
Efficient Beacon Placement for Network Tomography

Ritesh Kumar and Jasleen Kaur
Department of Computer Science

University of North Carolina at Chapel Hill

{ritesh, jasleen}@cs.unc.edu

ABSTRACT
Recent interest in using tomography for network monitoring has
raised the fundamental issue of whether it is possible to use only a
small number of probing nodes (beacons) for monitoring all edges
of a network in the presence of dynamic routing. Past work has
shown that minimizing the number of beacons is NP-hard, and has
provided approximate solutions that may be fairly suboptimal. In
this paper, we use a two-pronged approach to compute an efficient
beacon set: (i) we formulate the need for, and design algorithms
for, computing the set of edges that can be monitored by a beacon
under all possible routing states; and (ii) we minimize the number
of beacons used to monitor all network edges. We show that the
latter problem is NP-complete and use an approximate placement
algorithm that yields beacon sets of sizes within1 + ln(|E|) of the
optimal solution, where E is the set of edges to be monitored. Bea-
con set computations for several Rocketfuel ISP topologies indicate
that our algorithm may reduce the number of beacons yielded by
past solutions by more than50%.

Categories and Subject Descriptors
C.2.3 [Computer Systems Organization]: Computer-Communication
Networks –Network Operations: network monitoring

General Terms
Algorithms, Management

Keywords
Network Monitoring, Tomography, Beacon Placement, Optimality

1. INTRODUCTION
The last two decades have witnessed an exponential growth of

the Internet in terms of its infrastructure, its traffic load, as well as
its commercial usage. Today, the growth of the world’s economy
depends heavily on the connectivity, reliability, and quality of ser-
vice provided by Internet Service Providers (ISPs). The ability to
monitor the health of their networks is essential for ISPs to provide
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good service to customers. Consequently, there is significant in-
terest in developing network monitoring infrastructures that allow
ISPs to monitor their network links.

A key consideration in the design of monitoring infrastructures
is to develop low-cost solutions. In particular, the idea of placing
and operating sophisticated monitors at all nodes in a network is
not cost-efficient. Instead, there has been significant recent interest
in relying on tomographic techniques that use only a few probing
nodes (beacons) for monitoring the health of all network links [1,
2, 3, 4, 5, 6, 7]. A key challenge is to find asmallset of beacons
that is guaranteed to be able to monitor all network links, even with
dynamically-changingIP routes. Two recent efforts have focused
on the problem of finding the smallest beacon sets for a network [4,
7]. These, however, do not adequately meet the above challenge—
the beacon set of [4] is not robust to changes in IP routes, and the
beacon set proposed in [7] can be quite large for real ISP topologies
(Sections 2 and 5). In this paper, we present beacon placement
strategies that meet both aspects of the above challenge.

Our approach relies on a two-pronged methodology. First, we
define the concept of adeterministically monitorable edge set(DMES)
of a beacon as the set of edges that can be monitored by the bea-
con under all possible route configurations. We present efficient
graph-theoretic algorithms for computing the DMES of all candi-
date beacons for a given network. Second, we consider the problem
of finding the minimum number of beacons such that the union of
their DMES covers all network edges. We show that this is an NP-
complete problem. We then use an approximate solution that yields
beacon sets of sizes within1 + ln(|E|) of the optimal solution,
whereE is the set of network edges. Finally, we prove and exploit
additional properties of beacons that help in improving the compu-
tational efficiency of our algorithm. Our experimental results with
several real ISP topologies obtained from the Rocketfuel project [8]
illustrate that our beacon placement strategy yields beacon sets that
are50− 70% smaller than those yielded by [7].

The rest of this paper is organized as follows. In Section 2, we
formulate the problem of beacon placement and discuss past work.
In Section 3, we define and compute DMES. Section 4 discusses
beacon set minimization. Section 5 presents experimental results
with Rocketfuel topologies. We conclude in Section 6.

Notations and Assumptions . We model a network as an
undirected graphG(V, E), whereV is the set of network nodes
andE is the set of links (or edges)—in [9], we extend our analysis
to directed graphs as well. We use the terms network and graph
interchangeably. We assume thatG is connected (there exists a
path from any node to any other node) and that all routes are simple
(acyclic). Finally, we say that two physical paths between a pair of
nodes aredistinct, if they differ in even one of the edges traversed.
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2. PROBLEM FORMULATION
In a tomographic network monitoring infrastructure, each net-

work link is monitored by a special probing node, referred to as a
beacon.1 The basic idea behind most tomographic setups is fairly
simple: the beacon sends a pair of nearly-simultaneous probes to
the two end-nodes of the link, only one of which traverses the link.
Each end-point sends back a response to the beacon—this may be
implemented using ICMP echo messages. The results of the probes
can then be used to infer properties of the link. For instance, if the
objective is to measure link delays, then the difference in round-trip
times of the two probes can be used as an estimate. If the objec-
tive is to simply detect link transmission failures, the success and
failure of the two probes may be used as reasonable estimators.

Note that, in general, a beacon is capable of monitoring several
network links. A set of beacons that can be collectively used to
monitorall the links of a network is referred to as abeacon set. A
central issue in the design of a monitoring infrastructure is that of
beacon placement—which network nodes should be used to con-
struct a beacon set? Two requirements guide the design of a good
beacon placement strategy:

• Minimizing the number of beacons.

One of the prime motivations for using tomography for net-
work monitoring is to reduce the cost of the monitoring in-
frastructure. However, even a tomographic infrastructure in-
volves the development, installation, debugging, operation,
and maintenance of specialized software/hardware on each
beacon. In order to minimize the cost of doing so, it is im-
portant that the number of beacons used to monitor all links
of a given network are minimized.

• Robustness to routing dynamics.

Routing state in many networks responds to changes in traffic
patterns and link loads, as well as to link failures. Since In-
ternet traffic conditions are highly dynamic, the default IP
routes in a given network may change at relatively small
time-scales. A monitoring infrastructure, therefore, should
not assume a specific routing configuration in order to as-
sign a beacon to a given link. More generally, a beacon set
should be able to monitor all network links, independent of
the current route configuration.

In this paper, we focus on the problem of beacon placement
that meets the above requirements. Specifically, our objective is
to: minimize the number of beacons required to deterministically
monitor all the links of a given network, even in the presence of
dynamism in IP routes.

2.1 Past Work
A fundamental step in finding the smallest beacon set for a net-

work is to first enlist the edges that can be monitored by each can-
didate beacon, referred to as themonitorable edge set(MES) of the
beacon. Note that the union of MES of all beacons in a beacon set
is equal to the set of all network edges. In general, the larger is the
average MES size in a beacon set, the smaller is the beacon set.2

1Some applications of tomography may require multiple beacons
to monitor a given link [10].
2Perhaps the largest MES (and smallest beacon set) that can be
envisioned is when asingle beacon monitorsall the links of a
network—this is feasible, for instance, in a network which sup-
ports source-routing [11]. In such a network, a beacon can pre-
cisely specify the path traversed by its probes, and hence can probe
the end-points of any network link. However, this strategy relies
on the availability of source-routing support atall network nodes,
which is the not the case with a majority of current networks [4].

A

B C B C

A

Beacon A is "locally flexible" Beacon A is "simple"

MES = {AB, AC, BC} MES = {AB, AC}

Figure 1: Simple vs. Locally-flexible Beacons

Below, we briefly discuss two beacon placement schemes that have
been proposed in recent literature, which differ in their assumptions
about which links comprise the MES of a beacon.

• Simple Beacons: In [4], the authors assume that the MES
of a beacon consists of all links that can be reached by the
beacon—which are links that lie on its IP routing tree.3 In
order to monitor a link in its MES, the beacon—henceforth
referred to as a “simple” beacon—sends probes to the end-
points of the link, along the default IP paths to those end-
points. The authors demonstrate that the problem of mini-
mizing the size of the beacon set with such beacons, is NP-
hard, and provide a placement strategy that produces a bea-
con set no larger than1 + log|E| times the optimal beacon
set. Unfortunately, since the authors assume that all links
within the routing tree of a beacon belong to its MES, their
strategy is not robust to changes in routing trees and works
only for networks with static routes.

• Locally-flexible Beacons: In [7], the authors consider bea-
cons that have a greater flexibility in selecting the paths taken
by the probes. Specifically, the beacons—henceforth referred
to as “locally-flexible” beacons—are capable of selecting the
first link (outgoing link from beacon) on which a probe to any
destination is transmitted. A probe can, therefore, be sent to
a destination either along the current IP route to the destina-
tion, or along one of the current IP route from any immediate
neighbor to the same destination (Figure 1).4 Furthermore,
the authors do not assume static routing state and define the
MES of a beacon to consist of links that, irrespective of what
current routes are, can always be monitored. The authors do
not provide a mechanism to compute such an MES for a bea-
con, but show that even if these sets are known, the beacon
set minimization problem is NP-hard. The authors instead
suggest an alternative beacon-placement strategy which, un-
fortunately, could result in fairly large beacon sets for current
network topologies (see Section 5).

To summarize, existing beacon placement strategies5 are either
not robust to routing dynamics or are inefficient in minimizing the
3The IP routing tree of a node refers to the tree, rooted at the node,
which is formed by the links that lie on the default IP routes from
that node to each of the other nodes in the network.
4The authors in [7] implicitly assume that the default IP route from
any neighbor to the said destination will not go through the beacon
node. This assumption may get violated when a path through the
beacon has a smaller cost that any other physical path between a
neighbor and the destination.
5An orthogonal problem of beacon placement for detectingmul-
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number of beacons. In this paper, we build on past work to address
these limitations by using a two-pronged approach:

1. Deterministic MES Computation: In order to be in-
sensitive to routing dynamics, for each candidate beacon, we
determine the set of edges—referred to as its Deterministic
MES (DMES)—that can be monitored by it underall possi-
ble routing configurations.

2. Beacon Set Minimization: In order to minimize cost, we
address the problem of finding the smallest beacon set.

In the following two sections we present our abstractions and
methodologies for achieving these two steps for both simple and
locally-flexible beacons.

3. DETERMINISTICALLY MONITORABLE
EDGE SETS

The first key problem we need to solve is to find the set of edges
that can be monitored by a beacon, independent of the routing con-
figuration. This is formally captured in the following definition.

Definition 1. An edge is said to bedeterministically moni-
torableby a beacon if the beacon can monitor it under all possible
route configurations. TheDeterministically Monitorable Edge Set
(DMES) of a beacon is the set of all deterministically monitorable
edges associated with that beacon.

In what follows, we consider both simple and locally-flexible
beacons and present algorithms for computing their DMES. Below,
we consider both simple and locally-flexible beacons and present
methodologies for computing their DMES. We assume throughout
that a beacon of either type is able to monitor all edges directly
connected to it, irrespective of the routing configuration. Thus, all
edges incident on a nodeu belong to its DMES. Lemma 1, proved
in [9], further establishes a crucial property of a deterministically
monitorable edge (DME).

Lemma 1. If a beaconu has the ability to reach, under all
possible route configurations, one of the end-points of an edgee
through that edge, thenu can deterministically monitore.

3.1 DMES for Simple Beacons

Theorem 1. Let u be a simple beacon and letS(v) be the set
of all distinct physical paths fromu to another nodev. The link
l(v) is deterministically monitorable byu if for all pathsp in S(v),
l(v) is the last edge onp. The DMES ofu is the set of all such
edgesl(v) for all nodesv ∈ V .

Proof: Since all paths from the beaconu to v havel(v) as the last
edge, the current IP route fromu to v (which takes one of these
paths) ends in the edgel(v). From Lemma 1, therefore, beaconu
is able to monitor the linkl(v).

tiple link failures that occur simultaneously has been considered
in [12]. In general, it is not possible to detect all cases of simulta-
neous link failures in a given network. In [12], the authors restrict
their attention to those simultaneous link failures that can be de-
tected in the absence of any limitations on the number of beacons
and probes. They then provide efficient algorithms for minimizing
the number of beacons and probes needed for detecting these fail-
ures. Like [4], this work assumes “simple” beacons and uses the IP
routing tree in the beacon set computation and, hence, is applicable
only to networks with non-dynamic routes. As part of future work,
we hope to use our formulations from this paper to extend the work
in [12] to other beacon types and to networks with dynamic routing.

1 2

3

4

5 6

Figure 2: The DMES may not a connected graph.

Note that a DMES yielded by Theorem 1 has no more structure
than an arbitrary edge set. In particular, the DMES need not form a
connected sub-graph; Figure 2 illustrates that the DMES of node 1
includes the edges 1-2 and 5-6. We now present an efficient algo-
rithm for computing the DMES for simple beacons.

Algorithm 1. Computing DMES of a simple beaconu.

Initialize S to be an empty set;
For all edges l neighboring u

include l in S;
For all nodes v in V

do a depth first search from v;
(we get a set of forests each
connected to v by one or more
edges)
if u lies in the forest connected

to v by only a single edge e
include the edge e in S;

S is the DMES for u;

Proof: (Proof of correctness) Consider a depth first tree (along
with its back edges) constructed from the nodev. If we consider
all forests rooted at the immediate neighbors ofv, then these might
connect tov via one or more edges. Separating forests this way
helps us to isolate all possible paths from the beaconu to the node
v. Any probe packet fromu to v is entirely confined to paths in
the forest containingu. Now, if the beaconu lies in a forest which
connects tov via only one edge, all paths fromu to v have to cross
this edge at the end of the path. However, ifu lies in a forest which
is connected tov via two or more edges, then there exist at least
two distinct paths from the beaconu to the nodev which end in
different edges to the nodev. This means that the edges are not
deterministically monitorable fromu (Theorem 1).
Time Complexity:The cost of computing the DMES of a simple
beacon is essentially that of running a depth first search (DFS) al-
gorithm at every node in the network. Since the time complexity of
running a depth first search onG(V, E) is θ(|E| + |V |), the time
complexity of Algorithm 1 isθ(|V |(|E|+ |V |)).

Note that the DMES for multiple beacons can be computed in
parallel. After running DFS on a nodev, we can add an incident
edges ofv to the DMES of all beacons that belong to the forest
rooted at the edge, if there are no more edges connecting that forest
to v. Since the number of potential beacons is bounded by|V |,
and the time complexity of depth first search isθ(|E| + |V |), the
time complexity for the parallel DMES computation algorithm is
the same as above. Hence, we can calculate the DMES ofall nodes
in G(V, E) in θ(|V |(|E|+ |V |)) time.
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3.2 DMES for Locally-flexible Beacons

Theorem 2. Let u be a locally-flexible beacon andEu be the
set of edges directly connected tou. For each edgei ∈ Eu, let
Si(v) be the set of all paths fromu to any other nodev, that start
with the edgei. A link li(v) is deterministically monitorable from
u if for all paths inSi(v), li(v) is the last edge. The DMES ofu
is the set of all deterministically-monitorable edgesli(v), for all
v ∈ V and all i ∈ Eu.

Proof: Since locally-flexible beacons can select the outgoing link
on which to transmit a probe, we need to consider only those paths
to v which start from a specific edge inEu, to see if there is a
common ending edge. Thus, even ifu has paths tov which end
with different edges, if all paths tov that start fromu with edgei
end with a common edgeli(v), u has the control over the ability to
reachv throughli(v). From Definition 1 and Lemma 1, therefore,
the common edge is deterministically monitorable.
Below, we present an algorithm for computing the DMES for locally-
flexible beacons.

Algorithm 2. Computing DMES of a locally-flexible beacon
u.

Initialize S to be an empty set;
For all edges i neighboring u

include i in S;
remove i from E;

For all nodes v in V
do a depth first search from v;
(we get a set of forests each
connected to v by one or more
edges)
if one of u’s neighbors lies in

the forest connected
to v by a single edge e

include the edge e in S;
S is the DMES for u;

Proof: (Correctness) The proof is similar to that for Algorithm 1.
Let ui be the neighbor connected tou throughi. The forest con-
tainingui also contains all paths fromu to v that start ini. This is
because, if there was another path fromu to v throughi, v andui

would have been connected via a path which would be captured in
the depth first search. Conversely, consider any simple path from
ui to v. Since Algorithm 2 removesi from E, addingi at the start
of the path still retains the “simple” property of the path. Such a
path is a valid path fromu to v starting with edgei. Since we re-
movedu’s neighboring edges fromE, one could argue that some
paths might be missing. However, this cannot be true because no
simple paths fromv to u would transitu in the middle of the path.
Hence the forests obtained by removing the edges neighboringu
are representative of all paths fromu’s neighbors tov.
Time Complexity:The cost of this algorithm is that of running a
depth first search on each node and for each depth first search run
checking if any of the neighbors of u are in a singly connected
forest. Thus, if the degree ofu is k, the time complexity of the
algorithm isθ(|V |(|E| + |V | + k)). Sincek is bounded by|V |,
the time complexity isθ(|V |(|E|+ |V |)). Note that, unlike simple
beacons, DMES can not be computed in parallel for multiple nodes
because for each beacon we customize the graphG(V, E) (removal
of neighboring edges) specific to the beacon before doing all the
depth first searches. The complexity of computing DMES forall
nodes inG(V, E) is, therefore,θ(|V |2(|E|+ |V |)).

4. BEACON SET MINIMIZATION
The second key problem—of minimizing the beacon set for a

network—is formally stated below:

Beacon Minimization Problem (BMP).Let Du be the
DMES associated with a nodeu ∈ V . Then thebeacon-minimization
problemis to find the smallest set of beacons,B ⊆ V , such that⋃

b∈B Db = E.

Theorem 3. The Beacon Minimization Problem is NP-complete.

Proof: Let the graph under consideration beG(V, E). LetS be the
set{Dv : v ∈ V }. Since every node can deterministically monitor
at least its neighboring edges,

⋃
v∈V Dv = E. Also, Dv ⊆ E.

To find the smallest beacon set we need to findB ⊆ S such that⋃
Dv∈B Dv = E and |B| is minimized. This is the the same as

the classic Minimum Set Cover problem (MSCP) [13]. Thus, there
is a one-to-one correspondence between BMP and MSCP, by using
the concept of deterministically monitorable edge sets. The Min-
imum Set Cover Problem is known to be NP-Complete [13, 14];
this implies that BMP is NP-complete as well.
Fortunately, MSCP has a pruning-based approximate solution—
below, we adapt the pruning algorithm and use heuristics from the
literature to establish optimality bounds for it.

Algorithm 3. Find the beacon set for completely monitoring a
graphG(V, E).

Initialize B to be an empty set;
Initialize E’ = E;
while E’ is not empty

Select* a node u from V not in B;
E’ = E’ - the DMES of u;
Include u in B;

B is the beacon set;

There exists a known heuristic for the MSCP pruning-based so-
lution that ensures that the size of the solution is within a bound
of the optimal [15]. The heuristic maps to the following node-
selection rule (* in above algorithm) for BMP. Select that node for
a beacon whose DMES has the maximum overlap with the current
pruned graph. Specifically, ifE′ is the current set of edges of the
pruned graph then we choose the nodev such that|Dv∩E′| is max-
imum. This heuristic results in provable [15] bounds of optimality
of the beacon set as:|B(heuristic)|

|B(optimal)| = 1 + ln|E|.

4.1 Further Optimizations
We next establish additional monitoring-related properties of net-

works that let us further optimize the computation of the mini-
mal beacon set. The concept ofnode arityin an undirected graph
G(V, E), defined in [7], is useful for this discussion. Below, we
restate the definition from [7] in a slightly different manner.

Definition 2. (Node Arity) The arity of a node,u, with re-
spect to another node, v, is defined as the number of distinct paths
that exist between the two nodes such that each of these paths starts
from a unique outgoing edge fromu. The arity of a nodeu is de-
fined as the maximum of arities ofu with respect all nodes of the
graph.

Using the terminology of [7], we call a node “high arity” if the
node’s arity is more than one. Note that sinceG(V, E) is assumed
to be connected, there is at least one path from every node to ev-
ery other node (assuming|V | > 1). Hence, the arity of a node
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Figure 3: Cumulative distribution of node arities for eight
Rocketfuel topologies.

is always greater than or equal to one. Also, since the maximum
number of distinct paths (with a unique outgoing edge) fromu to v
can not be more than the degree ofu, the arity of a node is bounded
by its degree. In [9], we present an efficient algorithm for finding
whether a node inG(V, E) is high arity or not. Our algorithm is
based on the insight that if a nodev has arity one, all forests gen-
erated in the depth-first search fromv will be connected tov by a
single edge.

The following theorems, proved in [9], establish useful proper-
ties of optimal beacon sets.

Theorem 4. A network with no high arity nodes can be moni-
tored by a single beacon on any node in the network.

This theorem implies that a minimum beacon set can be com-
puted trivially andoptimally for any single-arity network (one that
contains only single-arity nodes), without using the “pruning” algo-
rithm presented earlier. In [9], we show that a single-arity network
is a tree.

Theorem 5. An optimal beacon set, when beacons are simple
or locally-flexible, is a subset of the set of high arity nodes.

Theorem 5 lets us reduce the set of potential beacons used in
Algorithm 3 to the set of high arity nodes. This can lead to sub-
stantial computational savings. For instance, we show in Section 5
(and Figure 3), that the number and fraction of single arity nodes in
current ISP topologies can be quite high.

In [7] the authors have shown that the set of high arity nodes in a
graph is a beacon set—though potentially a non-optimal set—when
beacons are locally-flexible. We have much strengthened this result
by showing that the optimal beacon set is always a subset of the set
of high-arity nodes (even with simple beacons). Not surprisingly,
our pruning algorithm is able to find smaller beacon sets for all
topologies. In order to numerically evaluate the efficacy of our
formulations, we next present results of beacon set computations
on a few real ISP topologies.

5. EXPERIMENTAL RESULTS
In this section, we compute and compare the beacons sets yielded

for several current ISP topologies: (i) by the beacon placement so-
lution with locally-flexible beacons suggested in [7]; (ii) by our
beacon placement algorithms for simple beacons; and (iii) by our
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Figure 4: Histogram of beacon set sizes yielded by different
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algorithms for locally-flexible beacons. We refer to the resultant
beacon sets asBHA, BS , andBLF , respectively. We have imple-
mented these algorithms in Java and have run these on eight major
ISP topologies obtained from the Rocketfuel project at the Univer-
sity of Washington [8]. For each of the eight topologies, we analyze
the distribution of node arities and calculate the sizes of beacon sets
yielded by the three solutions.

Node Arities.The distribution of node arity for the eight topolo-
gies is plotted in Figure 3. We observe that:

1. The distribution of node arities are quite different for differ-
ent ISPs, indicating that ISP topologies can be quite diverse
in their topological structure. In particular, some ISP topolo-
gies have a long-tailed arity distribution, indicating that only
a handful of nodes have significant redundancy in the man-
ner in which they connect to the rest of the network. For
most topologies, a majority of nodes have arities within20,
although we some nodes can have arities higher than150.

2. The fraction of single arity nodes in the ISP topologies varies
from less than30% to more than85%. It is important to note
that, for every other node in the network, a single arity node
has only one local edge that can be used to reach it. Single
arity nodes, therefore, are not robust to failures of local links.
We find that for most topologies, more than half of the nodes
have a single arity.

A large fraction of single-arity nodes also implies that the
optimizations proposed in Section 4.1 to enable fast compu-
tation of beacon sets, can result in substantial savings.

It is important to observe that Rocketfuel ISP topologies are subject
to inference errors. In particular, [16] demonstrates that the inclu-
sion of links that do not exist and the omission of links that are
actually present can inflate path diversity in these inferred topolo-
gies. This limits the accuracy of node arities computed above.

Beacon Set Sizes.It is important to mention that the Rocketfuel
topologies for an ISP may not be connected (possibly due to lack
of data about some links). Thus, some of the topologies we analyze
have multiple (independent) connected components. More impor-
tantly, some of the components consist of only single-arity nodes
(such components have a tree structure). For a fair comparison with
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the previous work in [7], which does not apply to single-arity net-
works, we ignore such components when computing beacon sets.6

For any ISP topology, we add up the sizes of beacon sets com-
puted for each of the remaining components to get the total beacon
set sizes—|BHA|, |BS |, and|BLF |—for the three solutions being
compared. Figure 4 plots the histograms of these beacon set sizes
for the eight topologies. We observe that:

1. Beacon sets with locally-flexible beacons.Our beacon place-
ment solution for locally-flexible beacons reduces the beacon
set sizes yielded by [7] by50− 70%. More importantly, we
find that some major ISP topologies can be completely moni-
tored, independent of routing state, using less than a hundred
locally-flexible beacons. This is an encouraging observation
as it suggests that a tomography-based monitoring infrastruc-
ture may not be infeasible even for major ISP topologies.

2. Beacon sets with simple beacons.Even with simple beacons,
our beacon placement solution reduces the beacon set sizes
of [7] by 40 − 70%. This suggests that it may be feasible
to design a simpler monitoring infrastructure that does not
require that network nodes use different transmission rules
for probe packets.

This conclusion is further supported by the comparison of
beacon set sizes yielded by our solution for simple vs. locally-
flexible beacons, which indicates that locally-flexible bea-
cons may not yield significant gains for many major ISP
topologies.

6. FUTURE WORK
There are several ways in which our work can be extended. We

briefly discuss a few below.
In this paper, we consider two kinds of beacons: simple and

locally-flexible. An important component of our future work is to
generalize the notion of DMES for other kinds of beacons. For ex-
ample, the beacons could form an overlay and use routing-tunnels
to increase their DMES and reduce the beacon set size. We plan
to explore the trade-off between beacon complexity and the beacon
set size for monitoring realistic network topologies.

Our formulations assume that all high-level policies do not pro-
hibit the use of a certain physical path between two network nodes.
While this is a reasonable assumption for networks that are op-
erated by a single autonomous entity, this may not be true when
the network considered consists of multiple Autonomous Systems.
In particular, multi-homedstubnetworks typically do not provide
transit to traffic arriving from one of their ISPs and destined to a
different ISP. We plan to extend our network model to incorporate
such networks and compute beacon sets for large internetworks like
the Internet.

An interesting extension of our framework is for monitoring in-
frastructure needed to monitor only a subset of all network links.
For instance, an ISP may be interested in monitoring only its back-
bone or peering links. One approach for finding a beacon set for
this scenario would be to create an abstraction in which some net-
work nodes are collapsed to create a new network that contains only
the relevant edges. The key challenges then would be in deciding
where to install the beacons (as a single node in the collapsed graph
may represent several nodes from the original network). We plan
to explore this problem as part of future work.

6This eliminates only a small fraction of nodes from each of the
ISP topologies.

Another interesting direction in which our work can be extended
in by finding tree-like subgraphs in the network and use assign-
ing one beacon to every such subgraph. The probes and/or routers
would now need to be configured so that probe packets generating
within a subgraph remain confined to the subgraph. This might be
helpful in reducing the number of probes required, and the distance
they travel, for monitoring all the edges of a large network.
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