The Effect of Layer-2 Switches on Pathchar-like Tools

> Ravi S. Prasad,* Constantinos Dovrolis,* and Bruce A. Mah[†]

*Networking and Telecommunications Group, College of Computing, Georgia Tech. [†]Packet Design Inc.

Overview of pathchar-like tools

- *pathchar, pchar, clink* Objective : estimate link capacities
- They all use the Variable Packet Size (VPS) probing methodology
- Estimate Round Trip Time (RTT) up to hop I

VPS methodology

• Assume that minimum RTT for each packet size does <u>not</u> include queuing delays

• Minimum RTT for packet size *L* up to hop *I* :

$$T_I(L) = \alpha_I + L \sum_{i=1}^{I} \frac{1}{C_i} = \alpha_I + L\beta_I$$

• Estimated capacity of hop I:

$$C_I = \frac{1}{\beta_I - \beta_{I-1}}$$

A single-hop path

Tool	Capacity estimate
pathchar	49.0±1.5Mbps
clink	47.5±1.0Mbps
pchar	47.0±1.0Mbps

- A and B have Fast Ethernet network interfaces
- Correct capacity \simeq 97Mbps (IP layer)
- All these tools consistently underestimate the link capacity
- What went wrong?
 - The tool, or the estimation methodology?

Experimental results at a UDel campus network path

A>	В	С	->	D	E	> F
)		/		

□ :Fast Ethernet Switch; •:Ethernet Switch

L3 hop	Capacity	L2 segments	pathchar	clink	pchar
A to B	100Mbps	5 Fast-Ethernet	17.0±0.0	17.0±0.0	17.0±0.4
B to C	100Mbps	2 Fast-Ethernet	62.2±7.2	64.7±9.3	62.3±9.1
C to D	100Mbps	1 Fast-Ethernet	100.5±15.0	100.3±22.0	101.9±26.0
D to E	10Mbps	2 Ethernet	5.75±0.15	5.6±0.1	5.7±0.1
E to F	10Mbps	??	4.5±0.1	3.7±0.1	6.5±0.6

Other sources of error in VPS tools

- Non-zero queuing delays
- Limited clock resolution
- Error propagation/amplification from the previous hop
- ICMP generation latency
 - For a detailed analysis, see Infocom 2003, San Francisco.

Thank you!