On the Design and Performance of Prefix-Preser ving IP
Traffic Trace Anonymization

Jun Xu Jinliang Fan Mostafa Ammar

College of Computing

Georgia Institute of Technology

Atlanta, GA 30332-0280

{jx,jlifan,ammar}@cc.gatech.edu

1. MOTIVATION

Real-world Internet traffic traces are crucial for network re-
search such as workload characterization, traffic engineering,
packet classification, web performance, and more generally
network measurement and simulation. However, only a tiny
percentage of traffic traces collected are made public (e.g.,
by NLANR [6] and ACM ITA project [1]) for research pur-
poses. One major reason why ISPs or other traffic trace
owners hesitate to make the traces publicly available is the
concern that the confidential (commercial) and private (per-
sonal) information regarding the senders and receivers of
packets may be inferred from the trace. In cases where a
trace has been made publicly available, the trace is typi-
cally subjected to an anonymization process before being
released.

In this work we focus on the problem of anonymizing IP ad-
dresses in a trace. A straightforward approach is one in
which each distinct IP address appearing in the trace is
mapped to a random 32-bit “address.” The only require-
ment is that this mapping be one-to-one. Anonymity of the
IP addresses in the original trace is achieved by not reveal-
ing the random one-to-one mapping used in anonymizing a
trace. Such anonymization, however, results in the loss of
the prefix relationships among the IP addresses and renders
the trace unusable in situations where such relationship is
important (e.g., understanding routing performance or clus-
tering of end-systems [5]). It is, therefore, highly desirable
for the address anonymization to be prefiz preserving. That
is if two original IP addresses share a k bit prefix, their
anonymized mappings will also share a k bit prefix. One ap-
proach to such prefix preserving anonymization is adopted
in TCPdpriv [8].

The goal of our work is two fold. First, we are interested in
analyzing the security properties inherent in prefix-preserving
IP address anonymization. We aim to understand the sus-

Sue B. Moon
Sprint ATL
1 Adrian Court
Burlingame, CA 94010
sbmoon@sprintlabs.com

ceptibility of prefix-preserving anonymization to attacks that
may reveal some IP address mappings (e.g., [11]). Through
the analysis of publicly available traces, we show that prefix-
preserving anonymization will, in general, not pose a seri-
ous threat to personal privacy. Second, we observe that
TCPdpriv has some drawbacks that limit its use in a large-

scale, distributed setting. We develop an alternative cryptography-

based, prefix-preserving anonymization technique to address
these drawbacks while maintaining the same level of anonymity
as TCPdpriv.

The rest of the paper is organized as follows. In Section 2,
we explore the security implications of the prefix-preserving
property using real-world traffic data. In Section 3, we
discuss TCPdpriv and our cryptography-based technique,
which addresses the drawbacks of TCPdpriv. Section 4 con-
cludes the paper.

2. IMPLICA TIONS OF PREFIX-
PRESERVING ANONYMIZA TION

The security implication of prefix-preserving anonymization
of traffic traces using TCPdpriv [8] is briefly studied in [11]
and [3]. Here we offer a more formal characterization of
the security level that a prefix-preserving anonymization
can achieve. There are a number of possible ways certain
anonymized IP addresses could be compromised in the trace.
For example, it may be possible for IP addresses of popu-
lar web servers be inferred from their high frequency of oc-
currence in the trace, or for the IP addresses of the DNS
servers (especially authoritative servers) be inferred from
the hierarchical relationship among them. Suppose certain
anonymized addresses have been compromised so that their
corresponding raw addresses are known. Then given any
anonymized address y, the first £+ 1 bits of the correspond-
ing raw address is revealed if the longest prefix match be-
tween the compromised addresses and y is k bits long. So
the highest level of security we could possibly achieve is to
make sure that the remaining 32—k — 1 bits look completely
random, i.e., indistinguishable from a (32-k-1)-bit random
number.

However, this only characterizes how an individual address is
affected when some anonymized addresses are compromised.
When we study the security of a trace, we would like to mea-
sure the amount of information that is leaked from the whole
trace as a consequence. We define two metrics that charac-
terize this. Suppose we are given a trace file, which contains

N distinct anonymized source/destination IP addresses, and
each address is 32 bits long. One way to count the number
of unknown bits in the trace is to add up all the unknown
bits in these addresses, which we refer to as uncompressed
unknown bits, denoted as U (=32 = N initially). However,
due to the prefix-preserving nature of the anonymization al-
gorithm, certain bits in different IP addresses must be equal.
If such bits are counted only once, we get another count C,
which we refer to as compressed unknown bits'. We have the
following geometric interpretation of C. If we represent dis-
tinct IPv4 addresses in a trace as leaf nodes on a binary tree
of height 32, then C is count of all their ancestors in the tree.
If an address is compromised, then obviously all ancestors
(prefixes) of the leaf node that correspond to the compro-
mised address are compromised and should be taken away
from C. The two metrics are to show respectively the num-
ber of uncompressed (U) and compressed (C) nodes that
remain unknown when x randomly chosen IP addresses in
the trace are compromised.

We generated curves U and C using three publicly available
IP address traces from NLANR [6]. Here, we only show
the curves generated from the biggest trace (about 800 MB)
that also contains the largest number of distinct IP addresses
(130163). The curves from the other two traces are very
similar to those that will be shown. Fig. 1(a) and 1(b)
shows how U and C decrease as the number of compromised
IP addresses (denoted as z) increases. Fig. 1(b) magnifies
the portion of 1(a) when z ranges from 0 to 1000. The
curve C drops almost linearly with respect to x, which is not
surprising because it does not reflect how other addresses
are affected by the compromised addresses. The curve U
drops much faster than C' because many other “innocent”
addresses have their prefixes revealed which they share with
the compromised addresses (x of them).

Each IP address can be broken down into following four
groups of bits: bits 1 to 8, 9 to 16, 17 to 24, and 25 to 32.
We denote the accounting of U on these four groups as Ui,
U,, Us, Uy respectively. As shown in Fig. 2(a) and 2(b),
Ua, Us, Us, and U; drop at increasingly faster rate with
respect to z (Fig. 2(b) zooms the beginning part of Fig.
2(a).). This is not surprising because lower order bits are
much more likely to be shared by a large number of distinct
IP addresses than higher-order bits. Fig. 2(a) and 2(b)
show that Us and Us drop very slowly with respect to the
number of addresses compromised, which means that the
chance for the last 16 bits of an IP address to be revealed
due to the prefix-preserving nature of the anonymization
scheme is not high. This is indeed good news for privacy-
conscious network users: the last 16 bits (typically host ID)
in general are much more important for personal privacy
than the first 16 bits (typically network ID). For commercial
confidentiality, the first 16 bits could be more important, but
that could be addressed in some other ways (e.g., releasing
the trace after a year).

3. PREFIX-PRESERVING ANONYMIZA TION

SCHEMES

In the following, we describe TCPdpriv, an existing traf-
fic anonymization tool that, among other things, allows the

1This corresponds to the usual sense of entropy.

prefix-preserving anonymization of IP addresses. We de-
scribe how TCPdpriv is implemented and identify its draw-

backs. We then discuss our cryptography-based prefix-preserving

anonymization algorithm that does not have these draw-
backs.

3.1 TCPdpriv

The implementation of the prefix-preserving translation of

IP addresses is table based: it stores a set of <raw, anonymized>

binding pairs of IP addresses to maintain the consistency of
the anonymization. When a new raw IP address x needs to
be anonymized, it will first be compared with the all the raw
IP addresses inside the stored binding pairs for the longest
prefix match. Let n be the number of bits in an IP address
(32 in IPv4). Suppose the binding pair whose raw address
has longest prefix match with £ = z1x2...2, is < z’,y > (let
' =zixhy- -z, andy' = yiy3---yy), in which 122 -+ -z, =
xywy - - o), and Try1 = x},,. Suppose x is anonymized to
Y=y1y2- - Yn. Then y1y> - yrYr+1 = Y192 - YrYe+1 and
Ykt2Ukts - Yn := RAND(0,2"7%=* — 1), where RAND is
a pseudorandom (not necessarily cryptographically strong)
number generator. If z is not identical to z’, a new binding
< z,y > will be added to the binding table. It seems that it
would take N comparisons to anonymize a new IP address
where there are N binding pairs in the table. However, a
data structure that is a compressed binary trie in nature is
used to reduce the search cost to O(n). The memory re-
quirement of the algorithm is to store 2 *x N — 1 trie nodes,
where each node occupies 16 bytes. We refer readers to the
source code of TCPdpriv [8] for the actual data structure
and algorithm.

There are three major drawbacks of this implementation
with respect to three different ways traffic traces need to
be collected/anonymized for network research. First, for
researches that involve large volume of network trace data
(e.g., several days’ worth), it is highly desirable for an oper-
ating router to pump out anonymized packet trace in real-
time, thus saving time and effort for offline anonymization.
However, the memory requirement can be high for a long
trace with a lot of distinct IP addresses. For example, to
anonymize a trace with 10 million different IP addresses in
it, it would require approximately 320 MB of main memory
space. Though this is affordable for state-of-the-art com-
puters, such a requirement makes it unsuitable for high-
speed hardware implementation inside a router. Second,
TCPdpriv does not allow distributed processing of different
traces simultaneously. The reason is that the translation
between the raw and anonymized IP addresses is depen-
dent on the sequence they appear in the trace. So when
two different traces are being anonymized, the same raw
IP address in general will not be translated into the same
anonymized address. However, there is a real need for simul-
taneous (but consistent!) anonymization of traffic traces in
different sites, e.g., for taking a snapshot of the Internet.
It would be very cumbersome if hundreds of traces have
to first be gathered and then anonymized in serial. Third,
a large trace (e.g., terabytes) may be collected for a high-
speed link for a long period of time. For the same reason
discussed above, TCPdpriv does not allow a large trace file
to be broken into pieces and be processed in parallel. Note
that these drawbacks of TCPdpriv remain true even when
prefix-preservation is not a requirement.

4500

4000

T

3500 B

1000)

3000 B

2500 | 1
2000 P, —

1500 F 1

U and C Counts (unit:

1000

500

40000 60000 80000 100000
Number of Compromised Addresses

0 20000 120000

Figure 1: Measurements of U and C on an

T T
bits 1-8 ——
bits 9-16 - 1
bits 17-24 -
bits 25-32

1000 [B

1200

1000)

800 |, g

600 | d

Value (unit

400 } . |

200 |2 I |

L L L \1
40000 60000 80000 100000 120000
Number of Known Addresses

0 20000

Figure 2: Measurements of U(1-4) on

3.2 Cryptography-basedApproach

We designed an algorithm that addressed all the drawbacks
of TCPdpriv. Our algorithm “computes” the binding be-
tween raw and anonymized addresses on the fly, so that its
memory requirement is small enough to be fit into an on-chip
cache. This makes it very amenable for hardware implemen-
tation (keyed hash functions such as HMAC-MDS5 in general
can be made quite hardware-friendly [9]). Also, since our
algorithm is deterministic, it allows distributed and parallel
anonymization of traffic traces. We will show that the algo-
rithm is provably secure up to the level of security a prefix-
preserving anonymization could possibly deliver. Before we
describe our algorithm, we state the following proposition,
the proof of which can be found in [10].

Proposition I. Let f; be a function from {0,1}" to {0, 1},
i =0,1,--- ,n — 1. Let F be the function from {0,1}" to
{0,1}" defined as follows. Given x = &1x2 - - - &n, then

F(z):=11y2- yn (1)

where y, = z, ® 2, and z;41 = fi(x1,22, -+ ,x;) for ¢ =
0,1,---,n — 1. We claim that (a) F is a prefix-preserving

anonymization function, and (b) a prefix-preserving anonymiza-

tion function necessarily takes this form.

4500

Py
I

4000 | 1
_ 3500 | B
5 !
= 3000 [1
z S
= 2500 1
o T T e
= e
§ 2000 | B
o
T 1500 | 1
©
=)

1000 F 3

500 | B
o
0 200 400 600 800 1000
Number of Compromised Addresses

NLANR IP Address Trace (left is (a))

U1 (bits 1-8) ——

1200 | U2 (bits 9-16) ——— 1

U3 (bits 17-24) -~
U4 (bits 25-32)

1000 | LI 4
rg\ X o -
% 800 [R
‘é‘ A
El
@ 600 . 1
s SN
3
> 400 1

20 T -~

o . .
0 200 400 600 800 1000
Number of Compromised Addresses
an NLANR IP Address Trace (left is (a))
In our algorithm
fi(x1z2 -+ x;) ;== LSB(KH(PAD(z122 - - -), keys)) (2)

where i = 0,1,--- ,n—1. Here KH is a keyed hash function
such as HMAC-MD5 [7, 4]. The security of our scheme
hinges upon these keys (key;) being kept secret. Obviously,
for parallel and distributed anonymization, identical copies
of the keys will be used by different processors/processes.
PAD expands z1x2 - x; into a 512-bit string as follows:

PAD(z12 - - xi) := T2 - - 24|[10%]]d (3)

Here d = 512 - [log(n)] - 1 - 4 and 0% means the repeti-
tion of 0 for d times. We set aside [log(n)] bits for stor-
ing 4. So the total length of the data after padding is 512
bits. This padding scheme is standard in using cryptograph-
ically strong hash function functions (e.g., MD5 [7]). It
guarantees that for two strings x and z’, if * # z’, then
PAD(z) # PAD(z'). Without loss of generality, we also
assume that the result of KH is 128 bits as in MD5 (i.e.,
KH :{0,1}*'? — {0,1}'?®). This length of the result does
not affect the security in this application.

Achieved Level of Security: Here we define the level of
the security that is achieved by our anonymization function
F as defined in (1)-(3). Suppose that a set of N anonymized
addresses S have been compromised. Given an arbitrary
anonymized address b (fixed after it is chosen), suppose k is

the longest prefix match between b and the elements in S.
Then, due the prefix-preserving nature of the anonymiza-
tion algorithm, the first & + 1 bits of the corresponding
raw address, referred to as a, are revealed as mentioned
before. However, our algorithm guarantees that the remain-
ing n — k — 1 bits are indistinguishable from random bits
to computationally constrained adversaries, provided the
underlying keyed hash functions (K H in (2)) are crypto-
graphically strong. This result is made precise and proved
in [10]. According to standard notions from the provable
security literature [2], this is actually equivalent to saying
that the algorithm F is indistinguishable from a random
prefix-preserving function, a function uniformly chosen
from the set of all prefix-preserving functions (characterized
in Proposition I) from {0,1}" to {0,1}", to any computa-
tionally constrained adversary (also shown in [10]). This
means that our algorithm achieves the highest level of se-
curity achievable by prefix-preserving algorithms when the
adversary is computationally bounded.

4. CONCLUSION

In this paper, we motivate the need for anonymizing packet
traces in a prefix-preserving manner and analyze its security
implications using real-world traffic data. We show that
TCPdpriv, the existing tool that allows for prefix-preserving
anonymization, has drawbacks that make it unsuitable for
parallel and distributed traffic anonymization. We propose
a provably secure cryptography-based scheme that addresses
these drawbacks. We expect that this work will help improve
the availability of traffic traces for network research.

5. REFERENCES
[1] The Internet traffic archive. http://ita.ee.lbl.gov/,
April 2000.

[2] M. Bellare. Practice-oriented provable-security. In
First International Workshop on Information
Security(ISW97), Boston, Massachusetts, 1998.
Springer-Verlag.

[3] K. Cho, K. Mitsuya, and A. Kato. Traffic data
repository at the wide project. In Proceedings of
USENIX 2000 Annual Technical Conference:
FREENIX Track, San Diego, CA, June 2000.

[4] H. Krawczyk, M. Bellare, and R. Canetti. HMAC:
Keyed-Hashing for Message Authentication. Network
Working Group, February 1997.

[5] B. Krishnamurthy and J. Wang. On network-aware
clustering of web clients. In Proc. ACM Sigcomm
2000, pages 97-110, September 2000.

[6] Tony McGregor. NLANR active measurement project.
In Proceedings of Measurement and Analysis
Collaborations Workshop, June 1999.

[7] R. Rivest. The MD5 message-digest algorithm.
Request for Comments 1321, Internet Engineering
Task Force, April 1992.

[8] TCPdpriv Command Manual, 1996.

[9] J Touch. Performance analysis of MD5. In sigcomm,
Boston, Massachusetts, 1995. ACM.

[10] J. Xu, J. Fan, M. Ammar, and S. Moon. On the
design and performance of prefix-preserving IP traffic
trace anonymization. Technical report, College of
Computing, Georgia Tech, GIT-CC-01-22, August
2001.

[11] T. Ylonen. Thoughts on how to mount an attack on
TCPdpriv’s “-ab0” option ... In
http://ita.ee.lbl. gov/html/contrib/tepdpriv.html, 1996.

