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Abstract
In recent years, the standards community has devel-

oped techniques for traversing NAT/firewall boxes with
UDP (that is, establishing UDP flows between hosts behind
NATs). Because of the asymmetric nature of TCP connec-
tion establishment, however, NAT traversal of TCP is more
difficult. Researchers have recently proposed a variety of
promising approaches for TCP NAT traversal. The success
of these approaches, however, depend on how NAT boxes
respond to various sequences of TCP (and ICMP) packets.
This paper presents the first broad study of NAT behavior
for a comprehensive set of TCP NAT traversal techniques
over a wide range of commercial NAT products. We devel-
oped a publicly available software test suite that measures
the NAT’s responses both to a variety of isolated probes
and to complete TCP connection establishments. We test
sixteen NAT products in the lab, and 93 home NATs in the
wild. Using these results, as well as market data for NAT
products, we estimate the likelihood of successful NAT
traversal for home networks. The insights gained from this
paper can be used to guide both design of TCP NAT traver-
sal protocols and the standardization of NAT/firewall be-
havior, including the IPv4-IPv6 translating NATs critical
for IPv6 transition.

1 Introduction

Network address and port translators (NATs) and firewalls
break the IP connectivity model by preventing hosts out-
side the protected network1 from initiating a connection
with a host inside the protected network. If both endpoints
are protected by their respective NAT or firewall, ordinary
TCP cannot be established since the end initiating the TCP
is outside the other end’s NAT2. This is true even if the con-
nection would be allowed according to each end’s firewall
security policy. For instance, if the firewall policy is that in-
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ternal hosts may initiate TCP connections, and both hosts
wish to initiate. Recent work has proposed work-arounds
that establish a TCP connection without the use of proxies
or tunnels [9, 5, 3, 6]. This is accomplished by setting up
the necessary connection-state on the NAT through a care-
fully crafted exchange of TCP packets. However, not all
NATs in the wild react the same way, causing these ap-
proaches to fail in various cases. Understanding such be-
havior in NATs and measuring how much they detract from
the original goal of universal connectivity in the Internet is
crucial to integrating them cleanly into the architecture.

The Internet architecture today is vastly different from
that envisioned when TCP/IP was designed. Firewalls and
NATs often make it impossible to establish a connection
even if it does not violate policy. For instance, Alice and
Bob may disallow unsolicited connections by hiding be-
hind a NAT or configuring their firewalls to drop inbound
SYN packets. Yet when both Alice and Bob agree to estab-
lish a connection there is no way to do so without recon-
figuring their NAT since Alice’s SYN is dropped by Bob’s
NAT and vice versa. Even so, NATs and firewalls have be-
come a permanent part of the network infrastructure and
will continue to remain so for a long time. Even if IPv6 is
deployed globally, IPv4-IPv6 NATs will be needed during
the lengthy transition, and IPv6 firewalls will be needed for
security. As a result, mechanisms that enable two consent-
ing hosts behind NATs to communicate with each other are
needed.

This problem has been solved for UDP by STUN [15].
In STUN, Alice sends a UDP packet to Bob. Although this
packet is dropped by Bob’s NAT, it causes Alice’s NAT to
create local state that allows Bob’s response to be directed
to Alice. Bob then sends a UDP packet to Alice. Alice’s
NAT considers it part of the first packet’s flow and routes
it through, while Bob’s NAT considers it a connection ini-
tiation and creates local state to route Alice’s responses.
This approach is used by Skype, a popular VoIP applica-
tion [2]. Unfortunately, establishing TCP is more compli-
cated. Once Alice sends her SYN packet, her OS stack



as well as her NAT expect to receive a SYNACK packet
from Bob in response. However, since the SYN packet
was dropped, Bob’s stack doesn’t generate the SYNACK.
Proposed workarounds to the problem are complicated,
their interactions with NATs in the wild are poorly under-
stood, and the extent to which they solve the problem is not
known. Consequently applications such as the file-transfer
module in Skype use contraindicated protocols like UDP.
While such approaches may work, we believe it is impor-
tant that wherever possible, applications use the native OS
TCP stack. This is in part to avoid increasingly complex
protocol stacks, but more importantly because TCP stacks
have, over the years, been carefully optimized for high per-
formance and congestion friendliness.

Overall this work makes four contributions. First, we
identify and describe the complete set of NAT character-
istics important to TCP NAT traversal. Second, we mea-
sure the prevalence both of these individual characteristics
and of the success rate of peer-to-peer TCP connections for
the various proposed approaches. Third, based on these
measurements, we suggest modifications to the proposed
approaches. Fourth, we provide public-domain software
toolkit that can be used to measure NATs as they evolve,
and as the basis of TCP NAT traversal in P2P applications.
Altogether we provide insights for application developers
into the inherent tradeoffs between implementation com-
plexity and NAT-traversal success rate. Finally, our results
can be used to guide the standardization process of NATs
and firewalls, making them more traversal friendly without
circumventing security policies.

The rest of the paper is organized as follows. Section 2
discusses the proposed TCP NAT-traversal approaches.
Section 3 and Section 4 explain our setup for testing NATs
and the observed NAT behavior. Section 5 analyzes port-
prediction and Section 6 analyzes peer-to-peer TCP estab-
lishment. Section 7 discusses related work. Section 8 con-
cludes the paper.

2 TCP NAT-Traversal

In this section we discuss the TCP NAT-traversal ap-
proaches that have been proposed in recent literature. In
all the approaches, both ends initiate a TCP connection.
The outbound SYN packet from each host creates the nec-
essary NAT state for its own NATs. Each approach then
reconciles the two TCP attempts into a single connection
through different mechanisms as described in this section.
The address and port to which these original SYNs are sent
is determined through port prediction. Port prediction al-
lows a host to guess the NAT mapping for a connection be-
fore sending the outbound SYN and is discussed in detail
later. The approaches also require some coordination be-
tween the two hosts. This is accomplished over an out-of-
band channel such as a connection proxied by a third party

or a UDP/STUN session. Once the direct TCP connec-
tion is established, the out-of-band channel can be closed.
The reconciliation mechanism used triggers different be-
havior in different NATs causing the proposed approaches
to fail in many instances. In addition, it is possible for ei-
ther endpoint to be behind multiple NATs in serial3. In such
cases the behavior observed is a composite of the behav-
ior of all the NATs and firewalls in the path. For brevity
we shall overload the term ‘NAT’ to mean the composite
NAT/firewall.

2.1 STUNT

In [9], the authors propose two approaches for traversing
NATs. In the first approach, illustrated in Figure 1(a), both
endpoints send an initial SYN with a TTL4 high enough to
cross their own NATs, but small enough that the packets are
dropped in the network (once the TTL expires). The end-
points learn the initial TCP sequence number used by their
OS’s stack by listening for the outbound SYN over PCAP
or a RAW socket. Both endpoints inform a globally reach-
able STUNT server of their respective sequence numbers,
following which the STUNT server spoofs a SYNACK to
each host with the sequence numbers appropriately set.
The ACK completing the TCP handshake goes through the
network as usual. This approach has four potential prob-
lems. First, it requires the endhost to determine a TTL
large enough to cross its own NATs and low enough to not
reach the other end’s NAT. Such a TTL does not exist when
the two outermost NATs share a common interface. Sec-
ond, the ICMP TTL-exceeded error may be generated in re-
sponse to the SYN packet and be interpreted by the NAT as
a fatal error. Third, the NAT may change the TCP sequence
number of the initial SYN such that the spoofed SYNACK
based on the original sequence number appears as an out-
of-window packet when it arrives at the NAT. Fourth, it
requires a third-party to spoof a packet for an arbitrary ad-
dress, which may be dropped by various ingress and egress
filters in the network. These network and NAT issues are
summarized in Table 1.

In the second approach proposed in [9], similar to the
one proposed in [5], only one endhost sends out a low-TTL
SYN packet. This sender then aborts the connection at-
tempt and creates a passive TCP socket on the same address
and port. The other endpoint then initiates a regular TCP
connection, as illustrated in Figure 1(b). As with the first
case, the endhost needs to pick an appropriate TTL value
and the NAT must not consider the ICMP error a fatal er-
ror. It also requires that the NAT accept an inbound SYN
following an outbound SYN – a sequence of packets not
normally seen.
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Figure 1: Packets generated by various TCP NAT-traversal approaches. Solid lines are TCP/IP and ICMP packets pertaining to the
connection attempt while dotted lines are control messages sent over an out-of-band channel.

Approach NAT/Network Issues Linux Issues Windows Issues

STUNT #1 • Determining TTL • Superuser priv. • Superuser priv.
• ICMP error • Setting TTL
• TCP Seq# changes
• IP Address Spoofing

STUNT #2 • Determining TTL • Setting TTL
• ICMP error
• SYN-out SYN-in

NATBlaster • Determining TTL • Superuser priv. • Superuser priv.
• ICMP error • Setting TTL
• TCP Seq# changes • RAW sockets (post WinXP SP2)
• SYN-out SYNACK-out

P2PNAT • TCP simultaneous open • TCP simultaneous open (pre WinXP SP2)
• Packet flood

STUNT #1 no-TTL • RST error • Superuser priv. • Superuser priv.
• TCP Seq# changes • TCP simultaneous open (pre WinXP SP2)
• Spoofing

STUNT #2 no-TTL • RST error
• SYN-out SYN-in

NATBlaster no-TTL • RST error • Superuser priv. • Superuser priv.
• TCP Seq# changes • RAW sockets (post WinXP SP2)
• SYN-out SYNACK-out • TCP simultaneous open (pre WinXP SP2)

Table 1: NAT and network issues encountered by various TCP NAT-traversal approaches as well as the implementation issues we
encountered.

2.2 NATBlaster

In [3], the authors propose an approach similar to the first
STUNT approach but do away with the IP spoofing re-
quirement (Figure 1(c)). Each endpoint sends out a low-
TTL SYN and notes the TCP sequence number used by the
stack. As before, the SYN packet is dropped in the mid-
dle of the network. The two hosts exchange the sequence
numbers and each crafts a SYNACK packet the other ex-
pects to receive. The crafted packet is injected into the net-
work through a RAW socket; however, this does not consti-
tute spoofing since the source address in the packet matches
the address of the endpoint injecting the packet. Once the
SYNACKs are received, ACKs are exchanged completing
the connection setup. As with the first STUNT approach,
this approach requires the endpoint to properly select the
TTL value, requires the NAT to ignore the ICMP error and
fails if the NAT changes the sequence number of the SYN
packet. In addition, it requires that the NAT allow an out-
bound SYNACK immediately after an outbound SYN – an-

other sequence of packets not normally seen.

2.3 Peer-to-Peer NAT

In [6], the authors take advantage of the simultaneous open
scenario defined in the TCP specifications [13]. As illus-
trated in Figure 1(d), both endpoints initiate a connection
by sending SYN packets. If the SYN packets cross in the
network, both the endpoint stacks respond with SYNACK
packets establishing the connection. If one end’s SYN ar-
rives at the other end’s NAT and is dropped before that
end’s SYN leaves that NAT, the first endpoint’s stack ends
up following TCP simultaneous open while the other stack
follows a regular open. In the latter case, the packets on
the wire look like the second STUNT approach without the
low-TTL and associated ICMP. While [6] does not use port-
prediction, the approach can benefit from it when available.
As with the second STUNT approach, it requires that the
NAT accept an inbound SYN after an outbound SYN. In
addition, the approach requires the endhost to retry failed



connection attempts in a tight loop until a timeout occurs.
If instead of dropping the SYN packet, a NAT responds to it
with a TCP RST then this approach devolves into a packet
flood until the timeout expires.

2.4 Implementation

We implemented all the above approaches on both Linux
and Windows. We also developed a Windows device
driver that implements the functionality required by the
approaches that are not natively supported by Windows.
The first STUNT approach requires superuser privileges
under both Windows and Linux to overhear the TCP SYN
packet on the wire and learn its sequence number. In or-
der to set the TTL on the first SYN packet, we use the
IP TTL socket option under Linux and our driver under
Windows. We also implemented the STUNT server and
host it behind an ISP that does not perform egress filter-
ing in order to spoof arbitrary addresses. While the server
was able to spoof most SYNACKs, it was not successful
in spoofing SYNACKs where both the source and destina-
tion were in the same administrative domain and the do-
main used ingress filtering. When possible, we install an
additional STUNT server inside such domains. The second
STUNT approach requires the driver to set the TTL un-
der windows. The NATBlaster approach requires superuser
privileges to learn the sequence number of the SYN and in-
ject the crafted SYNACK through a RAW socket. Due to
a restriction introduced in Windows XP SP2, the approach
requires the driver to inject this packet. The P2PNAT ap-
proach requires the OS to support TCP simultaneous open;
this is supported under Linux and Windows XP SP2 but
not by Windows XP prior to SP2. On Windows XP SP1
and earlier our driver adds support for this. These imple-
mentation issues are summarized in Table 1.

We found that setting the TTL is problematic under Win-
dows; therefore, we consider the consequences of not us-
ing it. If the TTL is not reduced, the first SYN sent by one
of the hosts reaches the other end’s NAT before that end’s
SYN exits the same NAT. The NAT can either silently drop
the inbound packet, or respond with an ICMP unreachable
error or a TCP RST/ACK. The response, if any, may trigger
transitions in the sender’s NAT and OS stack unaccounted
for by the approach. If the TTL for the other end’s SYN
packet is not reduced either, the SYN may reach the in-
tended destination triggering unforeseen transitions. The
behavior may be favorable to the ultimate goal if, for in-
stance, it triggers a TCP simultaneous-open, or it may be
detrimental if it confuses the stack or NAT. We implement
modified versions of the above approaches that do not use
low TTLs. The network and implementation issues corre-
sponding to the modified approaches are listed in Table 1.

Client

Personal
firewall

App.
Wireless

Gateway/NAT
ISP

NAT/firewall

Server Internet

Figure 2: A possible experiment setup for STUNT. Client com-
ponent is behind multiple NATs and the server component is out-
side all of them. The behavior determined by STUNT is the com-
posite of the individual NAT behaviors.

Brand Model Firmware

3Com 3C857 2.02
Allied Telesyn AT-AR220E R1.13
Belkin F5D5231-4 1.0.0
Buffalo WYR-G54 1.0 r31
Checkpoint VPN-1/FireWall-1 (NGAI)

release 55
DLink DI-604 3.30
Linksys BEFSR41 1.40.2
Linux iptables 2.4.20
Netgear RP614 5.13
Netopia 3386 8.0.10
Open BSD pf 3.5
SMC SMC7004VBR R1.00
Trendnet TW100-S4W1CA 1.02.000.267
USR 8003 1.04 08
VMWare Workstation 4.5.2
Windows XP Internet Connection Shar-

ing
SP2

Table 2: NATs tested in the lab, chosen to represent a variety of
brands and implementations.

3 Experiment Setup

We have defined the STUNT client-server protocol that
both tests NAT/firewall behavior and assists in establish-
ing TCP connections between NAT’ed peers. A complete
protocol description is available in [7]. The protocol is im-
plemented by our test applications comprising a client com-
ponent and server component. As shown in Figure 2, the
client is run on a host behind one or more NATs while the
server is external to all of them. The STUNT test client
detects the composite behavior of all the NATs and fire-
walls between the client and the server. While both the
test client and server require superuser privileges to analyze
raw packets on the wire, the requirement can be dropped
for the client in exchange for a small loss in functionality.
The server, in addition, requires at least two network in-
terfaces to properly differentiate between various NAT port
allocation algorithms in use. The tests performed by the
client and the NAT characteristics inferred from them are
described later in Section 4.

We used the client to test a diverse set of sixteen NATs in



Market
Brand Sample Survey

Linksys 22.6% 28.8%
D-Link 9.7% 20.2%
Netgear 6.5% 14.7%
Buffalo Technologies 2.2% 10.9%
Belkin 8.6% 4.6%
Other 50.5% 20.9%

Table 3: Observed market share of NAT brands in our sample set
and worldwide SOHO/Home WLAN market share of each brand
in Q1 2005 according to Synergy Research Group

the lab (Table 2). These include one of each brand of NAT
that we could find in online stores in the United States. The
NATs tested also include software NAT implementations in
popular operating systems. In each lab test the client host
was the only host internal to the NAT and the server was on
the same ethernet segment as the external interface of that
NAT. The client host was set to not generate any network
traffic other than that caused by the test client.

In addition to these lab tests, we also tested NAT boxes
in the wild. The main reason for this was to expose our test
software to a wider range of scenarios than we could repro-
duce in the lab, thus improving its robustness and increas-
ing our confidence in its operation. In addition, it provided
a sample, albeit small, of what types of NAT we can ex-
pect to see in practice. For this test, we requested home
users to run the test client. This tested 93 home NATs
(16 unique brands) being used by CS faculty and students
at Cornell and other universities. Test traffic was in addi-
tion to typical network activity on the client host and other
hosts behind the NAT and included web browsing, instant
messaging, peer-to-peer file-sharing, email etc. The result-
ing data draws from a mix of NAT brands with both new
and old models and firmware; however, it admits a bias
in the selection of NATs given the relatively small user
base with most of them living in the north-eastern United
States. This discrepancy is evident in Table 3, where the
observed popularity of brands in our sample is listed under
‘Sample’ and the worldwide SOHO/Home WLAN mar-
ket share of the brands in the first quarter of 2005 as per
the Synergy Research Group [18] is listed under ‘Market
Survey’. In particular, Buffalo Technologies and Netgear
were under-represented in our sample and the percentage
of other brands was significantly higher. The full list of
home NATs tested is available in [8].

4 NAT TCP Characteristics

In this section, we identify how different NATs affect TCP
NAT-traversal approaches. We identify five classifications
for NAT behavior; namely, NAT mapping, endpoint packet
filtering, filtering response, TCP sequence number preserv-
ing, and TCP timers. The classifications and the possible

Classification Values

Nat Mapping Independent
Addressδ

Portδ
Address and Portδ
Connectionδ

Endpoint Filtering Independent
Address
Port
Address and Port

Response Drop
TCP RST
ICMP

TCP Seq# Preserved
Not preserved

Timers Conservative
Aggressive

Table 4: Important categories distinguishing various NATs.
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Figure 3: TCP connections established to find NAT Mapping
classification. Client uses the same local IP address and port a:p
to connect three times to two ports Q and R on two servers at IP
addresses B and C. The pattern of mapped address and port for
each connection determines the NAT Mapping classification.

values that a NAT can receive in each class are listed in
Table 4. We use the STUNT testing client and server de-
scribed earlier in Section 3 to classify a collection of six-
teen NATs in the lab and ninety-three NATs in the wild.
The full set of test results with a wider set of classifications
is available in [8].

4.1 NAT Mapping

A NAT chooses an external mapping for each TCP con-
nection based on the source and destination IP and port.
Some NATs reuse existing mappings under some condi-
tions while others allocate new mappings every time. The
NAT Mapping classification captures these differences in
mapping behavior. This knowledge is useful to endhosts at-
tempting to traverse NATs since it allows them to to predict
the mapped address and port of a connection based on pre-
vious connections. For UDP, it is known that some NATs



# From To Nat1 Nat2 Nat3 Nat4 Nat5 Nat6

1 a:p B:Q A:P A:P A:P A:P1 A:P A:P
2 a:p B:Q A:P A:P A:P+1 A:P2 A:P A:P
3 a:p B:Q A:P A:P A:P+2 A:P3 A:P A:P
4 a:p B:R A:P A:P+1 A:P+3 A:P4 A:P+1 A:P
5 a:p B:R A:P A:P+1 A:P+4 A:P5 A:P+1 A:P
6 a:p B:R A:P A:P+1 A:P+5 A:P6 A:P+1 A:P
7 a:p C:R A:P A:P+2 A:P+6 A:P7 A:P+1 A:P+1
8 a:p C:R A:P A:P+2 A:P+7 A:P8 A:P+1 A:P+1
9 a:p C:R A:P A:P+2 A:P+8 A:P9 A:P+1 A:P+1

10 a:p C:Q A:P A:P+3 A:P+9 A:P10 A:P A:P+1
11 a:p C:Q A:P A:P+3 A:P+10 A:P11 A:P A:P+1
12 a:p C:Q A:P A:P+3 A:P+11 A:P12 A:P A:P+1
13 a:s B:Q A:S A:S A:S A:S1 A:S A:S

...
Classification NB: NB:Address NB: NB: NB: NB:

Independent and Port1 Connection1 Connection< Port1 Address1

Table 5: NAT Mapping test behavior observed. Nat1–5 show the 5 different mapping patterns that are observed in practice. Nat6 is a
possible mapping pattern that has not been observed in our sample set.

assign a fixed address and port for all connections originat-
ing from a fixed source address and port [15]. We test for
similar behavior for TCP in the STUNT client. The client
establishes 12 connections in close succession from a fixed
local address and port a:p to various server addresses and
ports as shown in Figure 3 and tabulated in Table 5. Each
connection is closed before the next is initiated. The server
echoes back the mapped address and port it perceives to
the client. The test is repeated multiple times for different
choices of the local port.

We notice several distinct patterns among the mapped
ports shown as Nat1–Nat6 in Table 5. Let the mapping al-
located for the first connection be called A:P for each NAT.
Nat1 reuses this mapping as long as the client source ad-
dress and port of a new connection matches that of the first
connection. We classify this behavior as NB:Independent
since the mapping is determined only by the source address
and port and is independent of the destination address and
port. This is equivalent to cone behavior in [15] extended
to include TCP. Nat2 reuses the mapping only if both the
source and destination address and port for the new connec-
tion match the first connection. Such NATs are classified
NB:Address and Port1 since both the destination address
and port affect the mapping. The subscript ‘1’ signifies that
the difference between new mappings, denoted by δ, is 1.
[17] shows that for UDP, δ is fixed for many NATs and is
usually 1 or 2. We find that the same holds for TCP as well,
however, all of the NATs we encountered have δ = 1. Nat3
allocates a new mapping for each new connection, how-
ever, each new mapping has port δ = 1 higher than the
previous port. We classify Nat3 as NB:Connection1. Nat4,
like Nat3, allocates a new mapping for each TCP connec-
tion but there is no discernable pattern between subsequent
mappings. We classify such NATs NB:Connection< where
the subscript ‘<’ indicates a random δ. Nat5 is a variation

NAT Mapping Lab Wild

NB:Independent 9 70.1%
NB:Address and Port1 3 23.5%
NB:Connection1 3 3.9%
NB:Port1 0 2.1%
NB:Addressδ 0 0.0%
NB:Connection< 1 0.5%

Table 6: NAT mapping types observed in a set of 16 NATs in the
lab, and that estimated for NATs in the wild based on our sampling
of 87 home NATs and worldwide market shares.

of Nat2 where the mapping is reused if the destination port
matches in addition to the source address and port. Nat6
is similar except the destination address needs to match in-
stead of the port. Together Nat5 and Nat6 are classified
NB:Port1 and NB:Address1 respectively. NATs 2–6 display
symmetric behavior as per [15].

Table 6 shows the relative proportion of each type of
NAT. Column 2 shows the number of NATs from our
testbed of sixteen NATs that were classified as a particular
type. A majority of them are NB:Independent. The only
one that is NB:Connection< is the NAT implementation in
OpenBSD’s pf utility. We also noticed that our Netgear
RP614 NAT with firmware 5.13 is NB:Connection1, how-
ever, more recent Netgear NATs such as MR814V2 with
firmware 5.3 05 are NB:Independent. Column 3 estimates
the behavior of NATs in the wild. The estimates are com-
puted by taking the proportion of each type and brand of
NAT from eighty-seven home NATs sampled and scaling
them with a correction factor chosen to overcome the bias
in our sample. The correction factor for each brand is the
ratio between the surveyed and observed market shares pre-
sented in Table 3. The factor serves to increase the contri-
bution of under-represented brands in the estimated result
and decrease the contribution of over-represented brands.
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Figure 4: TCP packets exchanged for Endpoint Filtering test.
Client establishes a connection to B:Q. Packet (1) is an inbound
SYN from a different address and port (C:W), (2) from the same
address but different port (B:W) and (3) from the same port but
different address (C:Q). The response to each of these determines
the Endpoint Filtering classification.

While our estimates are indicative of the general trend to
the best of our knowledge, we note that in an industry
changing at the rate of 47% per year [18] the accuracy of
any results is short lived at best. Nevertheless, we estimate
a majority of the NATs (70.1%) to be NB:Independent and
almost none to be NB:Connection<. A significant percent
(29.9%) of NATs have symmetric behavior. Consequently
in a large fraction of cases, multiple connections from the
same port will not be assigned the same mapping and appli-
cations must employ the more sophisticated port-prediction
techniques described later.

4.2 Endpoint Filtering

Both NATs and firewalls may filter inbound packets ad-
dressed to a port unless certain conditions are met. If no
NAT mapping exists at that port, a NAT is forced to filter
the packet since it cannot forward it. If a mapping exists,
however, or if it the device is a firewall then it may require
that the source address and/or port of the inbound packet
match the destination of a preceeding outbound packet.
These differences in conditions that trigger filtering is cap-
tured by the Endpoint Filtering classification. The STUNT
test client determines this by first establishing NAT state
by connecting to the server. It then requests the server to
initiate connections to the mapped address and port from
different addresses and ports as shown in Figure 4.

The different filtering behavior observed for the test are
tabulated in Table 7. Nat1′ accepts all three SYN packets.
Such NATs allow inbound TCP connections independent of
the source address and port as long as necessary state exists
for routing the request. We classify such NATs as having
the endpoint filtering behavior EF:Independent. Nat2′ fil-
ters all the packets thus requiring the source of the inbound
TCP packet match both the address and port of the destina-

Endpoint Filtering Lab Wild

Address and Port 12 81.9%
Address 1 12.3%
Independent 3 5.8%

Table 8: NAT endpoint filtering types observed in a set of
16 NATs in the lab, and that estimated for NATs in the wild based
on our sampling of 93 home NATs and worldwide market shares.

Sequence Filtered

SYN-out SYNACK-in 0%
SYN-out SYN-in 13.6%
SYN-out ICMP-in SYNACK-in 6.9%
SYN-out ICMP-in SYN-in 22.4%
SYN-out RST-in SYNACK-in 25.6%
SYN-out RST-in SYN-in 28.1%

Table 9: Percentage of NATs not accepting various packet se-
quences. Inbound packets (-in) are in response to preceeding out-
bound packets (-out). ICMP code used is TTL-exceeded (non-
fatal error).

tion of the connection that created the mapping. The end-
point filtering of such NATs is classified EF:Address and
Port. Nat3′ and Nat4′ allow inbound packets from the same
address or port as the destination address of the connection
but filter packets from a different address or port respec-
tively. We classify the endpoint filtering behavior of such
NATs as EF:Address and EF:Port respectively. In general
we find that endpoint filtering behavior of a NAT is inde-
pendent of NAT mapping behavior. The subclassifications
of cone NATs defined in [15] translate as follows: full cone
is equivalent to NB:Independent and EF:Independent, re-
stricted cone is NB:Independent and EF:Address and Port
and port restricted cone is NB:Independent and EF:Port.

Table 8 shows the endpoint filtering classification for six-
teen NATs in the lab and the estimated percentage of NATs
in the wild. The estimates are computed based on the mar-
ket survey as described earlier. 81.9% of the NATs are
estimated to be EF:Address and Port while only 5.8% are
EF:Independent. This implies that in most cases, to estab-
lish a connection between two NAT’ed hosts an outbound
SYN must be sent from each end before inbound packets
are accepted.

4.2.1 TCP State Tracking

NATs implement a state machine to track the TCP stages
at the endpoints and determine when connection-state can
be garbage-collected. While all NATs handle the TCP 3-
way handshake correctly, not all of them implement the
corner cases of the TCP state machine correctly thereby
prematurely expiring connection-state. The STUNT client
and server test how NAT/firewall implementations affect
TCP NAT-traversal approaches by replaying the packet se-
quences observed for these approaches.



# From To Nat1′ Nat2′ Nat3′ Nat4′

1 C:W A:P accepted filtered filtered filtered
2 B:W A:P accepted filtered accepted filtered
3 C:Q A:P accepted filtered filtered accepted

Classification EF:Independent EF:Address and Port EF:Address EF:Port

Table 7: NAT endpoint filtering behavior observed. Nat1′–Nat4′ show 4 different filtering behaviors that are observed for inbound SYN
packets after an internal host establishes a connection from a:p to B:Q with allocated mapping A:P.

Table 9 lists some of the packet sequences tested. We
estimate that 13.6% of NATs do not support TCP simul-
taneous open where an outbound SYN is followed by an
inbound SYN. This affects the P2PNAT approach, which
requires at least one end support simultaneous open as
well as the second STUNT approach. 6.9% filter inbound
SYNACK packets after a transient ICMP TTL-exceeded
error. A similar number of NATs drop the inbound SYN
packet after the ICMP but accept it in the absence of the
error. This behavior affects all the approaches that set low-
TTLs on SYN packets. A fair number of NATs (28.1%)
accept inbound SYN packets even after the SYN packet
that created the connection-state is met with a fatal TCP
RST. This mitigates the issue of spurious RSTs that some
approaches contend with. Not mentioned in the table is the
sequence SYN-out SYNACK-out that is required for the
NATBlaster approach. We did not test this case widely due
to restrictions introduced by Windows XP SP2. In the lab,
however, we found that the D-Link NAT (DI-604) does not
support it.

4.2.2 Filtering Response

When an inbound packet is filtered by a NAT it can choose
to either drop the packet silently or notify the sender. An
estimated 91.8% of the NATs simply drop the packet with-
out any notification. The remaining NATs signal an error
by sending back a TCP RST acknowledgment for the of-
fending packet.

4.3 Packet Mangling

NATs change the source address and port of outbound
packets and the destination address and port of inbound
packets. In addition, they need to translate the address
and port of encapsulated packets inside ICMP payloads
so endhosts can match ICMPs to their respective transport
sockets. All the NATs in our sample set either perform
the ICMP translation correctly or filter the ICMP packets,
which are not always generated in in the first place. Some
NATs change the TCP sequence numbers by adding a con-
stant per-flow offset to the sequence number of outbound
packets and subtracting the same from the acknowledg-
ment number of inbound packets. We estimate that 8.4% of
NATs change the TCP Sequence Number. Consequently in
some cases, TCP NAT-traversal approaches that require the
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Figure 5: NAT timers in effect during a TCP connection. (1)
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initial sequence number of the packet leaving the NAT can-
not use the sequence number of the SYN at the end host in
its stead.

4.4 TCP Timers

NATs and firewalls cannot indefinitely hold state since it
makes them vulnerable to DoS attacks. Instead they expire
idle connections and delete connection-state for crashed
or misbehaving endpoints. In addition, they monitor TCP
flags and recover state from connections explicitly closed
with a FIN/FINACK exchange or RST packets. They might
allow some grace time to let in-flight packets and retrans-
missions be delivered. Once connection-state has been un-
allocated, any late-arriving packets for that connection are
filtered. NATs typically use different timers for these cases
as illustrated in Figure 5. At location 1 and 3 in the figure,
they use a short timer to expire connections not yet estab-
lished or connections that have been closed respectively.
RFC 1122 [4] requires that endhosts wait for 4 minutes
(2×MSL5) for in-flight packets to be delivered; however,
most operating systems wait for about 1 minute instead. At
location 2 in the figure, NATs use a longer timer for idle
connections in the established state. The corresponding re-
quirement in RFC 1122 is that TCP stacks should wait for
at least 2 hours between sending TCP-Keepalive pack-
ets over idle connections.
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The STUNT test client checks the NAT timers for com-
pliance with current practice and RFCs. It does so by per-
forming three timed tests to check each case separately. In
the first test, a TCP connections is initiated by the client, but
the SYNACK from the server is delayed by a little under a
minute. In the second test, the connection is established and
left idle for a little under 2 hours, at which point a couple of
bytes are sent across from the server. In the third test, the
connection is established and then closed but the last ACK
from the server is delayed by about a minute. In each case
if the packet sent from the server after the introduced de-
lay is delivered to the client then the corresponding timer is
termed conservative, otherwise it is termed aggressive. We
estimate only 27.3% of the NATs have conservative timers
for all three cases while 35.8% have a conservative timer
for the second case. 21.8% of the NATs have an extremely
aggressive timer for the second case where they expire an
established connection after less than 15 minutes of inac-
tivity. This implies that applications should not rely on idle
connections being held open for more than a few minutes.

5 Port Prediction

Port prediction allows a host to predict the mapped address
and port for a connection before initiating it. It therefore
allows two hosts to initiate a connection with each other’s
mapped address and port even though the mapping is allo-
cated by the NAT after the connection is initiated. Figure 6
shows a typical TCP NAT-traversal attempt using port pre-
diction information. In the figure, we assume that A has al-
ready determined the type of NAT it is using. When client
A wishes to establish a connection with client B, A first es-
tablishes a TCP connection to the STUNT server and learns
the mapping. Based on the NB:type of NAT M, A predicts
the mapping for the next connection. B does the same and

both A and B exchange their predictions over an out-of-
bound channel. Each end then initiates a connection to the
other’s mapped address and port by sending a SYN packet.
The remainder of the packets exchanged are designed to
reconcile the two TCP attempts into one connection and
vary from one NAT-Traversal approach to another as de-
scribed in Section 2. The period between the first SYN and
the SYN for the target connection may be a window of vul-
nerability depending on the type of NAT M. For some types
of NAT, if another internal host A′ behind NAT M initiates
an outbound connection in this period, M will allocate the
mapping predicted by A to the connection from A′ instead.

Port-prediction depends on the NAT Mapping type ex-
plored earlier in Section 4.1. If the NAT is of type
NB:Independent then the mapping for the connection to
the STUNT server will be reused for any connection ini-
tiated soon afterward from the same source address and
port. Since the reuse of the mapping is completely under
the client’s control, the window of vulnerability does not
exist in this case. However, this approach introduces a la-
tency of 2×RTT6 to the STUNT server before the mapping
can be predicted. For a possible optimization, we noticed
that a number of NATs usually allocate a mapped port equal
to the source port used by the client. We term these NATs
port preserving. Clients behind such a NAT can, with high
probability, predict the mapped port without first establish-
ing a connection to the STUNT server. If the NAT is not
NB:Independent but has a fixed δ then a connection ini-
tiated immediately after the server connection will have a
mapped port δ higher than the mapped port observed by
the server. Since the mapping changes from connection to
connection, a “rogue” connection attempt in the window
of vulnerability can steal the mapping. In addition, this
approach fails if the predicted mapping is already in use,
causing the NAT’s allocation routine to jump over it onto
the next available one.

We implemented port prediction in the STUNT test
client and predicted mappings for eighty-three home users
for an hour. Every minute, the test client initiates a connec-
tion to the STUNT server from a source address and port
and learns the mapping allocated. Next it uses the same
source address and port to initiate a connection to a re-
mote host setup for the purpose of this experiment. The
test client checks the mapping actually observed for the
second connection against the one predicted based on the
mapping for the first and type of NAT. Port-prediction is
successful if and only if they match. The predictions are
performed while users use their host and network normally.
This includes web browsers, email readers, instant mes-
saging and file-sharing applications running on the client
host and other hosts behind the same NAT. 88.9% of the
NB:Independent NATs are port preserving. This represents
a big win for interactive applications that implement the
optimization above. We find that in 81.9% of the cases the
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port was predicted correctly every time. This includes all
but one of the NB:Independent NATs and 37.5% of the non-
NB:Independent NATs. For the remaining 62.5% of the
latter variety, at least one time out of the sixty another host
or application stole the mapping the test client predicted
for itself. In one particular case, the client host behind a
NB:Connection1 NAT was infected with a virus that gener-
ated several randomly-addressed SYN packets per second
causing all predictions to fail! In another case, the user ini-
tiated a VPN connection midway through the test causing
all subsequent requests to be sent over the VPN and thus
through a different type of NAT. This suggests that long-
running applications may cache the NAT mapping type for
some time but must revalidate it from time to time. Over-
all, in 94.0% of the cases, more than three-fourths of the
port predictions were correct. Hence after a failed attempt
if an application simply retries the connection, it is likely
to succeed.

5.1 Problems

Port prediction has several corner cases where it can fail.
In Figure 7 if A uses STUNT server T to predict an address
and port when trying to establish a connection to C it would
end up learning NAT M’s external address instead of NAT
O’s external address. Port prediction requires that the line
of NATs between the client and STUNT server be the same
as that between the client and the most external NAT of the
endpoint it wishes to connect with. Therefore A somehow
needs to discover S in order to connect to C. If, however, A
wishes to communicate with B and both use STUNT server
S then their port prediction attempts can interfere with each
other, preventing either from correctly predicting the port.
In addition, even if the port is predicted correctly, both A
and B will end up using O’s external address. This scenario
is called a hairpin translation since A’s SYN addressed to
B’s predicted address and port (O’s external address in this
case) will be delivered to O, which needs to send it back
out on an internal interface. Not all NATs handle hairpin
translations correctly and we estimate this erroneous be-
havior to be as high as 72.8% based on tests performed by

the STUNT test client.
The port-prediction technique described earlier does not

handle NB:Connection< NATs since sequential connec-
tions are randomly assigned. [3] proposes an interesting
technique for handling such cases that uses the birthday
paradox to cut down on the number of guesses before a
collision is found. The technique initiates 439 connec-
tions such that the guessed port will match one of them
with 95% probability. Unfortunately, we find that some
NATs, like Netgear, limit the total number of pending con-
nection attempts to 1000 causing this approach to quickly
stifle the NAT. Fortunately, very few NATs demonstrate
NB:Connection< behavior mitigating the problem.

6 TCP Establishment

In this section we estimate the success of the various
NAT traversal approaches as well as report our experience
with peer-to-peer TCP establishment for a small wide-area
testbed. The success of TCP NAT-traversal approaches de-
pends on the behavior of all NATs between the two end-
hosts as well as the activity of other hosts behind the NATs.
Section 4 analyzes a variety of NATs in isolation while
Section 5 analyzes competing network activity and its ef-
fect on port prediction. Combining the results from these
sections we can quantitatively estimate the success of each
NAT traversal approach.

We make the following assumptions about the deploy-
ment of the TCP-traversal approaches. We assume that
STUNT servers are deployed widely enough to ensure that
for each pair of hosts, there is a STUNT server that meets
the port-prediction requirements and can spoof packets ap-
pearing to come from the mapped address and port of each
host. We assume that endhost stacks can be fixed so all
software issues at the ends are resolved. Lastly, since we
lack data to model the scenarios presented in Section 5.1
we assume the contribution from such scenarios to be neg-
ligible. As a result of these assumptions, our estimates may
be optimistic.

Peer-to-peer TCP establishment depends on the NATs at
both ends. An endpoint with an unpredictable NAT may
still be able to establish a connection if the other endpoint’s
NAT is predictable but not if it is unpredictable. We esti-
mate TCP connectivity in the wild by considering all pairs
of NAT behavior observed in practice. Figure 8 plots the
estimated success rate of various TCP NAT traversal ap-
proaches. We plot the two STUNT approaches (#1 and #2),
NATBlaster and P2PNAT as proposed in [9, 3, 6]. In addi-
tion, we plot modified versions of STUNT #1 and #2 and
NATBlaster approaches that do not use low-TTLs. We also
plot a modified version of the P2PNAT approach that uses
port-prediction. There is a race condition between the SYN
packets in some of these approaches that leads to spurious
packets for certain NAT-pairs. The light-gray bars repre-
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Figure 8: Estimated peer-to-peer TCP NAT traversal success
rates of various approaches. With prevailing race conditions
(Race) the success rate is lower than when races are resolved for
the best outcome (No race).

sent the success rate when each end has an equal chance
of winning the race; this corresponds to simultaneous in-
vocation of the approach on both ends. The dark-gray bar
represents the success rate when the race is broken in favor
of a successful connection; this corresponds to two separate
invocations of the approach where for the first invocation,
one end is initiated slightly before the other while for the
second invocation, the order is reversed. The attempt is
declared successful if either invocation succeeds in estab-
lishing a TCP connection.

As shown in the graph, the original approaches proposed
succeed 44.6% and 73.4% of the time for P2PNAT and
STUNT #1 respectively. Breaking the race condition in
the original STUNT #2 approach by trying it once from
each end boosts its success to 86.0%. Similarly, adding
port prediction to the P2PNAT approach allows it to han-
dle symmetric NATs increasing its success rate to 84.3%.
Surprisingly, modifying the original approaches to not use
low-TTLs benefits all of them by ∼5%! Breaking the race
conditions thus introduced yields the best success rates of
89.1% and 88.7% for the two modified STUNT approaches
and 85.2% for the modified NATBlaster approach.

The unexpected benefits to not using low-TTL SYNs are
explained as follows. A large fraction of NATs silently drop
the first SYN packet (Section 4.2.2) and only a small frac-
tion of NATs filter inbound SYN packets after the outbound
SYN packet (Table 9). Consequently in a large number of
cases, the modified approaches end up triggering TCP si-
multaneous open even though they do not intend to. The
small penalty they pay for NATs that generate a TCP RST
response is more than compensated for by the successful
TCP simultaneous opens. This advantage is eroded away if
more NATs respond with TCP RST packets or if the end-
host’s operating system does not support TCP simultaneous
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Figure 9: Network of 12 clients for peer-to-peer TCP NAT-
traversal tests.

open.

6.1 Implementation

We implemented the above approaches in a peer-to-peer
program written in C. The program was run on 12 win-
dows clients connected in a LAN as shown in Figure 9 as
well as a slightly larger set of 20 clients connected over
a WAN. Each client randomly picks another client and at-
tempts to establish TCP with it. While all the approaches
work as advertised, we limit this discussion to STUNT #2
without low-TTL and P2PNAT with port prediction. This is
because we find that a large global deployment of STUNT
#1 and NATBlaster approaches is impractical; the STUNT
#1 approach requires a broad deployment of servers that
can spoof arbitrary packets while the NATBlaster approach
requires RAW socket functionality that has been removed
following security concerns in Windows XP.

Figure 10 shows a semi-log plot of the time taken by
each of the approaches to establish a connection or report
a failure in a low-latency network. The time-distribution
of successful connections (plotted above the x-axis) varies
largely for the P2PNAT approach while that of the second
STUNT approach is very consistent. This is because the
P2PNAT approach repeatedly initiates a connection until
one of them succeeds or a timeout occurs while the sec-
ond STUNT approach only initiates one connection. From
the graph in Figure 10(a), a fair number of connections do
not succeed until 21 seconds into the connection attempt,
thus requiring a large timeout to achieve the estimated suc-
cess rate determined earlier. In several cases a dangerous
side-effect of such a large timeout is observed when port-
prediction fails and a peer’s NAT responds with TCP RST
packets. This causes the P2PNAT approach to generate a
SYN-flood as the endhost repeatedly retries the connection
until the timeout expires. Admittedly, this problem does
not exist in the original P2PNAT approach since it does not
advocate port-prediction.

Overall, we find that TCP based protocols can traverse
NATs most of the time. Applications must perform port
prediction to deal with “delta” type NATs and employ out-
of-band signalling to setup connections while satisfying se-
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Figure 10: Semi-log plot of time taken to successfully establish a connection or report a failure.

curity contraints at the NATs. Non-latency-sensitive appli-
cations must also attempt a couple of connections from ei-
ther side before giving up. Furthermore, applications must
not rely on NATs preserving idle connections for more than
a few minutes and should not expect TCP sequence num-
bers to remain unchanged end-to-end. While all the TCP
NAT traversal approaches falter under certain scenarios, the
second STUNT approach is the most robust in establishing
peer-to-peer TCP connections in the Internet today. It suc-
ceeds 88% of the time and does not require spoofing, RAW
sockets, or superuser privileges. It works with legacy TCP
stacks that do not support TCP simultaneous open, while
taking advantage of the same in modern operating systems
to provide 100% success in many common scenarios. Fi-
nally, we find that it is the simplest to implement out of
all the approaches and works under both Linux and Win-
dows. We encourage application developers to adapt this
approach to provide TCP NAT traversal in their peer-to-
peer applications that currently cannot establish TCP be-
tween NAT’ed peers.

7 Related Work

NAT traversal is an idea that has long existed since it was
first proposed for UDP by Dan Kegel, and used for P2P
gaming, in the late 90’s. His basic approach was standard-
ized and published in [15]. The UDP approach has resulted
in several working documents and Internet drafts that clas-
sify UDP behavior of NATs [11] and propose standardiza-
tion of the same [1]. The area of TCP NAT-traversal with-
out explicit control of the NAT, however, is fairly new. Sev-
eral approaches have been analyzed in this paper [9, 5, 3, 6]
and have been demonstrated to traverse NATs in the current
internet. [6] includes a similar study where the authors test

a small subset of UDP and TCP NAT characteristics for a
number of NATs. We present the first broad study of NAT
behavior and peer-to-peer TCP establishment for a compre-
hensive set of TCP NAT traversal techniques over a wide
range of commercial NAT products.

Protocols such as UPnP [12] and MIDCOM [16] allow
endhost applications to explicitly control the NAT in order
to facilitate peer-to-peer connections. The downside of this
type of approach is that they require that these protocols
exist and are enabled in the NAT. An application developer
cannot depend on either of these, and so for the time being
they are not an attractive option.

Another endhost approach to TCP connectivity includes
TURN [14], where TCP data is proxied by a third party.
This third party represents a potential network bottleneck.
Teredo [10] allows IPv6 packets to traverse IPv4 NATs by
tunneling IPv6 over UDP. Here, TCP runs natively in the
sense that it is layered directly above IPv6. Teredo has been
implemented in the Windows OS.

8 Conclusion and Future Work

This paper presents the first measurement study of a com-
prehensive set of NAT characteristics as they pertain to
TCP. While this study shows that there are a significant
number of problems with TCP traversal of current NATs,
it nevertheless gives us much to be optimistic about. Even
with existing NATs, which have not been designed with
TCP NAT traversal in mind, we are able to show a 88% av-
erage success rate for TCP connection establishment with
NATs in the wild, and a 100% success rate for pairs of cer-
tain common types of NAT boxes. These numbers are es-
pecially encouraging given that only a couple years ago, it
was widely assumed that TCP NAT traversal was simply



not possible. While a failure rate of 11% is not accept-
able for many applications, the users of those applications
at least have the option of buying NAT boxes that allow
TCP traversal, and NAT vendors have the option of design-
ing their NAT boxes to be more TCP friendly.

This study is limited in several respects. First, we did not
test all existing NAT boxes. For the most part our study was
limited to NAT boxes available in North America. Second,
our field test is too small and biased to be able to accurately
predict success rates broadly. Using market data helps, but
even this data was limited in scope and in detail. Third, we
tested only for home NATs. Port prediction in enterprise
networks for “delta” type NATs will succeed less often,
and it would be useful to measure this. Fourth, although
TCP NAT traversal techniques apply broadly to firewalls,
we did not test firewalls outside the context of NAT. Nor
did we test IPv4-IPv6 translation gateways. Finally, like
most measurement studies, this is a snapshot in time. In-
deed, during the course of this project, new versions of the
same NAT product exhibited different behavior from pre-
vious versions. Moving forwards, we hope that our TCP
NAT traversal test suite can continue to be used to broaden
our knowledge of NAT and firewall characteristics as well
as to track trends in NAT products and their deployment.
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Notes
1Network behind a NAT or firewall
2Throughout this paper, the term NAT is understood to include fire-

walls.
3sometimes referred to as dual or double NAT
4IP time-to-live field
5Maximum Segment Length
6Round-trip time


