Topology Inference from BGP Routing Dynamics

David Andersen, Nick Feamster, Steve Bauer, Hari Balakrishnan

MIT Laboratory for Computer Science

October 2002

http://nms.lcs.mit.edu/ron/

Current Topologies: AS Topologies

- Simple to construct
- Completely passive BGP snapshot
- ✗ Obnoxiously free of interesting detail

A few paths contain most prefixes

- 13 common paths contain 10% of prefixes
- Binning large ISPs misses critical detail

Current Topologies: Router-Level

- Lots of juicy detail
- **X** Requires active probing
 - Annoys the paranoid (and can be blocked)
 - Consumes time and bandwidth
- **→**Best of both worlds?

New: Implied Logical Topologies

- Group prefixes that "behave similarly"
- What do the resulting clusters mean?

BGP update streams

- Colored prefixes updated at (nearly) same time
- → Cluster prefixes that often do this

Mechanics

2002-01-10 23:51:05 198.140.178.0/24

2002-01-10 23:51:05 192.107.237.0/24

2002-01-10 23:55:53 199.230.128.0/23

2002-01-10 23:56:21 216.9.174.0/23

2002-01-10 23:56:21 216.9.172.0/24

Group by 30-second intervals
 (in practice, bin length choice flexible) (BGP min-route-adver time)

Creating BGP update vectors

- Update stream is a 0/1 signal Did an update happen in time [t, t + 30s]?
- Now we have a bunch of 0/1 vectors to compare...

BGP update vectors

, •	_
$t_{1}m_{0}$	
time	$\overline{}$

Prefix A	0	0	1	0	1	0	0
Prefix B	1	0	1	0	0	0	1
Prefix C	1	0	1	0	0	0	0

How close are two vectors?

• Correlation coefficient

Correlation Coefficient

A	0	0	1	0	1	0	0
В	1	0	1	0	0	0	1
C	1	0	1	0	0	0	0

$$\operatorname{corr}(p_1, p_2) = \frac{E[(p_1 - \overline{p_1})(p_2 - \overline{p_2})]}{\sigma_{p_1} \sigma_{p_2}}$$

- Expresses correlation well
- Susceptable to some "coincidental" correlation

- Simple and efficient
- Creates a similarty hierarchy: A & B most similar, etc.

- Simple and efficient
- Creates a similarty hierarchy: A & B most similar, etc.

- Simple and efficient
- Creates a similarty hierarchy: A & B most similar, etc.

- Simple and efficient
- Creates a similarty hierarchy: A & B most similar, etc.

Data Capture and Analysis

- Studied 90 days of BGP traffic at MIT
- Examined 2 "huge" origin ASes
 - UUNET: 2338 prefixes
 - AT&T: 1310 prefixes
- How do clusters relate to real-word features?

Anecdotes

- Many "expected" results same city, etc.
 We'll get to those in a second.
- 135.36.0.0/16, 135.12.0.0/14. Denver vs. New Jersey. Lucent vs. Agere a spinoff in 2000, identical network behavior. (... CIA?)
- 6 Sandia labs prefixes internet2 routes, but flapped to backup UUNET route.
- Many transient discoveries: backups, etc.

Topological similarities

Measureable quantities: path, location

- Compute pairwise similarity for metric (shared path length, or shared pop)
- Average similarity as clustering proceeds
- If match with logical clustering, similarity strongest for leaf clustering, weakest at end.
- → Logical topology: integration of topological, organizational, and administrative factors.

Leaves share more hops in traceroute

- Path length varies less with clustering
- More shared hops in earlier clustering
- Data noisy: loops, etc., but still works

Leaves often share the ISP POP

- UUNET: 50% clustered at 95% accuracy
- AT&T: 30% clustered at 97% accuracy

What does it all mean?

- Update clusters reflect reality:
 - Topology
 - Prefix assignment
 - Fate sharing
- Passive window into remote networks
- Facilitate network mapping and data collection
- What else can be extracted from this signal? Similar signals?