-
tion challenges, e.g., extensions/versions need to inter-
act with an installed-base, while new protocols may
need to displace a functionally similar protocol.

(8) Replacing another protocol: This applies to
new and existing protocols seeking to replace an existing
one. Displacing an incumbent can be challenging.

(9) Requiring changes to other protocols: A
protocol may require changes to other protocols, e.g.,
TCP’s Explicit Congestion Notification affects the IP
header, which creates additional adoption hurdles.



(10) Generating value for other protocols: A
protocol can benefit others, e.g., IPSEC offers security
to upper layer protocols, which can help adoption.

(11) Affecting network (hardware or software)
components: A protocol may require changes to net-
work components, e.g., IPv6 impacts router hardware
and software. Deploying them can delay adoption.

(12) Backward compatibility: This applies to pro-
tocol extensions/versions and their ability to interoper-
ate with earlier versions, e.g., TCP SACK. The extent
to which they can likely affects adoption.

2.2.3 Value and its realization
We distinguish between three main value categories,

namely, performance, security, and scalability, plus one
“catch-all” category.

(13) Performance: This covers improvements to
communication throughput or latency, e.g., as in some
TCP extensions.

(14) Security: This includes authentication and en-
cryption aspects, as well as protocol mechanisms aimed
at strengthening communication integrity.

(15) Scalability: Accounts for a protocol’s ability
to efficiently operate at Internet’s scale.

(16) Others: A place-holder for motivations that do
not belong to any of the above three categories.

While the above features identify where the value of a
protocol might lie, another important aspect is realizing
this value. Does value grow with adoption, and if yes,
how? We distinguish between four different scenarios.

(17) Local: Full value is realized even under limited
(individual) adoption. Mobile IP can, for example, be
argued to fall in this category.

(18) Domain-wide: Adoption within the realm of
a single management entity, e.g., an Autonomous Sys-
tem, is sufficient to unlock the protocol’s value. This is
common with intra-domain routing protocols.

(19) Internet-wide: Realizing the bulk of the pro-
tocol’s value calls for widespread adoption, e.g., as is
the case with IPv6.

(20) Increasing: The value of many protocols in-
creases with adoption, e.g., the benefits of DNSSEC
grow, the more widely adopted it is.

3. DATA COLLECTION
We construct a representative sample of RFCs in three

steps. The first eliminates all RFCs issued after 2009.
This ensures enough time has elapsed since the pro-
tocol’s initial release to reasonably assess its adoption
status. The second step focuses on producing an un-
biased subset of RFCs. This relied on combining two
sampling methods, each producing 100 RFCs.

The motivation for using two different sampling meth-
ods is to avoid over-sampling “popular” protocols that
tend to see many extensions and correspondingly gen-

erate a large number of RFCs, i.e., a random sampling
tends to sample popular protocols more often than other
protocols, thereby introducing a bias that favors fac-
tors correlated with those protocols. The first sampling
method (referred to as “random”) randomly samples all
pre-2009 standards track RFCs. The second method
(referred to as “WG-based), first selects one major5

RFC from each (active or archived) IETF WG, and then
randomly samples the resulting set.

The third step is a data sanitization step applied to
both samples. It removes duplicate instances of RFCs
and “irrelevant” RFCs, e.g., RFCs offering ancillary in-
formation on a protocol such as Management Informa-
tion Bases (MIBs). RFCs dealing with Link or Physical
layer protocols were also removed in this step. The final
set of RFCs included 173 distinct RFCs.

The next and most time consuming step consists of
characterizing the protocol of each RFC according to
the features of Section 2, and label it as successful or
not. This is a manual step that relies on our own ex-
perience with protocols, and a broad range of external
sources, e.g., books, technology blogs, source code fo-
rums, product web pages, IETF mailing lists, etc. This
process, while lengthy, was to some extent simplified
by the fact that we dealt primarily with binary deci-
sions for each feature. This mitigated the impact of
unavoidable inaccuracy in the information that led to
classifying each protocol as either having or not having
a particular feature. The result of this classification is
available in the form of a spreadsheet6. Each row in
the spreadsheet maps to one of the 173 protocols under
consideration, while columns correspond to the features
of Section 2 and to the label of successful vs. not suc-
cessful. Many cells include comments highlighting the
motivations behind their setting and/or pointers to doc-
umentation supporting the choice that was made.

As protocol functionality arguably represents a nat-
ural partitioning, Table 1 presents classification results
for functionality features, together with the correspond-
ing number of protocols deemed successful in our two
samples, random and WG-based.

RFCs A T S C R D Succ.

Random (83) 24 8 21 3 22 5 55

WG-based (90) 26 6 24 11 7 16 52

Table 1: Classification statistics by functionality

4. METHODOLOGY
Given our relatively small dataset and our goal of

identifying features that play a major role in a proto-
5Major RFCs are either a new protocol or a significant
change to a protocol, independent of their success.
6https://docs.google.com/spreadsheets/d/
1JZzryCZ0h52iPgHqOFcn2HHAUpCC5dyUnf2qrAJc8oE.



col’s adoption, we considered statistical methods such
as logistic regression, decision trees, or Logistic Model
Trees (LMT), instead of less-transparent and more data
demanding algorithms such as neural networks and K-
nearest neighbor [11]. We eventually settled on binary
logistic regression7, since our focus is on the interpretabil-
ity of the results (i.e., regression is more transparent in
terms of which factors/features are significant, and in
quantifying their relative effects).

The relatively large number of features we rely on to
characterize protocols8 (see Section 2), leads us to first
use stepwise regression to isolate features (a model) with
the highest classification impact. Stepwise regression
adds features one-by-one in its forward mode and re-
moves them, also one-by-one, in its backward mode, and
at each step examines whether a particular criterion,
e.g., Akaike Information Criterion (AIC), or Bayesian
Information Criterion (BIC) [7], is minimized9. In our
analysis, we focus on AIC (essentially a measure of the
model’s quality based on a trade-off between its good-
ness of fit and its complexity), as it proved the most
efficient in selecting a model. Results for BIC and other
criteria were, however, qualitatively similar.

Once key features have been identified, we feed them
to the binary logistic regression. A positive (negative)
outcome corresponds to an RFC classified as success-
ful (unsuccessful). We rely on JMP 12 [2] for step-
wise regression and binary logistic regression, and for
the statistics it provides to characterize the outcome
of the classification. Weka 3-7-12 [3] is used for cross-
validation (see below), and to generate a confusion ma-
trix. Because of our relatively small data set (and large
number of features), we can face a quasi-separation prob-
lem where the model overfits the data. It memorizes
the data instead of learning the relationship between
the response and the features. The resulting model co-
efficients are then not statistically significant, and the
model offers little classification value. When faced with
such a scenario, we rely on built-in regularization tools
in Weka and JMP, namely, Ridge Regression and Firth
Bias-Adjusted Regression, to avoid overfitting.

The outcomes identify which features play important
roles in a protocol’s success or failure through two main
metrics, odds ratio and statistical significance (i.e., p-
value). The odds ratio captures the odds that an out-
come occurs given the presence of a particular feature,
compared to the odds of the outcome occurring in the
absence of that feature; odds ratio values less (greater)

7“The binary logistic model is used to predict a binary re-
sponse based on one or more predictor variables (features),
making it a probabilistic classification model in the parlance
of machine learning” [1].
8As a pre-analysis step, we adjusted the set of features to
remove any multi-collinearity between them.
9We also considered p-value thresholds, which enters (re-
moves) a feature to (from) the model only if its significance
meets the “enter” or “leave” thresholds.

than 1 imply the existence of a negative (positive) cor-
relation. The statistical significance of each feature is
characterized through a likelihood ratio test. This test
compares the model’s likelihood to that of an alternative
model from which the feature is absent. The p-value is
then obtained assuming a χ2 distribution for the test
statistic. The smaller the p-value, the less likely the
alternative model from which the feature is absent10.

The odds ratio and p-value reflect our focus on identi-
fying features likely to play an important role in a pro-
tocol’s success, rather than developing a “predictor” for
a protocol’s eventual success. However, we also consider
metrics that evaluate the model’s predictive accuracy.

The first is the (random) 5-fold cross-validation ac-
curacy [8]. 5-fold cross-validation randomly divides the
dataset into 5 equal subsets, and uses each subset as a
test set, with the other four used to train the classifier.
The classification rates on each test set are averaged to
build the 5-fold cross-validation classification accuracy.

Another relevant metric is the“confusion matrix”that
consists of True Positive (TP), False Negative (FN),
True Negative (TN), and False Positive (FP) rates. It
measures the classifier’s ability to correctly identify suc-
cessful and unsuccessful protocols. TP (TN) is the frac-
tion of successful (unsuccessful) RFCs properly classi-
fied. Conversely, FP (FN) is the fraction of unsuccessful
(successful) RFCs classified as successful (unsuccessful).

5. INITIAL RESULTS
This section reports results from applying the classi-

fication of Section 4 to the 173 RFCs in our data set.
The (random) sampling process that generated our

173 RFCs, arguably resulted in a disparate set of pro-
tocols. This reflects protocol diversity, but makes it
unlikely that the same features are behind the success
(or failure) of each one of those 173 protocols. This begs
the question of whether seeking to identify a common
set of features is meaningful in the first place. And if
not, how should we instead group protocols?

We explore this issue by first applying our classifier to
the full set of 173 protocols, and then separately to new
and extensions or new versions of existing protocols.
Stepwise regression generated a relatively large set (6
and 8) of “relevant” features when applied to either all
or to only existing protocols, but somewhat surprisingly
only one feature for new protocols. The large number
of features for the first two categories is consistent with
our expectations given the underlying protocol diver-
sity, and makes interpreting the results difficult. For
new protocols, the one feature singled-out was “adding
value to other protocols,” which, as we shall see next,
emerges as a common theme for many sub-categories
of protocols. Hence, pointing to its likely importance
across new protocols of different types.

10We target a significance ≥ 95%, i.e., a p-value ≤ 0.05.



Odds ratios were middling (mostly in the 2-4 range for
positive correlations, and similarly for negative correla-
tions), but improved slightly when separating protocols
into new and existing versions. A similar pattern was
observed for p-values. A few values fell below the target
95% confidence, and separating protocols into new and
existing again only produced minor improvements.

This motivated grouping protocols into more consis-
tent sets, whose success would then more likely depend
on similar features. A natural grouping is along a proto-
col’s functionality, or closely aligned with it11. We rely
on such a grouping, and report next the results of our
classification for each group. Results for the first two
groups are split between new and existing protocols, but
aggregated for the last three groups primarily because
they include too few protocols (something we plan to
address in the future). The results are presented in the
form of tables with rows listing the features identified
by stepwise regression, and for each feature highlighting
its odds ratio (OR) and statistical significance (p-value).
The last two rows report the 5-fold cross validation ac-
curacy (Accuracy) and the confusion matrix.

5.1 Application & Transport Layer Protocols
Our first group combines application and transport

(A & T) layer protocols. They share many properties,
e.g., both reside primarily in end-systems, but more
particularly, have in common that their value usually
increases with adoption. This is rarely so with other
types of protocols.

Feature OR p-value

Value for other prot. 12.60 0.014

Accuracy 72.7%

Confusion Matrix
TP= 0.58 FN= 0.42
TN=0.90 FP= 0.10

Table 2: New A & T protocols (22 RFCs)

Table 2 reports results for new protocols and high-
lights that adding value to other protocols is the single
most important factor behind the success of a new A
& T protocol. In hindsight, this may be intuitive for
transport protocols which need to demonstrate value to
applications (and application protocols) to be adopted,
e.g., RTP adds value to SIP and other streaming ap-
plication layer protocols. This is less so for application
layer protocols, though many interact with other appli-
cation layer protocols; in the process potentially con-
tributing value to those protocols. Note also that the
importance of this feature does not mean it is manda-
tory for a protocol’s success. As a matter of fact, the
high FN value indicates that close to 40% of successful
protocols did not have it.

11As a sanity check, “arbitrary” groupings were also investi-
gated, and consistently yielded poorer outcomes.

Features OR p-value

Backwards compatibility 48.51 0.001

Security motivation 0.046 0.011

Accuracy 83.3%

Confusion Matrix
TP= 0.88 FN= 0.12
TN=0.63 FP= 0.37

Table 3: Existing A & T protocols (42 RFCs)

Results for existing A & T protocols are presented
in Table 3. They show that backward compatibility
and security-motivated extensions influence success pos-
itively and negatively, respectively. Both are relatively
intuitive. We expect backward compatibility to be im-
portant for existing protocols. Conversely, we know
from experience the struggles that security-motivated
protocols commonly face, e.g., [9]. We also note that
accuracy and TP rates are higher than for new pro-
tocols, but that so are FP rates. In other words, few
successful protocols lack both features, but having them
is by itself no guarantee of success, i.e., the features are
correlated with success but far from causal.

5.2 Network Services Protocols
Network services protocols (S) have many aspects in

common with A & T protocols, and therefore so do their
results even if differences exist.

Feature OR p-value

Value for other prot. 22.00 0.009

Accuracy 83.33%

Confusion Matrix
TP= 0.92 FN= 0.08
TN=0.67 FP= 0.33

Table 4: New S protocols (18 RFCs)

Table 4 points again to the need for new S protocols to
add value to other protocols if they are to succeed, and
its odds ratio and significance are even stronger than
for A & T protocols. This may be because network
services’ primary purpose is to facilitate network usage,
so that offering easier access or added functionality to
other protocols is of even greater importance.

Table 5 reports results for existing S protocols and
includes again backward compatibility as a key feature;
one now present in all successful protocols (TP = 1),
though not by itself a guarantee of success (FP = 0.67).
Security is, however, now absent; maybe because the
smaller ecosystem of network services makes the adop-
tion of security extensions “slightly” less challenging?

5.3 Network Control Plane Protocols
Network control plane (C) protocols differ from net-

work services protocols primarily in that they target the
network as opposed to network users. So while both



Feature OR p-value

Backwards Compatibility 16.41 0.011

Accuracy 70.37%

Confusion Matrix
TP= 1 FN= 0

TN=0.33 FP= 0.67

Table 5: Existing S protocols (27 RFCs)

share close ties to the network, their success can be af-
fected by different features, as reported in Table 6.

Features OR p-value

Domain-wide value 18.33 0.037

Value for other prot. 6.60 0.076

Accuracy 78.57%

Confusion Matrix
TP= 0.71 FN= 0.29
TN=0.86 FP= 0.14

Table 6: C protocols (14 RFCs)

The table identifies“domain-wide value,” i.e., the pro-
tocol’s ability to realize its full value once adopted in a
given domain, as an important factor in a protocol’s
success. This aligns with our intuition that deploying
protocols that “touch” network devices is easier when
their scope is limited (to a domain). The second fea-
ture, “adding value to other protocols,” is also consis-
tent with the notion that network control functions that
benefit other protocols should have an easier time be-
ing adopted. However, its high p-value together with
the small number of protocols in this category, make it
difficult to draw strong conclusions from its selection.

5.4 Network Routing Protocols
Network routing protocols (R) include intra- and inter-

domain protocols. Given the small number of RFCs
involved, a single set of results is again presented in Ta-
ble 7 for all protocols in this category. Backward com-
patibility emerges again as a key feature, in part because
there are few “new” protocols in this category. Another
feature is “replacing another protocol,” which is likely a
reflection of the fact that most routing protocols have
had multiple versions, with each new version replacing
the previous one. Finally, “domain-wide value” is also
identified as important but with a negative impact. Its
selection is somewhat ambiguous and appears driven in
part by the fact that a number of intra-domain exten-
sions did not succeed. This may, however, change as
we extend the number of RFCs under consideration. It
may also be caused by “transient noise” in our labeling
process12. For example, most protocols associated with
IPv6 have been marked as “not successful” to reflect the
fact that IPv6 itself has not (yet) succeeded. However,
this situation may be changing [4, 5].

12Something that is unavoidable given that our sampling is

Features OR p-value

Backwards compatibility 101.59 0.000

Replacing another protocol 80.02 0.003

Domain-wide value 0.077 0.010

Accuracy 72.41%

Confusion Matrix
TP= 0.95 FN= 0.05
TN=0.30 FP= 0.70

Table 7: R protocols (29 RFCs)

5.5 Network Data Plane Protocols
Table 8 reports results for network data plane proto-

cols (D) and singles out “performance improvement,” as
correlated with success. This aligns with the intuition
that performance is of utmost importance in the data
plane, so that protocols that offer performance improve-
ments stand a stronger chance of success.

Feature OR p-value

Performance Motivated 12.00 0.027

Accuracy 76.19%

Confusion Matrix
TP= 0.50 FN= 0.50
TN=0.92 FP= 0.08

Table 8: D protocols (21 RFCs)

6. LIMITATIONS & EXTENSIONS
The paper’s results are preliminary and should be in-

terpreted as such, even if most features identified as
significant to a protocol’s success exhibit a high level of
statistical significance. First and foremost, the number
of samples (RFCs) included in the analysis needs to be
expanded. This is not so much to improve the classi-
fier’s accuracy, as there will always be external factors
we won’t be accounting for, but to lessen sensitivity to
errors in feature characterization. Expanding our data
set should also extend to protocols beyond standards
track RFCs, e.g., Informational or Experimental RFCs
and expired Internet Drafts. This will allow us to in-
clude more protocols, many of which did not succeed.
Adding RFCs also provides the opportunity for stronger
validation by allowing distinct training and testing sets.

We believe this effort can offer useful insight into pro-
tocol design by leveraging the collective expertise em-
bedded in the IETF review process.

punctual, and a protocol’s success evolves over time.
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