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ABSTRACT
The rapid increase in the volume of unsolicited commercial e-mails,
also known as spam, is beginning to take its toll in system admin-
istrators, business corporations and end-users. Widely varying es-
timates of the cost associated with spam are available in the liter-
ature. However, a quantitative analysis of the determinant charac-
teristics of spam traffic is still an open problem. This work fills this
gap and presents what we believe to be the first extensive charac-
terization of a spam traffic.

As basis for our characterization, standard spam detection tech-
niques are used to classify over 360 thousand incoming e-mails to
a large university into two categories, namely spam and non-spam.
For each of the two resulting workloads, as well as for the aggregate
workload, we analyze a set of parameters, aiming at identifying the
characteristics that significantly distinguish spam from non-spam
traffic, assessing the qualitative impact of spam on the aggregate
traffic and, possibly, drawing insights into the design of more ef-
fective spam detection techniques.

Our characterization reveals significant differences in the spam
and non-spam traffic patterns. E-mail arrival process, size distribu-
tion as well as the distributions of popularity and temporal local-
ity of e-mail recipients are key workload aspects which distinguish
spam from traditional e-mail traffic. We conjecture that these dif-
ferences are consequence of the inherently different mode of op-
eration of spam and non-spam senders. Whereas non-spam e-mail
transmissions are typically driven by social bilateral relationships,
spam transmission is usually a unilateral action, based solely on the
senders’s will to reach as many users as possible.
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1. INTRODUCTION
E-mail has become a de facto means to disseminate informa-

tion to millions of users in the Internet. However, the volume of
unsolicited e-mails containing, typically, commercial content, also
known as spam, is increasing at a very fast rate. In September
2001, 8% of all e-mails in US were spams. By July 2002, this frac-
tion had increased to 35% [1]. More recent studies report that, in
North America, a business user received on average 10 spams per
day in 2003, and that this number is expected to grow by a factor
of four by 2008 [2]. Furthermore, AOL and MSN, two large ISPs,
report blocking, daily, a total of 2.4 billion spams from reaching
their customers’ in boxes. This traffic corresponds to about 80% of
daily incoming e-mails at AOL [3].

This rapid increase in spam traffic is beginning to take its toll
in end users, business corporations and system administrators. Re-
sults from a recent survey with over six thousand American e-mail
users report that over 50% of them are less trusting of e-mail sys-
tems, and over 70% of them believe being online has become un-
pleasant or annoying due to spam [3]. The impact of spam traffic
on the productivity of workers of large corporations is also alarm-
ing. Research firms estimate the yearly cost per worker at anywhere
from US$ 50 to US$ 1400, and the total annual cost associated with
spam to American businesses in the range of US$ 10 billion to US$
87 billion [3]. Finally, estimates of the cost of spam must also take
into account the costs of computing and network infra-structure up-
grades as well as quantitative measures of its impact on the quality
of service available to traditional non-spam e-mail traffic and other
“legitimate” Internet applications.

A number of approaches have been proposed to alleviate the
impact of spam. These approaches can be categorized into pre-
acceptance and post-acceptance methods, based on whether they
detect and block spam before or after accepting the e-mail [4]. Ex-
amples of pre-acceptance methods are black lists [5] and gray lists
or tempfailing [6]. Pre-acceptance approaches based on server au-
thentication [7, 8] and accountability [9] have also been recently
proposed. Examples of post-acceptance methods include bayesian
filters [10], collaborative filtering [11] and e-mail prioritization [4].

Although existing spam detection and filtering techniques have,
reportedly, very high success rates (up to 97% of spams are detected
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[11]), they suffer from two limitations. First, the rate of false posi-
tives, i.e., legitimate e-mails classified as spams, can be as high as
15% [12], incurring costs that are hard to mensurate. Second, the
lifetime of existing techniques is compromised by spammers fre-
quently changing their mode of operation (e.g., forging their e-mail
addresses and/or misspelling in spam messages). In other words,
spam filters have their effectiveness frequently challenged. Con-
stant upgrades and new developments are necessary.

Despite the large number of reports on spam cost and the plethora
of previously proposed spam detection and filtering methods, a
quantitative analysis of the determinant characteristics of this type
of Internet traffic is still in demand. In addition to some previous
e-mail workload characterizations [13, 14], we are aware of only
two limited efforts towards analyzing some characteristics of spam
traffic in the literature [4, 7].

This paper takes an innovative approach towards addressing the
problems caused by spam and presents what we believe to be the
first extensive characterization of a spam traffic. Our goal is to
develop a deep understanding of the fundamental characteristics of
spam traffic and spammer’s behavior, in hope that such knowledge
can be used, in the future, in the design of more effective techniques
for detecting and combating spams.

Our characterization is based on an eight-day log of over 360
thousand incoming e-mails to a large university in Brazil. Standard
spam detection techniques are used to classify the e-mails into two
categories, namely, spam and non-spam. For each of the two result-
ing workloads, as well as for the aggregate workload, we analyze
a set of parameters, based on the information available in the e-
mail headers. We aim at identifying the quantitative and qualitative
characteristics that significantly distinguish spam from non-spam
traffic and assessing the impact of spam on the aggregate traffic by
evaluating how the latter deviates from the non-spam traffic.

Our key findings are:

� Unlike traditional non spam e-mail traffic, which exhibits
clear weekly and daily patterns, with load peaks during the
day and on weekdays, the numbers of spam e-mails, spam
bytes, distinct active spammers and distinct spam e-mail re-
cipients are roughly insensitive to the period of measure-
ment, remaining mostly stable during the whole day, for all
days analyzed.

� Spam and non spam inter-arrival times are exponentially dis-
tributed. However, whereas the spam arrival rates remain
roughly stable across all periods analyzed. The arrival rates
of non spam e-mails vary as much as a factor of five in the
periods analyzed.

� E-mail sizes in the spam, non-spam and aggregate workloads
follow Lognormal distributions. However, in our workload
the average size of a non-spam e-mail is from six to eight
times larger than the average size of a spam. Moreover, the
coefficient of variation (CV) of the sizes of non-spam e-mails
is around three times higher than the CV of spam sizes. The
impact of spam on the aggregate traffic is a decrease on the
average e-mail size but an increase in the size variability.

� The distribution of the number of recipients per e-mail is
more heavy-tailed in the spam workload. Whereas only 5%
of non-spam e-mails are addressed to more than one user,
15% of spams have more than one recipient, in our work-
load. In the aggregate workload, the distribution is heavily
influenced by the spam traffic, deviating significantly from
the one observed in the non-spam workload.

� Regarding daily popularity of e-mail senders and recipients,
the main distinction between spam and non-spam e-mail traf-
fics comes up in the distribution of the number of e-mails
per recipient. Whereas in the non-spam and aggregate work-
loads, this distribution is well modeled by a single Zipf-like
distribution plus a constant probability of a user receiving
only one e-mail per day, the distribution of the number of
spams a user receives per day is more accurately approxi-
mated by the concatenation of two Zipf-like distributions, in
addition to the constant single-message probability.

� There are two distinct and non-negligible sets of non-spam
recipients: those with very strong temporal locality and those
who receive e-mails only sporadically. These two sets are not
clearly defined in the spam workload. In fact, temporal lo-
cality is, on average, much weaker among spam recipients
and even weaker among recipients in the aggregate work-
load. Similar trends are observed for the temporal locality
among e-mail senders.

Therefore, our characterization reveals significant differences be-
tween the spam and non-spam workloads. These differences are
possibly due to the inherent distinct nature of e-mail senders and
their connections with e-mail recipients in each group. Whereas a
non-spam e-mail transmission is the result of a bilateral relation-
ship, typically initiated by a human being, driven by some social
relationship, a spam transmission in basically a unilateral action,
typically performed by automatic tools and driven by the spam-
mer’s will to reach as many targets as possible, indiscriminately,
without being detected.

The remaining of this paper is organized as follows. Section 2
discusses related work. Our e-mail workloads and the characteri-
zation methodology are described in Section 3. Section 4 analyzes
temporal variation patterns in the workloads. E-mail traffic charac-
teristics are discussed in Section 5. E-mail recipients and senders
are analyzed in Section 6. Finally, Section 7 presents conclusions
and directions for future work.

2. RELATED WORK
Developing a clear understanding of the workload is a key step

towards the design of efficient and effective distributed systems and
applications. A number of characterizations and analyses of differ-
ent workload types which led to valuable insights into system de-
sign are available in the literature, including the characterization of
web workloads [15], streaming media workloads [16, 17, 18] and,
recently, peer-to-peer [19] and chat room workloads [20]. To the
best of our knowledge, no previous work has performed a thorough
characterization of spam traffic. Next we discuss previous charac-
terizations and analyses of e-mail workload [4, 7, 13, 14].

In [13, 14], the authors provide an extensive characterization
of several e-mail server workloads, analyzing e-mail inter-arrival
times, e-mail sizes, and number of recipients per e-mail. They
also analyze user accesses to mail servers (through the POP3 pro-
tocol), characterizing inter-access times, number of messages per
user mailboxes, mailbox sizes and size of deleted e-mails, and pro-
pose models of user behavior. In this paper, we characterize not
only a general e-mail workload, but also a spam workload, in par-
ticular, aiming at identifying a signature of spam traffic, which can
be used in the future for developing more effective spam-controlling
techniques. In Sections 4-5, we contrast our characterization results
for non-spam e-mails with those reported in [13, 14].

Twining et al [4] present a simpler server workload character-
ization, as the starting point for investigating the effectiveness of
novel techniques for detecting and controlling junk e-mails (i.e.,
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virus and spams). They analyze the logs of two e-mail servers that
include a virus checker and a spam filter, and characterize the ar-
rival process of each type of e-mail (spam, virus, and “good”) per-
sender, the percentage of servers that send only junk e-mails, only
good e-mails, and a mixture of both. A major conclusion of the
paper is that popular spam detection mechanisms such as black-
list, tempfailing, and rate-limiting are rather limited in handling the
problem. This paper presented a more thorough characterization of
spam traffic, and contrasts, whenever appropriate, our findings to
those found in [4] .

In [7], the authors analyze the temporal distribution of spam ar-
rivals as well as spam content at selected sites from the AT&T and
Lucent backbones. They also discuss the factors that make users
and domains more likely to receive spams and the reasons that lead
to the use of spam as a communication and marketing strategy. The
paper also includes a brief discussion of the pros and cons of sev-
eral anti-spam strategies.

3. E-MAIL WORKLOAD
This section introduces the e-mail workload analyzed in this pa-

per. Section 3.1 describes the data source and collection archi-
tecture. The methodology used in the characterization process is
presented in Section 3.2. Section 3.3 provides an overview of our
e-mail workload.

3.1 Data Source
Our e-mail workload consists of anonymized SMTP logs of in-

coming e-mails to a large university, with around 22 thousand stu-
dents, in Brazil. The logs are collected at the central Internet fac-
ing e-mail server of the university. This server handles all e-mails
coming from the outside and addressed to most students, faculty
and staff, with e-mail addresses under the major university domain
name. Only the e-mails addressed to two out of over 100 university
subdomains (i.e., departments, research labs, research groups) do
not pass through and, thus, are not logged by, the central server.

The central e-mail server runs the Exim e-mail software [21],
the Amavis virus scanner [22] and the Trendmicro Vscan anti-virus
tool [23]. It also runs a set of pre-acceptance spam filters, includ-
ing local black lists and local heuristics for detecting suspicious
senders. These filters block on average 50% of all daily SMTP
connection arrivals. The server also runs SpamAssassin [24], a
popular spam filtering software, over all e-mails that are accepted.
SpamAssassin detects and filters spams based on a set of user-
defined rules. These rules assign scores to each received e-mail
based on the presence in the subject or in the e-mail body of one
or more pre-categorized keywords taken from a constantly chang-
ing list. High ranked e-mails are flagged as spams. SpamAssassin
also uses size-based rules, which categorize messages larger than a
pre-defined size as legitimate non-spam e-mails. E-mails that are
neither flagged as spam nor as virus-infected are forwarded to the
appropriate local servers, indicated by the sub-domain names of the
recipient users.

We analyze an eight-day log collected by the Amavis software
at the central e-mail server, during academic year at the univer-
sity. Our logs store the header of each e-mail that passes the pre-
acceptance filters, along with the results of the tests performed by
SpamAssassin and the virus scanners. In other words, for each
e-mail that is accepted by the server, the log contains the arrival
time, the size, the sender e-mail address, a list of recipient e-mail
addresses and flags indicating whether the e-mail was classified as
spam and whether it was detected to be infected with a virus. Fig-
ure 1 shows the overall data collection architecture at the central
e-mail server.

Primergy

Primergy Primergy
Primergy

Central
E−mail Server

Aggregate
Traffic

Local
E−mail
Server

Local
E−mail
Server

Local
E−mail
Server

Internet AMaViS

EXIM

Assassin
Spam

Aggregate
Traffic Traffic

Non−Spam

Log
E−mail header +

Virus flag +
Spam flag

. . .

Non−Spam
Traffic

Figure 1: Data Collection the Central E-mail Server

E-mails that are flagged with virus or addressed to recipients in
a domain name outside the university, for which the central e-mail
server is a published relay, are not included our analysis. These
e-mails correspond to only 0.8% of all logged data.

Note that the central server does not perform any test on the exis-
tence of the recipient addresses of the accepted e-mails. Such tests
are performed by the local servers. Thus, some of the recipient e-
mail addresses in our logs may not actually exist. These recipient
addresses could be result of honest mistakes or the consequence of
dictionary attacks [25], a technique used by some spammers to au-
tomatically generate a target distribution list with a large number of
potential e-mail addresses.

3.2 Characterization Methodology
As basis for our characterization, we first group the e-mails lo-

gged by Amavis into two categories, namely, spam and non-spam
(also referred to as “ham” in the literature [26]), based on whether
the e-mail was flagged by SpamAssassin. Three distinct workloads
are then defined:

� Spam - only e-mails flagged by SpamAssassin.

� Non-Spam - only e-mails not flagged by SpamAssassin.

� Aggregate - all e-mails logged by Amavis.

We characterize each workload separately. The purpose is three-
fold. First, we can compare and validate our findings for the non-
spam workload with those reported in previous analyzes of tradi-
tional (non-spam) e-mail traffic [4, 13, 14, 27]. Second, we are able
to identify the characteristics that significantly distinguish spam
from non-spam traffic. Finally, we are also able to assess the quan-
titative and qualitative impact of spam on the overall e-mail traffic,
by evaluating how the aggregate workload deviates from the non-
spam workload.

Our characterization focuses on the information available in the
e-mail headers, logged by Amavis. In other words, we characterize
the e-mail arrival process, distribution of e-mail sizes, distribution
of the number of recipients per e-mail, popularity and temporal lo-
cality among e-mail recipients and senders. Characterization of
e-mail content is left for future work.

Each workload aspect is analyzed separately for each day in our
eight-day log, recognizing that their statistical characteristics may
vary with time. The e-mail arrival process is analyzed during pe-
riods of approximately stable arrival rate, as daily load variations
may also impact the aggregate distribution.

To find the distribution that best models each workload aspect,
on each period analyzed, we compare the least square differences of
the best fitted curves for a set of alternative distributions commonly
found in other characterization studies [13, 16, 17, 18, 20, 28, 29,
30]. We also visually compared the curve fittings at the body and
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Table 1: Summary of the Workloads (CV = Coefficient of Variation)
Measure Non-Spam Spam Aggregate
Period 2004/01/19-26 2004/01/19-26 2004/01/19-26
Number of days 8 8 8
Total # of e-mails 191,417 173,584 365,001
Total size of e-mails 11.3 GB 1.2 GB 12.5 GB
Total # of distinct senders 12,338 19,567 27,734
Total # of distinct recipients 22,762 27,926 38,875
Avg # distinct recipients/msg (CV) 1.1 (0.74) 1.7 (1.38) 1.4 (1.27)
Avg # msgs/day (CV) 23,927 (0.26) 21,698 (0.08) 45,625 (0.17)
Avg # bytes/day (CV) 1.5 GB (0.39) 164 MB (0.19) 1.7 GB (0.37)
Avg # distinct senders/day (CV) 3,190 (0.22) 5,884 (0.10) 8,411 (0.11)
Avg # distinct recipients/day (CV) 8,981 (0.15) 14,936 (0.24) 19,935 (0.20)

at the tail of the measured data, favoring a better fit at either region
whenever appropriate to capture the most relevant aspects of the
workload to system design. For instance, shorter inter-arrival times
and larger e-mail sizes have a stronger impact on server capacity
planning. Thus, we favor a better fit at the body (tail) of the data
for determining the arrival process (distribution of e-mail sizes). In
Sections 5-6, we show only the results for the best fits.

By visually inspecting the list of sender user names in our spam
workload, we found that a large number of them seemed a random
sequence of characters, suggesting forging. Note that sender IP ad-
dresses may also be forged, although we expect it to happen less
frequently. Our logs contain only sender domain names. However,
sender IP addresses are separately collected by the Exim software.
By analyzing the Exim logs collected at the same period of our
Amavis logs, we found that, on average, a single sender domain
name is associated with 15 different IP addresses, whereas the av-
erage number of different domains per sender IP address is only 6.
In other words, there is no indication of which information is more
reliable. Because the results of SpamAssassin are available only
in the Amavis logs and a merge of both logs is hard to build, our
per-sender analysis focuses only on sender domain names. Thus,
throughout this paper, we simply use:

� E-mail sender - to refer to the e-mail sender domain.

� E-mail recipient - to refer to an e-mail recipient user name.

Table 2: Distribution of Senders and Recipients
Senders Recipients

Group % % Msg % % Msg
Only Non-Spam 29 31 24 10
Only Spam 56 23 38 20
Mixture 15 46 37 70

3.3 Overview of the Workloads
An overview of our three workloads is provided in Table 1. Note

that although spams correspond to almost 50% of all e-mails, spam
traffic corresponds to only 10% of all bytes received during the an-
alyzed period. Furthermore, the total number of distinct spammers
is almost 60% larger than the number of distinct senders in the non-
spam workload. Thus, the average number of e-mails originating
from the same domain is smaller in the spam workload, possibly
due to spammers periodically changing their e-mail domain names
to escape from black lists. Note that the total number of spam re-
cipients as well as the number of recipients per spam are also sig-
nificantly larger than the corresponding metrics in the non-spam
workload. This may be explained by spammers’ will to target as
many address as possible (e.g., dictionary attacks). Another inter-
esting point is the much lower variability in spam traffic, which is

further discussed in Section 4. Similar conclusions hold on a daily
basis, as shown in the last 5 rows in Table 1.

Table 2 shows the percentages of senders and recipients that
send and receive only non-spam e-mails, only spams and a mix-
ture of both. It also shows the percentage of e-mails each category
of sender/recipient is responsible for. More than half of all do-
mains send only spams whereas 15% of them send both types of
e-mails. We also point out that, on average, six out of the ten most
active spam senders on each day send only spams. Nevertheless,
the spam-only servers are responsible for only 23% of all e-mails,
whereas 46% of the e-mails originate from domains that send a
mixture of spams and non-spams. These results may be explained
by spammers frequently “forging” new domains. In [4], the authors
also found a large fraction of senders who send only junk (virus,
spam) e-mails. However, they found those senders accounted for a
larger fraction of the e-mails in their workloads.

Table 2 also shows that whereas 24% of all recipients are not tar-
get of spam, around 38% of them appear only in the spam workload
and receive 20% of all e-mails, in our log. Furthermore, we found
that around 50% of the spam-only recipients received less than 5
e-mails during the whole log, and that a number of them seemed
forged (e.g., randomly generated sequence of characters). These
observations lead us to speculate that many spam-only recipients
are the result of two frequent spammer actions: dictionary attacks
and removal of recipients from their target list after finding they do
not exist (i.e., after receiving a “not a user name” SMTP answer).
They also illustrate a potentially harmful side-effect of spam, which
is the use of network and computing resources for transmitting and
processing e-mails that are addressed to non-existent users and,
thus, that will be discarded only once they reach the local e-mail
server they are addressed to.

Interestingly, we found that all spams in our workload are ad-
dressed to existing domain names under the university major do-
main name. Note that there exists over a hundred different sub-
domain names under the university major domain name. Thus,
spammers seem to perform dictionary attacks by starting from a
real domain name and guessing a list of possible user names in or-
der to maximize the chance of hitting a real user. An evaluation
of the correlation between the spam content and the target domain
name to assess the knowledge of spammers with respect to their
targets is left for future work.

4. TEMPORAL VARIATION PATTERNS
IN E-MAIL TRAFFIC

This section discusses temporal variation patterns in each of our
three e-mail workloads, namely spam, non-spam and aggregate
workloads. Section 4.1 analyzes daily and hourly variations in load
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Table 3: Summary of Hourly Load Variation
Workload Metric Minimum Maximum Average CV
Non-Spam # E-mails/Hour 232 - 435 703 - 4,676 513 - 1,213 0.20 - 0.74

# Bytes/Hour (MB) 4 - 11 46 - 349 23 - 86 0.45 - 0.98
Spam # E-mails/Hour 194 - 776 1,081 - 2,086 781 - 1,007 0.12 - 0.36

# Bytes/Hour (MB) 1.7 - 5.7 6.1 - 18.4 4.3 - 8.0 0.15 - 0.45
Aggregate # E-mails/Hour 500 - 1,210 1,681 - 6,762 1,294 - 2,134 0.13 - 0.55

# Bytes/Hour (MB) 8.7 - 16.8 50 - 367 29 - 93 0.36 - 0.93
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Figure 2: Daily Load Variation (Normalization Parameters: Max # E-mails = 51,226, Max # Bytes 2.24 GB)
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Figure 3: Hourly Load Variation (Normalization Parameters: Max # E-mails = 2,768, Max # Bytes 197 MB)

intensity, measured in terms of the total number of e-mails and to-
tal number of bytes. Temporal variations in the numbers of distinct
e-mail recipients and senders are discussed in Section 4.2.

4.1 Load Intensity
Figure 2 shows daily load variations in the number of messages

and number of bytes, for non-spam, spam and agregate workload
respectively. The graphics show load measures normalized by the
peak daily load observed in the aggregate traffic. The normalization
parameters are shown in the caption of the figure.

Figure 2-a shows that the daily load variations in the non-spam
e-mail traffic exhibit the traditional bell-shape behavior, typically
observed in other web workloads [16, 18, 17], with load peaks dur-
ing weekdays and a noticeable decrease in load intensity over the
weekend (days six and seven). On the other hand, Figure 2-b shows
that spam traffic does not present any significant daily variation.
The daily numbers of e-mails and bytes are roughly uniformly dis-
tributed over the whole week. This stability in the daily spam traffic
was previously observed in [7] for a much lighter workload, includ-
ing only 5% of all e-mails received. Figure 2-c shows that the im-
pact of this distinct behavior on the aggregate traffic is a smoother
variation in the number of e-mails per day. The variation in the
aggregate number of bytes, on the other hand, has a pattern very
similar to the one observed in the non-spam workload, as shown

in Figure 2-c. This is because non-spam e-mails account for over
90% of all bytes received (see Table 1).

The same overall behavior is observed for the hourly load vari-
ations, as illustrated in Figure 3, for a typical day. Like in [13,
14], traditional non-spam e-mail traffic (Figure 3-a) presents two
distinct and roughly stable regions: a high load diurnal period, typ-
ically from 7AM to 7PM, (i.e., working hours), during which the
central server receives between 65% and 73% of all daily non-spam
e-mails, and a low load period covering the evening, night and early
morning. On the other hand, the intensity of spam traffic (Figure
3-b) is roughly insensitive to the time of the day: the fraction of
spams that arrives during a typical diurnal period is between 50%
and 54%. Figure 3-c shows that, as observed for daily load vari-
ations, the impact of spam on the aggregate traffic is a less pro-
nounced hourly variation of the number of e-mails received.

Table 3 summarizes the observed hourly load variation statistics.
For each workload, it presents the ranges for minimum, maximum,
average and coefficient of variation of the number of e-mails and
number of bytes received per hour, on each day. Note the higher
variability in the number of e-mails and number of bytes in the
non-spam workload. Also note that, for any of the three workloads,
a higher coefficient of variation is observed in the number of bytes,
because of the inherent variability of e-mail sizes. Finally, note
that these results are consistent with those of Table 1 for the daily
variation in the number of e-mails and bytes in each workload.
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Table 4: Summary of Hourly Variation of Number of Recipients and Senders
Workload Metric Minimum Maximum Average CV
Non-Spam # Distinct Recipients/Hour 228 - 383 589 - 2,883 411 - 978 0.21 - 0.58

# Distinct Senders/Hour 107 - 136 225 - 937 160 - 332 0.14 - 0.61
Spam # Distinct Recipients/Hour 485 - 1,174 1,397 - 4,095 955 - 2,371 0.15 - 0.41

# Distinct Senders/Hour 147 - 406 548 - 925 433 - 577 0.10 - 0.24
Aggregate # Distinct Recipients/Hour 828 - 1,672 2,480 - 6,580 1,505 - 3,179 0.20 - 0.41

# Distinct Senders/Hour 256 - 541 828 - 1,614 623 - 885 0.12 - 0.33

Qualitative similar results were also found for load variations on
a minute basis. The coefficients of variation of the number of e-
mails per minute vary in the ranges of 0.45-0.78 and 0.46-0.91 for
the spam and non-spam workloads, respectively. The coefficients
of variation of the number of bytes per minute are in the ranges of
0.70-1.03 and 1.37-1.75, in the two workloads.

One key conclusion we reach is that, on various time scales,
whereas traditional e-mail traffic is concentrated on diurnal periods,
the arrival rate of spam e-mails is roughly stable over time. One
question that comes up is whether this difference is also observed
on a per-sender basis. We analyzed the hourly traffic generated by
each of the 50 most active spam-only senders and strictly non-spam
senders (see Table 2). We found that each of the 50 strictly spam
senders sent, on average, 53% of its daily e-mails during the day.
In contrast, the strictly non-spam senders selected concentrate their
activity, sending, on average, 63% of their e-mails, at the same pe-
riod. Similar results were obtained for the 100, 200 and 500 most
active senders in each group. Therefore, each spammer indepen-
dently sends almost half of its e-mails over night, when computing
and networking resources are mostly idle. We conjecture that, by
using automatic tools, spammers try to maximize their short-term
throughput, sending at the fastest rate they can get through without
being noticed, throughout the day.

The fundamental difference between spam and non-spam traffic
discussed in this section, may be explained by the inherently dis-
tinct nature of their sources. Spammers are driven by the goal of
reaching as many targets as possible, without being detected. To
do so, they use automatic tools to (roughly) uniformly spread the
flooding of e-mails over time to avoid being noticed. Thus, a spam
transmission is basically a unilateral action. The transmission of
a legitimate non-spam e-mail, on the other hand, is the result of a
bilateral relationship [28, 29]. It is typically initiated by a human
being, driven by some social reason (i.e., work, leisure), during
his/her active hours.

4.2 Distinct Senders and Recipients
This section analyzes temporal variations in the numbers of dis-

tinct senders and recipients in our workloads. Daily variations and
hourly variations for a typical day are shown in Figures 4 and 5, re-
spectively. As before, we show normalized measures, expressed as
fractions of the peak aggregate number of senders and recipients in
the period. The normalization parameters are given in the captions
of the figures.

As observed in the load variation, temporal variations in the
number of distinct e-mail senders in the spam workload present sig-
nificantly different behavior from those observed in the non-spam
e-mail workload. Whereas the number of distinct legitimate e-mail
senders does present weekly patterns, the number of distinct spam-
mers is roughly stable over the eight days (with a slight increase by
the

�����
day), as shown in Figures 4-a and 4-b. This difference is

even more striking on a hourly basis, as shown in Figures 5-a and
5-b. Again, we speculate that the inherently different nature of the
e-mail senders in each workload (automatic tools versus human be-

ings) are responsible for it. In the aggregate traffic, the significant
variations observed in the non-spam e-mail traffic are somewhat
smoothed out by the roughly stable number of spammers, as shown
in Figures 4-c and 5-c.

Regarding the daily variations in the number of distinct recipi-
ents, shown in Figure 4, no clear distinction between spam and non-
spam traffic was observed. Surprisingly, we found that the number
of distinct spam recipients actually decreases significantly by the
fourth day. We could not find any reason to explain this weird be-
havior and plan to look further into that as future work. However,
on a hourly basis, we found that whereas the number of distinct
recipients of legitimate non-spam e-mails is higher during the day,
the number of distinct spam recipients is roughly stable over time,
as illustrated in Figure 5, for a typical day. These results are sum-
marized in Table 4, which shows, for each of the three workloads,
the observed ranges for the minimum, maximum, average and coef-
ficient of variation of the number of distinct recipients and number
of distinct senders per hour.

We also measured the correlation between the number of distinct
senders and the number of distinct recipients per hour, on each day,
for the three workloads. We found coefficients of correlation be-
tween 0.90 and 0.99 in the non-spam workload, and between 0.58
and 0.89 in the spam workload. The lower correlation seems to in-
dicate that there is a larger overlap in the distribution lists of typical
spammers. This overlap may be the result of spammers using sim-
ilar automatic tools to create their targets, trading their distribution
lists to extend their reach and/or obtaining the same distribution list
from existing web services [31, 32]. As discussed in the previous
section, traditional e-mail senders, on the other hand, are driven
mostly by social relationships [28, 29]. Thus, shared recipients are
most probably due to the fixed number of recipients, who are mem-
bers of a somewhat closed community (the university).

In summary, our results show that, unlike traditional non-spam
e-mail traffic, which exhibits clear daily patterns, with load peaks
during the day, the numbers of spam e-mails, spam bytes, distinct
active spammers and distinct spam recipients are roughly insensi-
tive to the period of measurement, remaining mostly stable during
the whole day, for all days analyzed.

5. E-MAIL TRAFFIC CHARACTERISTICS
This section analyzes the characteristics of e-mail traffic for the

spam, non-spam and aggregate workloads. The e-mail arrival pro-
cess is characterized in Section 5.1. The distributions of e-mail
sizes and number of recipients per e-mail are analyzed in Sections
5.2 and 5.3, respectively. For each workload characteristics, we
discuss the differences between spam and non-spam, pointing out
the impact of the former on the aggregate workload.

5.1 E-mail Arrival Process
In this section, the e-mail arrival process in each workload is

characterized during periods of roughly stable arrival rate, in or-
der to avoid spurious effects due to data aggregation. In the spam
workload, such periods are typically whole days, whereas in the
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Figure 4: Daily Variation of Number of Senders and Recipients (Normalization Parameters: Max # Senders = 10,089,
Max # Recipients = 25,218)
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Figure 5: Hourly Variation of Number of Senders and Recipients (Normalization Parameters: Max # Senders = 956,
Max # Recipients = 2,802)

non-spam and aggregate workloads, different stable periods are ob-
served during the day and over night.

Table 5: Summary of the Distribution of Inter-Arrival Times
Inter-Arrival Times Exponential

Workload Mean (sec) CV Parameter �
Non-Spam 2.1 - 9.7 1.12 - 1.90 0.10 - 0.48
Spam 3.6 - 4.9 1.08 - 1.99 0.21 - 0.26
Aggregate 1.3 - 3.2 1.07 - 1.73 0.31 - 0.75

Exponential (PDF): �������	��
���
������ .

We found that e-mail inter-arrival times are exponentially dis-
tributed in all three workloads, as illustrated in Figures 6-a, 6-b and
6-c, for typical periods of stable arrival rate in the non-spam, spam
and aggregate workloads, respectively. To evaluate the sensitivity
of the distribution to the period of measurement, we looked into
the distribution of inter-arrival times observed in different periods.
Figure 7 presents the cumulative distributions of inter-arrival times
for two distinct periods, one during the day and the other during
the evening, for each workload. Figure 7-a shows that non-spam
e-mail arrivals are burstier during the day, with around 86% of all
inter-arrival times within 5 seconds. During the evening, only 40%
of non-spam inter-arrival times are under 5 seconds. On the other
hand, the distributions are the same in both periods in the spam
workload, as shown in Figure 7-b. Figure 7-c shows somewhat in-
termediate results for the aggregate workload.

Table 5 summarizes our findings. It shows the ranges of the mean
and coefficient of variation of the inter-arrival times (measured in
seconds) as well as the range values of the � parameter (e-mail ar-
rival rate) of the best-fitted exponential distribution, for all periods

analyzed, in each workload. Note that � remains roughly stable
across all periods analyzed in the spam workload. In fact, the peak
arrival rate is only 25% higher than the minimum. On the other
hand, the non-spam arrival rates vary by as much as a factor of
five across the periods analyzed. Aggregate traffic exibits some-
what lower variations. As discussed in Section 4. The inherently
different nature of spam and non-spam senders may explain the
significantly different traffic patterns.

Our results are in contrast with prior work, which found that the
distribution of e-mail inter-arrival times at four e-mail servers is a
combination of a Weibull and a Pareto distributions [13, 14]. How-
ever, like in our workloads (see Table 5), the reported coefficient of
variation of their inter-arrival times was close to 1. Moreover, our
results are in close agreement to other previous work which found a
non-stationary Poisson process to model with reasonable accuracy
SMTP connection arrivals [27].

5.2 E-mail Size
We found that the distribution of e-mail sizes is most accurately

approximated, both at the body and at the tail of the data, by a Log-
normal distribution, in all three workloads, as illustrated in Figures
8 and 9, for a typical day. Figures 8 (a-c) show the probability den-
sity functions of the data and fitted Lognormal distributions for the
non-spam, spam and aggregate workloads, respectively. Semi-log
plots of the complementary cumulative distributions for the same
data are shown in Figures 9(a-c). Table 6 presents the ranges of
the mean, coefficient of variation and parameter values of the best-
fitted Lognormal distribution for each workload, in all days ana-
lyzed. These results are consistent with those reported in previous
e-mail workload characterizations [13, 14].
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Figure 7: Sensitivity of Inter-Arrival Time Distribution to the Period Analyzed

Table 6: Summary of the Distribution of E-mail Sizes
E-mail Sizes Lognormal Parameters

Workload Mean (KB) CV � �
Non-Spam 34 - 75 4.27 - 5.24 8.77 - 9.72 1.72 - 1.83
Spam 5 - 9 1.37 - 1.98 7.97 - 8.51 1.03 - 1.26
Aggregate 19 - 44 5.57 - 6.39 7.97 - 8.95 1.86 - 1.94

Lognormal (PDF): � � � �	� 

�

���
� ��� 


	�

� ��

����	������
��� � .

Table 6 shows that the sizes of non-spam e-mails are much more
variable and have a much heavier tail. In our workloads, approxi-
mately 83% and 61% of spam and non-spam e-mails, respectively,
have sizes under 10 KB. However, whereas only 1% of all spams
are sized above 60 KB, approximately 13% of non-spam e-mails
have sizes above that mark. These results are consistent with those
reported in [13, 14] for non-spam e-mail traffic. The impact of
spam on the aggregate traffic is, thus, a decrease in the average
e-mail size but an even more variable e-mail size distribution.

We draw the following insights from these results. First, in our
workload, spammers typically send (a large number of) short e-
mails, possibly with no attachment (content characterization is out
of present scope). Second, as performed by some system admin-
istrators (including our central server administrator), e-mail size
might be used together with other filtering techniques to improve
the effectiveness of spam detection.

5.3 Number of Recipients per E-mail
This section characterizes the distribution of the number of dis-

tinct recipients per e-mail. Since this distribution is discrete, we
do not apply the same fitting technique as in previous sections. In-
stead, like in [13, 14], we subdivide each distribution into � buck-
ets. Each bucket is characterized with an average probability, cal-
culated over the eight days analyzed. Jointly, these probabilities
represent the distribution for number of e-mail recipients from 1

to � . For each workload, we choose a value of � so as to limit
the probability of an e-mail with more than � e-mail recipients to
below 0.002 [13, 14]. The values of � for the non-spam, spam
and aggregate workloads are ������� �! #"%$'&)(

*
, �  #"%$'&)(

+�,
and

� $�-�-%.0/1-�$ � / (
+�,

, respectively.
Figure 10 shows the cumulative distributions for the three work-

loads. As mentioned in Section 3.3, spams are typically addressed
to a larger number of recipients. Whereas, on average, 95% of
all non-spam e-mails are addressed to one recipient, only 86% of
spams have a single destination. Furthermore, the distribution is
heavier tailed in the spam workload, possibly due to the use of
automatic tools. Since almost half of all e-mails are spams, the
distribution of the number of recipients per e-mail in the aggregate
workload is strongly influenced by the heavy tailed behavior ob-
served among spams. The authors of [13, 14] found an even heav-
ier tail in the distribution of the number of recipients per e-mail. In
that study, even though 94% of all e-mails are addressed to a single
recipient, 20 buckets were necessary to cover 99.8% of all e-mails.
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Figure 10: Distribution of Number of Recipients per E-mail
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Figure 9: Distribution of E-mail Sizes (Tail)

6. ANALYZING E-MAIL SENDERS
AND RECIPIENTS

This section further analyzes e-mail senders and recipients in our
three workloads. Popularity of e-mail recipients and senders is ana-
lyzed in Section 6.1. Section 6.2 analyzes temporal locality among
e-mail recipients and senders.

6.1 Popularity
Object popularity has been repeatedly modeled with a Zipf-like

distribution (Prob(access object � ) = ������� , where �	��
 and � is
a normalizing constant [33]) in many contexts, including web and
streaming media [16, 17, 18, 28]. A Zipf-like distribution appears
as a straight line in the log-log plot of popularity versus object rank.
However, two roughly linear regions were observed in the log-log
plots of some streaming media and peer-to-peer workloads [17, 18,
19, 34]. The concatenation of two Zipf-like distributions where
suggested as a good model in such cases [17, 18].

In the following sections, we analyze the log-log plots of e-mail
recipient and sender popularity, measured in terms of both the num-
ber of e-mails and the number of bytes received and sent. To assess
the accuracy of our proposed models, we measure the �

�
factor

of the linear regression [35] for each single Zipf-like distribution
found. In our models, the values of �

�
are above 0.95 in all cases

( �
�
(

+
corresponds to perfect agreement).

Section 6.1.1 analyzes recipient popularity. The distribution of
sender popularity is discussed in Section 6.1.2.

6.1.1 Recipient Popularity
This section analyzes the popularity of e-mail recipients in our

three workloads. A characterization of the number of e-mails per
recipient is presented first. The distribution of the number of bytes
per recipient is discussed later in this section.

Number of E-mails per Recipient

Figures 11-a, 11-b and 11-c show the log-log plots of the num-
ber of e-mails per recipient for the non-spam, spam and aggregate
workloads, respectively, on a typical day. Given the large fraction
of users who receive only one e-mail per day in all three workloads,
we choose to characterize the number of e-mails per recipient using
a combination of a fixed constant probability, for those recipients
who receive only one e-mail, and a probability distribution for the
remaining users.

The curves in Figure 11 present significantly different patterns
for recipients of two or more e-mails. Whereas Figures 11-a and
11-c show straight lines, Figure 11-b shows two distinct linear re-
gions in the spam workload. These results are representative of
all days analyzed. Thus, for recipients of two or more e-mails per
day, we model the number of e-mails per recipient with a single
Zipf-like distribution, for the non-spam and aggregate workloads,
and with the concatenation of two Zipf-like distributions, for the
spam workload. Figures 11(a-c) show the curves for the best fitted
Zipf-like distributions in each case. The roughly flat curve over the
most popular spam recipients implies they receive around the same
number of spams, on the particular day considered. This was true
for all days analyzed, and may be explained by the larger average
number of recipients per spam (section 5.3) and by the larger frac-
tion of shared recipients among spammers (section 4.2). Again, the
inherent difference between the unilateral relationship established
between spammers and spam recipients and the bilateral, socially-
driven relationship established between non-spam senders and re-
cipients may incur significantly different traffic patterns.
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Figure 12: Distribution of Number of Bytes per Recipient

Number of Bytes per Recipient

Figures 12-a, 12-b and 12-c show the log-log plots of the number
of bytes per recipient observed on a typical day for the non-spam,
spam and aggregate workloads, respectively. All three graphs show
two clear linear regions, and are representative of the results found
in all days analyzed. Thus, we model the number of bytes per re-
cipient with the concatenation of two Zipf-like distributions, also
shown in the graphs of Figure 12.

The discrepancy between these results and the distributions of
the number of e-mails per recipient in the non-spam and aggregate
workloads may be due to the high variability in non-spam e-mail
sizes (see Section 5.2). Moreover, we found that the correlation
between the number of e-mails and the number of bytes received by
each user is typically weak, ranging between 0.18-0.27, 0.50-0.66,
and 0.18-0.28 for the non-spam, spam and aggregate workloads,
respectively. Thus, in each workload, the users who receive the
largest number of e-mails are not necessarily the same who receive
the largest volume of traffic.

6.1.2 Sender Popularity
This section characterizes sender popularity. We first present the

results for the number of e-mails per sender. Analysis of the num-
ber of bytes per sender is discussed at the end of the section.

Number of E-mails per Sender

Figures 13-a, 13-b and 13-c show the log-log plots of the num-
ber of e-mails per sender, on a typical day, in the non-spam, spam
and aggregate workloads, respectively. The three curves show sim-
ilar behavior. As observed for e-mail recipients, there is a large
number of senders that send only one message on a typical day.
Moreover, the portion of the curve covering the remaining senders
is well approximated with a straight line. Thus, in all workloads,

we model the number of e-mails per sender with the concatenation
of a constant probability, for single-message senders, and a Zipf-
like distribution (shown in the Figure), for the remaining senders.

We point out that the curve in Figure 13-b somewhat flattens out
over a few of the most popular spammers. However, since they
represent a very small fraction of all spammers, a straight line is
a reasonably good fit for the curve. Nevertheless, it is interesting
to note that the fitting of the single Zipf-like distribution is more
accurate for the non-spam and aggregate workloads.

Number of Bytes per Sender

A single Zipf-like distribution was found to be a good approxi-
mation of the number of bytes per sender, in all three workloads,
as illustrated in Figure 14. We point out that the high variability
in e-mail sizes, which might be responsible for a noticeable flat re-
gion over the recipients with the largest number of e-mails (Section
6.1.1), is less effective here because of the larger number of e-mails
per sender. Furthermore, unlike observed for recipients, the corre-
lation between the number of e-mails and the number of bytes for
each sender was typically high, in the ranges of 0.68-0.88, 0.66-
0.80 and 0.70-0.87, for the non-spam, spam and aggregate work-
loads, respectively.

In summary, our key conclusions with respect to e-mail sender
and recipient popularity are:

� The distributions of the number of non-spam e-mails per sen-
der and recipient follow, mostly, a Zipf-like distribution. This
result is consistent with previous findings that the connec-
tions between e-mail senders and recipients are established
using a power law (e.g., a Zipf distribution) [28, 29].

� The distribution of the number of spams per recipient does
not follow a true power law, but rather, presents a flat re-
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Figure 13: Distribution of Number of E-mails per Sender
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Figure 14: Distribution of Number of Bytes per Sender

gion over the most popular recipients. This may be caused
by large spam recipient lists and large number of recipients
shared among spammers. The number of spams per sender is
reasonably well approximated with a Zipf-like distribution.

� In all three workloads, the number of bytes per recipient is
most accurately modeled by two Zipf-like distributions. In
the case of the non-spam and aggregate workloads, this is
probably due to the high variability in e-mail size. The dis-
tribution of the number of bytes per sender is well modeled
by a single Zipf-like distribution in all three workloads.

Table 7 summarizes our findings. It presents the ranges of the
observed percentage of recipients/senders that received/sent only
one e-mail on a typical day. It also shows the range of parameter
values for the Zipf-like distributions that best fit the data for the
remaining recipients/senders. For the cases where two Zipf-like
distributions are the best model, Table 7 shows, for each single dis-
tribution, the total probability and percentage of recipients/senders
that fall within the corresponding region of the curve as well as the
value of the � parameter.

We point out that the skewed distributions of the number of e-
mails and bytes per sender and per recipient suggest that sender
and recipient popularity could be used to improve the effective-
ness of spam detection techniques. For instance, on each day, on
average, 53% of the spams and 63% of the spam bytes originate
from only 3% of all strictly spam senders. Furthermore, around
40% of these spammers are among the most active throughout the
eight days covered by our log. Thus, the insertion of these popular
spammers into black lists could significantly reduce the number of
spams accepted by the server. Similar results were observed for
the senders who sends only non-spam e-mails, suggesting the use

of white lists to avoid the overhead of scanning a significant frac-
tion of all e-mails. Finally, the concentration of spams into a small
fraction of recipients, who remain among the most popular through
several days, suggests that spam detection techniques might use the
e-mail destination to improve its success rate.

6.2 Temporal Locality
Temporal locality in a object reference stream implies that ob-

jects that have been recently referenced are more likely to be refer-
enced again in the near future [30]. A previously proposed method
to assess the temporal locality present in a reference stream is by
means of the distribution of stack distances [30]. A stack distance
measures the number of references between two consecutive ref-
erences to the same objetct in the stream. Shorter stack distances
imply stronger temporal locality.

This section analyzes temporal locality among recipients and
among senders in our three workloads. We start by creating a set
of e-mail streams, one for each workload and day analyzed. Each
stream preserves the order of e-mail arrivals in the corresponding
workload and day. To assess temporal locality among recipients,
each e-mail in a stream is replaced with its recipient list, creating,
thus, a recipient stream. The distribution of stack distances in the
recipient stream is then determined. Similarly, to assess temporal
locality among senders, each e-mail is replaced with its sender and
the distribution of stack distances is determined.

Section 6.2.1 analyzes temporal locality among recipients. Tem-
poral locality among senders is discussed in Section 6.2.2.

6.2.1 Temporal Locality Among Recipients
Figures 15-a, 15-b and 15-c show histograms of recipient stack

distances, for distances shorter than 150, observed on a typical
day in the non-spam, spam and aggregate workloads, respectively.
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Table 7: Summary of Distributions of Recipient and Sender Popularity
Workload Popularity % receive/send

+  � Zipf � ��� Zipf
Metric one e-mail/day % Data Prob. � % Data Prob. �

Recipient Non-Spam # E-mails 48-62 100 1 0.521-0.678
# Bytes 3-21 0.05-0.26 0.622-0.838 79-97 0.74-0.95 1.674-3.204

Spam # E-mails 29-59 2-3 0.05-0.08 0.218-0.295 97-98 0.92-0.95 0.468-0.641
# Bytes 4-62 0.05-0.66 0.340-0.561 38-96 0.34-0.95 1.100-3.871

Aggregate # E-mails 29-49 100 1 0.947-0.969
# Bytes 3-85 0.05-0.88 0.637-1.317 15-94 0.13-0.95 1.852-8.618

Sender Non-Spam # E-mails 54-68 100 1 0.993-1.251
# Bytes 100 1 1.72-2.08

Spam # E-mails 55-67 100 1 0.781-0.996
# Bytes 100 1 0.915-1.192

Aggregate # E-mails 53-61 100 1 0.937-0.987
# Bytes 100 1 1.185-1.775
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Figure 15: Histograms of Recipient Stack Distances

The complementary cumulative distributions of recipient stack dis-
tances, measured on that same day, are shown in Figure 16. Note
the log scale on the y-axis in Figure 16.
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Figure 16: Complementary Cumulative Distributions of Recip-
ient Stack Distances

We draw the following conclusions. First, there is a higher prob-
ability of very short stack distances, and thus, stronger temporal lo-
cality, in the non-spam workload. Second, the distribution of stack
distances has a slightly heavier tail for non-spam recipients than for
spam recipients (see discussion below). Finally, the impact of spam
on the aggregate traffic is clear: temporal locality among recipients
is significantly reduced, evidenced by an even heavier tail in the
stack distance distributions. A summary of best-fitted distributions
for recipient stack distances in each workload is presented in Table
8. Note the smaller mean and larger coefficient of variation in the
non-spam workload, in agreement with our discussion above.

In search for an explanation for the significantly different tempo-
ral locality observed among spam and non-spam e-mail recipients,
we defined two regions in each stack distance distribution: the head
and the tail. The head (tail) consists of the shortest (largest) stack

Table 8: Summary of the Distributions of Recipient Stack Distances
Workload Mean CV Weibull Parameters

(x1000) � �
Non-Spam 0.7-1.9 2.0-2.3 0.08-0.12 0.35-0.41
Workload Mean CV Gamma Parameters

(x1000) � �
Spam 2.2-3.5 1.1-1.6 0.36-0.54 4877-23741

Aggregate 3.1-5.4 1.4-1.9 0.29-0.37 8465-47657

Gamma (PDF): � �����
	 (
��
�����
��� � � �

��� ��
;

Weibull (PDF): � �����
	 ( ��� �
�
� � � � � �

��� ����� � � ���
	

distances such that the total probability of the region does not ex-
ceed � ( 
�� � . We then defined two sets of recipients, one including
all recipients for which the stack distances in the head were ob-
served, and the other containing the recipients for which the stack
distances in the tail were observed. We made three observations.
First, the sets are mostly disjoint, in both spam and non-spam work-
loads. Second, the number of distinct recipients in the head of each
distribution is a significant fraction (over 30%) of the number of
daily recipients, in both workloads. Third, whereas the number of
recipients in the tail of the non-spam distribution is significant, the
number of recipients in the tail of the spam distribution corresponds
to only 4% of daily spam recipients.

These findings, jointly, imply that there are (at least) two distinct
and non-negligible sets of non-spam recipients. These sets cor-
respond to two classes of e-mail users who exist in the real world:
those who make intense use of e-mail for communication and, thus,
receive bursts of e-mails from their peers, mostly during the day,
when they are active, and those who send, and thus, receive e-mail
only sporadically. These sets are not clearly defined among spam
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Figure 17: Histograms of E-mail Sender Stack Distances

recipients, probably because the transmission of a spam is driven
by the spammer, which acts mostly independently of the recipient’s
intimacy with e-mail systems.

6.2.2 Temporal Locality Among Senders
The histograms of e-mail sender stack distances observed on

a typical day, for the non-spam, spam and aggregate workloads,
are shown in Figures 17-a, 17-b and 17-c, respectively. Figure 18
the corresponding complementary cumulative distributions. As ob-
served for e-mail recipients, there is a higher probability of very
short and very large stack distances for non-spam e-mail senders.
The distribution for the aggregate workload has an even heavier tail,
implying a significant reduction on temporal locality among e-mail
senders due to spam. A summary of the best-fitted distributions for
e-mail sender stack distances is given in Table 9.

7. CONCLUSION AND FUTURE WORK
This paper provides an extensive analysis of a spam traffic, un-

covering characteristics that significantly distinguish it from tradi-
tional non-spam traffic and assessing how the aggregate traffic is
affected by the presence of a large number of spams.

Our characterization, based on the information available on the
e-mail headers, revealed that e-mail arrival process, e-mail sizes,
number of recipients per e-mail, popularity and temporal locality
among recipients are some key workload aspects where spam traffic
significantly deviates from traditional non-spam traffic. We believe
that such discrepancies are consequence of the inherently different
nature of e-mail senders in each traffic. Traditional e-mail senders
are usually human beings who use e-mails to interact or socialize
with their peers. Spammers typically use automatic tools to gen-
erate and send their e-mails to a multitude of “potential”, mostly
unknown, users.

To the best of our knowledge, this was the first effort towards a
more fundamental understanding of the determinant characteristics
of spam traffic. In other words, it provides a first step towards the
identification of a spam signature, which can drive the design of
more robust spam detection techniques. Research directions we
intend to pursue in the future include validation of our results over
time and networks, characterization of e-mail content, and further
analysis of the relationship between spammers and their recipients
and of spammer behavior, in general.
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Table 9: Summary of the Distributions of E-mail Senders Stack
Distances

Workload Mean CV Weibull Parameters
� �

Non-Spam 287-644 3.35-3.78 4.34-6.63 1.58-1.70
Spam 960-1567 1.88-2.51 5.52-7.80 1.23-1.42
Aggregate 1403-2189 2.32-3.23 6.03-7.91 1.36-1.56
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