Simple Network Performance Tomography

Nick Duffield
AT&T Labs-Research, Florham Park, NJ
Network Performance Tomography

- Basic Idea
 - Infer performance of interior links from end-to-end measurements

- Setup
 - Mesh of intersecting network paths
 - Measure end-to-end performance along each path (loss, delay)
 - Correlate measurements to infer performance on common subpaths
Correlations and Network Probing

- Packet-level correlation by design
- Perform end-to-end measurements using probe traffic
- Couple probing on different network paths at the packet level
- Multicast-based tomography
- Send probes down multicast tree
- One-to-one map from link-performance to end-to-end performance
- Packet performance identical on common path
- Invert map infer link performance
- Example: Infer link loss rates from measure end-to-end loss rates

Ratnasamy and McCanne, MINC (AT&T, ICIR, UMass)
Weaker Correlations and Network Probing

- Unicast-based tomography
 - Emulate multicast probes: groups of closely spaced unicast probes
 - Striped across multiple destinations
 - Performance within group on common links is correlated
 - But not identical
 - Need additional model parameters to describe correlations
 - Many-to-one map from link-performance to end-to-end performance
 - Cannot simply invert to perform inference: too many link parameters

- Two approaches to unicast inference
 1. If correlations strong within group: use multicast inference methods
 - Tailor selection of probes to enhance correlation
 - Verify correlation strength through direct measurement
 - UINC Project (as for MINC)
 2. Couple unknown parameters through queueing model
 - Incite Project (Rice)
Tomography Without Strong Packet Correlations?

- Previous focus
 - Inferring packet loss, delay, per link

- Simpler question
 - Which are the badly performing links?

- Padmanabhan et. al. Infocom 2003
 - Simple end-to-end loss measurements down source tree
 - Determined from measured TCP retransmissions from web server
 - No packet level correlation designed into measurements
 - Apply several inference methods to end-to-end loss measurements

- Can identify badly performing links quite well
 - Certain performance models
 - Better when bad links are rarer
Motivation and Summary

- How can inference of worst links work w/o packet correlations?
- First component: link performance model
 - Separable performance: disjoin between “good” and “bad” links
 - Investigate conformance with separable performance model
- Second component: assume bad links are rare
 - Easier to reliably identify with low false positive rate
Separable Link Performance Model

- Associate performance metric \(\varphi_i \) with each link, path \(i \)
 - e.g. parameter or quantile of distribution of loss or delay
 - Measurement interval may be part of definition

- Separate possible values of \(\varphi_i \) into two disjoint subsets:
 - Call these subsets “good” and “bad”

- Separable performance model assumption
 - A path is bad if and only if contains at least one bad link
 - Cannot make a bad path out of “partially” bad links
Examples of Separable Performance

- **Example 1 (trivial)**
 - Performance metric is packet loss
 - Links either lose no packets (= good), or lose all packets (= bad)

- **Example 2 (Padmanabhan et. al., Infocom 2003)**
 - Source tree: links of two types:
 - Good: loss uniformly distributed in between 0 and 1%
 - Bad: loss uniformly distributed between 5% and 10%
 - Separable if depth of (logical) tree ≤ 5

- **Example 3 (Delay spike measurements: Zhang et. al., IMC 2001)**
 - End-to-end measurements exhibit delay spikes
 - Periods of greatly elevated delay
 - "Bad": if max delay encountered by stream of packets ≥ (high) threshold

 Requirements for (approximately) separable performance
 - Assume spikes due to delays on one or more links
 - High chance for probe stream to encounters delay spike on bad link
 - Small chance for packet to encounter delay spike on multiple links

 Satisfied reasonably closely in data for realistic probe set
 - ~a few minutes audio transfer
Separability and Correlations

- Separability equiv. to exact correlation of multicast loss model
- Compare:
 - Separable: any path through a bad link is bad
 - Multicast: packet lost on any end-to-end path if lost on a common link
- Consequence
 - Model: link i is independently bad with probability α_i
 - Measure frequencies γ_i of end-to-end badness over multiple intervals
 - Infer $\{\alpha_i\}$ from $\{\gamma_i\}$ by usual multicast inference algorithm (e.g. MINC)
- Limitation
 - Still need to coordinate measurements temporally
 - Multiple aligned measurement intervals for all paths.
 - Desirable to infer from measurements over single interval
Identification of Rare Bad Links

- Suppose bad links are rare:
 - intersecting bad paths most likely have common bad link

- Example:
 - Links independently bad with probability $p \approx 0$

- Suppose paths (12) and (13) both bad
 - Conditional probability that link 1 is bad

 \[
 \frac{p}{p + (1 - p)q^2} \approx 1 - p
 \]

 - Overwhelming likely for link to be bad

- Inference: identify link 1 as bad

- Strength:
 - low false positive rate

- Weakness: coverage
 - Suppose link 1 good, links 2,3, bad: don't detect this case.

duffield@research.att.com
Smallest Consistent Failure Set (SCFS) Algorithm

- Data: single snapshot of end-to-end performance on source tree
 - each path is good or bad
- Determine smallest set of links consistent with observed badness
 - Those nearest to root

Measured data
Good paths have all good links

After using SCFS
Attribute common loss to common cause
SCFS Performance

- Model: link i independently bad with probability p_i
- Model amenable to direct analysis
- Performance Measures
 - False positive rate
 - Coverage (= proportion of bad links identified)
SCFS False Positive Rate

- Calculate uniform bounds of false positive rate
 - As function of 1 - maximum probability of link badness: \(\alpha = 1 - \max_i p_i \)
 - Depends on topology only through (minimum) branching ratio \(r \)

- Decreases rapidly as branching ratio increases
- Can be applied to subtrees with larger \(r, \alpha \)
SCFS False Positive Rate (2)

- Computations on selection of 1000 node trees,
 - Random branching ratios between 2 and 10

<table>
<thead>
<tr>
<th>p = Prob(link bad)</th>
<th>False Positive Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>5%</td>
<td>0.02%-0.08%</td>
</tr>
<tr>
<td>10%</td>
<td>0.09%-0.24%</td>
</tr>
<tr>
<td>20%</td>
<td>0.4%-0.9%</td>
</tr>
</tbody>
</table>
SCFS Coverage: Dependence on Branching Ratio

- Coverage relatively insensitive to branching ratio
SCFS Coverage: Dependence on Tree Depth

- Coverage decreases with depth
 - Coverage $\approx p / \text{Tree Depth}$: when $p = \text{Prob(Link Bad)} \approx 0$
SCFS Coverage: Constant Path Failure Rate

- Trees will not be arbitrarily deep for constant link badness
 - Otherwise all paths become unreliable
- Opposite: scale p to keep path failure rate constant
 - Coverage insensitive to depth in this scaling
Comparisons

- SCFS Computationally very simple
- Comparison
 - with three reference methods in Padmanabhan et. al.
 - compared with published results, not reimplementation
- False positive rate:
 - seems at least as good in all cases
- Coverage:
 - nearly as good if badness rare, (less than 10%)
 - noticeably worse than simple reference methods if less rare
Summary

- Tomography and Correlations
 - Many existing methods depend on intricate probing methods
 - To arrange for packet level correlations in probes

- Separable Performance Model
 - Enables exploitation of correlations and probe streams; less intricate
 - Applicable to model in literature, observed network performance

- Inference from one time measurements
 - Smallest consistent failure set algorithm
 - Very low false positive rate to identify bad links, especially if rare

- Models very amenable to analysis

- Further work: need simulation/experimental evaluation