Exploiting Internet Route Sharing for
Large Scale Available Bandwidth Estimation

Ningning Hu, Peter Steenkiste
Carnegie Melon University
{hnn, prs} @cs.cmu.edu

Abstract systems to significantly reduce the number of required mea-
. . . surements [22, 12]. Unfortunately, we do not have a similar
Recent progress in active measurement techniques cept for available bandwidth. Brute force solutiong wil

made it possible to estimate end-to-end path available-bang,: \work either. The overhead to probe one path is at least

width. However, how to efficiently obtain available band-;.4,,nd 100kB [25, 17], so measuring all end-to-end paths
width information for theNV2 paths in a largeV-node sys- oy

:) n a 150-node system would already require over 2GB for
tem remains an open problem. While researchers have dgs one snapshot. This approach clearly does not scale to a
veloped coordinate-based models that allow any node

. . : 8rge number of nodes, let alone to the whole Internet. An-
quickly and accurately estimate latency in a scalable fasiner challenge is that most available bandwidth measure-

ion, no such models exist for available bandwidth. In thishant tools need to run on both ends of a network path to

paper we mtr_oduce BRoute —a scalable available bar_1 onduct measurements. This complicates the deployment
width estimation system that is based on a route sharing ihe tools significantly.

model. The characteristics of BRoute are that its overhead | this paper, we propose a scalable available bandwidth
is linear with the number of end nodes in the system, angstimation system—BRoute. Here “available bandwidth”

that it requires only limited cooperation among end node§efers tg the residual bandwidth left on an end-to-end path:

BRoute leverages the fact that most Internet bottlene@ks a is getermined by the available bandwidth of the bottle-

on path edges, and that edges are shared by many differgat |ink i.e.. the link with smallest residual bandwidth.

paths. I.t uses AS-level source _and sink trees to_charactqrhe goal of BRoute is to estimate the available bandwidth
ize and infer path-edge sharing in a scalable fashion. tn thtglfe

. ; or any node-pair in a large system, with limited measure-
paper, we describe the BRoute architecture and evaluate nt overhead and limited cooperation among end nodes.

performance of its components. Initial experiments ShoWip te is hased on two observations. First, Hu et.al. [16]
that BRoute can infer path edges with an accuracy of oVe[,ye ghserved that over 86% of Internet bottlenecks are
80%. In a small case study on Planetlab, 80% of the availyiihin 4 hops from end nodes, i.e., on path edges. This sug-

able bandwidth estimates obtained from BRoute are acClfpqts that bandwidth information for path edges can be used
rate within 50%. to infer end-to-end available bandwidth with high probabil
ity. Moreover, links near the end nodes are often shared by
1 Introduction many paths, thus providing the opportunity to limit mea-
surement overhead. This leads to the two key challenges in
Recent progress in measurement techniques has madd&Route: how to measure the available bandwidth of path
possible to estimate path available bandwidth [11, 21, 1&dges and how to quickly determine which edges a path
17, 23, 25]. These tools have enhanced our understandiH§es.
of Internet end-to-end performance, and can be used to im- The primary contribution of this paper is the BRoute sys-
prove the performance of network applications. Howeveteém architecture: we discuss in Section 2 how it leverages
how to efficiently obtain available bandwidth informationrouting information to reduce available bandwidth estima-
for the N2 paths in a largéV-node system remains an opention overhead. In Sections 4-6, we first use an extensive set
problem. At the same time, a scalable available bandwid®f measurement to show that many Internet paths exhibit
estimation system has many potential applications. For efoe properties that BRoute relies on, we then present an al-
ample, a large service provider may want to know the avaigorithm that uses AS-level source and sink tree information
able bandwidth performance for all its customers; P2P sy#$0 infer network path edges, and we finally describe how
tems may want to know the available bandwidth between affe measure the available bandwidth near end nodes. We
node_pairs SO as to select the best over|ay top0|ogy; or pe@i.SCUSS related work and conclude in Sections 7 and 8.
ple may want to monitor the health of a large scale systerE .
or testbed, like Planetlab [4]. System Design
Researchers have been able to build scalable systems for] BRoute Intuition

Internet latency estimation by using synthetic coord|date_|_he BRoute design is based on two important observations.

This research was funded in part by NSF under award number- CCF!:'rSt’ most bottlenecl_<s are_on path edges' S_O for mO_St paths
0205266 and in part by KISA (Korea Information Security Aggnand ~ We only need to obtain ava"_able bandW|dth_ information fOI’
CyLab Korea. both edges of a path to estimate path available bandwidth.

share a same end-segment. For examlef(ao, ¢o) and
Path(bg, co) share sink-segmerits, ¢y, c2,¢1,¢9). This
means that the measurement overhead is proportional to the
number of end-segments, not the number of paths. Based
on the data set discussed in Section 3, we found that, assum-
ing source/sink trees with a depth of 4, Internet end nodes
have on average only about 10 end-segments, so the over-
head is linear in the number of system nodes.

Besides identifying source and sink threes, BRoute needs
to identify the source-segment and sink-segment for a path
without direct measurement, i.e. identifying the leaves of
the trees in Figure 1. BRoute does this using AS-level
path information. Intuitively, for a pair of nodes and

- . - d, if we know all the upstream AS paths from(called
Figure 1: End-segments and AS-level source/sink treesthe AS-level source tree arcTrec(s)) and all the down-
stream AS paths toward (called the AS-level sink tree
Second, relatively few routes exist near the source and de-5+Tree(d)), thenPath(s, d) should pass one of their
tination compared with the core of the Internet, thus simShared ASes. For example, the right graph of Figure 1 illus-
plifying the problem of determining which edges a pattrates the upstream AS paths fram) and the downstream
takes, and which bottleneck it encounters. These observaS Paths toward,. Assume thatl7 is the only shared AS
tions lead to the two main operations in BRoute. First, eaci€n this means that patath(ao, ¢)) must pass through
node collects both routing and bottleneck information fort7: @nd we can usel7 to identify srcSgmd(ao, co) and
the network “edge” to which it is attached, using traceroutd??kS9mt(co, ao). We will call the AS that is shared
and Pathneck [15], respectively. This information can b&nd on the actual path the common-AS. Of course, there
published, similar to a set of coordinates. Second, in oill typically be multiple shared ASes betweercT'ree(s)
der to estimate the available bandwidth between a sour@8dsinkTree(d). We will discuss in Section 5.1 how to
node and a sink node, any node can collect the routing aitfiiduely determine the common-AS.
bottleneck information for the source and sink and use it to)
determine the route taken at the edges of the path, and thds2 BRoute Architecture

the likely bottleneck location and available bandwidth. The BRoute architecture includes three components: Sys-
Before we describe BRoute in more detail, let us first detem nodes, traceroute landmarks, and an information ex-
fine what we mean by the “edge” of a path. It corresponds tohange point. System nodes are Internet nodes for which
the first £ and the lastV links of a complete IP level path; we want to estimate available bandwidth; they are responsi-
we will call these two partial paths ttseurce-segment and ble for collecting their AS-level source/sink trees, and-en
sink-segment respectively. In this paper we will use = segment available bandwidth information. Traceroutedand
4, N = 4 since this captures most of the bottlenecks [16]marks are a set of nodes deployed in specific ASes; they are
However, different values can be used. Formally, let tha@sed by system nodes to build AS-level source/sink trees

JUAWZ2s—30IN0S
2

—UOWIWOd

JudwIas—yurs

path froms to d be Path(s,d) = (ro = s,71,72,...,7» = and to infer end-segments. An information exchange point,
d), herer;(1 < i < n — 1) are routers on the path. Thensuch as a server or publish-subscribe system, collects mea-
the source-segment aPath(s,d) is srcSgmt(s,d) = surement data from system nodes and the bandwidth esti-

(ro,r1,72,73,74), and the sink-segment dPath(s,d) iS mation operations can then be carried by either the server
sinkSgmt(d,s) = (rn—4,Tn—3,"n—2,"n—1,75). The left or alternatively, by the querying client. For simplicitygw
graph of Figure 1 illustrates the source-segments for englill assume the use of BRoute server in this paper.
nodesayg, by and the sink-segments for end nodgsdp. BRoute leverages two existing techniques: bottleneck
The dashed lines indicate the omitted central part of thg@etection [15] and AS relationship inference [14, 26]. Bot-
paths. In this paper, we also use the teamd-segment to tleneck detection is used to measure end-segment band-
indicate either a source-segment or a sink-segment. width, and AS relationship information is used to infer the

If bottlenecks are on end-segments, we only need to coend-segments of a path. The operation of BRoute can be
sider the trees composed of the source-segments and sisklit into a pre-processing stage and a query stage (Fig-
segments (called the source and sink tree), and we can igre 2):
nore links within the “Internet Core” as illustrated in Fig- e Pre-processing:In this stage, each system node con-
ure 1. Each node can characterize both the structure and ducts a set of traceroute measurements to the tracer-
bandwidth properties of its source and sink tree. This in- oute landmarks. Similarly, traceroute landmarks con-
formation can be published in a central location or usinga duct traceroutes toward system nodes. The system
publish-subscribe system. Other nodes can then use that node then uses the traceroute information to construct
information to estimate the bandwidth for the paths to- AS-level source and sink trees. Next the system node
ward or from that node. In large systems, many paths will identifies its source-segments and sink-segments and

A
source Pre—processing | Query
i

Y
upstream ; @b source— % bw of source—
traceroute AS-level I segment N segment
source tree | | ¢
I path bw
<) estimation

| @9{ common AS ‘ ‘ pathneck }—‘:
destination AS-level ‘ i @i
.]
downstream | sink tree ! Sinkee b.w of
traceroute ! + = m Y sink—segment

segment

Figure 2: BRoute System Architecture

uses Pathneck to collect bandwidth information for
each end-segment. This information is reported to the
BRoute server.

e Query: Any node can query BRoute server for an es-
timate of the available bandwidth between two sys-
tem nodes—s to d. The BRoute server will first \)))
identify the common-AS betweesrcTree(s) and Figure 3: Maximal uphill/downhill path
sinkTree(d). The common-AS is used to identify
the end-segmentscSgmt (s, d) andsinkSgmt(d,s) is shown to be better than results obtained directly from
of Path(s,d), and the BRoute server then returns theBGP tables [20].
smaller of the available bandwidths farcSgmt(s, d)
andsinkSgmt(d, s) as the response to the query. .

A distinguishing characteristic of BRoute is thatsesAs- 4 AS-Level Source/Sink Tree

level source/sink tree computation to replace expensive net-

work measurements. In the following four sections, we first In this section, we define AS-level source/sink trees and
describe the data sets used in our analysis, and we then el&BoW that they are very similar to real tree structures.

orate on three central features of BRoute: key properties of

AS-level source and sink trees, end-segment inference, and o

end-segment bandwidth measurement. 4.1 Definition

tier-3

The definition of AS-level trees is based on the ranking sys-
tem from [26], where all ASes are classified into five tiers.

The evaluation of the BRoute design uses five data sets: Tier-1 includes ASes belonging to global ISPs, while tier-
The BGP data setincludes BGP routing tables down- ° includes ASes from Ioc_al ISPs._ Intuitively, if two con-
loaded from the following sites on 01/04/2005: Universitynected ASes belong to different tiers, they should have a
of Oregon Route Views Project [8], RIPE RIS (Routing In-Provider-to-customer or customer-to-provider relathips
formation Service) Project [5], and the public route sesverotherwise, they should have a peering or sibling relation-
listed on [7]. These BGP tables include views from 19@hip. To be consistent with the valley-free rule [14], we say
vantage points, which allow us to conduct a relatively genthat an AS with a smaller (larger) tier number is ihigher

eral study of AS-level source/sink tree properties. (lower) tier than an AS with a larger (smaller) tier number.
The Rocketfuel data setis mainly used for IP-level anal- An end-to-end path needs to first go uphill from low-tier
ysis of end-segments. We use the traceroute data collect®@€$ to high-tier ASes, then downhill until reaching the
on 12/20/2002 by the Rocketfuel project [24, 6], where 3@€stination (see Figure 3).

Planetlab nodes are used to probe over 120K destinations. Formally, let Tier(u;) denote the tier number of AS
The Planetlab data setwas collected by the authors usingui, then an AS pathuo, u1, ..., u,) is said to be valley-
160 Planetlab nodes at different sites. It includes tragero free iff there existi, j(0 < i < j < n) satisfying:
result from each node to all the other nodes and it is used ®ier(uo) > ... > Tier(u;—1) > Tier(u;)) = ... =
characterize AS-level sink tree properties. Tier(u;) < Tier(ujy1) < ... < Tier(uy,). The maximal
The AS-Hierarchy data setwas downloaded from [1] to uphill path is then(ug, us, ..., u;), and the maximal down-
match our route data sets. It contains two snapshots: oh#8l path is (u;, i1, ..., un). The AS(es) in the highest tier
from 01/09/2003 (the closest available data set tdRrek- {wi, ..., u; } are calledop-AS(es).

etfuel data set in terms of measurementtime), which is used We can now define thAS-level source tree for a nodes

for mappingRocketfuel data set; the other from 02/10/2004,as the graphlrcTree(s) = (V, E), whereV = {u;} in-
which is the latest snapshot available, and is used for mapludes all the ASes that appear in one of the maximal uphill
ping BGP andPlanetlab data sets. This data set uses thepaths starting from, andE = {(u;, u;)|u; € V,u; € V'}
heuristic proposed by Subramanian et.al. [26] to rank alhcludes the directional links among the ASeslin i.e.

the ASes in the BGP tables used in the computation. (u;,u;) € Eiff it appears in one of the maximal uphill
The IP-to-AS data setwas downloaded from [3]. Its IP-to- paths starting from. TheAS-level sink tree is defined sim-
AS mapping is obtained using a dynamic algorithm, whichlarly, except that we use maximal downhill paths.

3 Data Collection

1 i ‘ 150 view points, i.e., for which we can get over 150 maxi-
08l 72&??2;’%] mal downhill paths. We picked the number “150” because
it can give us a large number of trees. The results, illus-
trated by the dot-dash curve in Figure 4, are very similar
with those for AS-level source trees. Actually, the tree-
proximity from sink trees are slightly better, which could
be aresult of the limited number of downstream routes used

CDF

Jes 0.9 0.95 1 for the AS-level sink-tree construction.

_ percentage of prefixes that are covered ~ We repeated the same analysis for Reeketfuel data
Figure 4: The tree proximities of the AS-level source/sinkset and reached similar conclusions. When looking at the
trees from theBGP data set causes for discarding a maximum uphill path during tree
4.2 Tree Structure construction, we found that the second cause for violations

. .] of the tree property, i.e. the creation of multiple paths to
In this subsection, we show that AS-level source/sink treggach a higher tier AS, was by far the most common rea-
closely approximate tree structures. As we will see in thgon, We speculate that these violations are caused by load-
next section, this is important, since it allows BRoute tgaancing-related routing policies such as MOAS (Multiple
map the common-AS to a unique tree branch. There are tWrigin AS) and SA (Selected Announced Prefixes).
reasons why an AS-level source/sink tree may not be a tree. s a final note, we also looked at how to efficiently mea-
First, ASes in the same tier can have a peering or a siblingre AS-level source/sink tree. We found that if we deploy
relationship, where data can flow in either direction; thapne |andmark in each of the tier-1 and tier-2 ASes (totally
canresultin aloop in the AS-level source/sink tree. Secong37 Ases in the 02/10/20085-Hierarchy data set), we can
customer-to-provider or provider-to-customer relattips cover at least 90% of most AS-level source/sink trees. That

can cross multiple tiers. _ suggests that 200-300 landmarks can do a reasonable job.
To study how closely AS-level source/sink trees approx-

imate real tree structures, we define thee-proximity met- 5 End-Segment Inference
ric. For AS-level source trees it is defined as follows; the))
definition for AS-level sink trees is similar. We first ex- W& are now ready to describe two key operations of
tract all maximal uphill paths from a data set that provide§Route: how to pick the common-AS, and how to use
path information, for example, as obtained from BGBP the common-AS to identify the source-segment and sink-
data set) or tracerout®gcketfuel data set). This is done Ségmentof a path.
for each view point, where a view point is either a peerin .
point (BGP data set) or a measurement source néibek- %-1 Selecting the Common-AS
etfuel data set). We then count the number of prefixes covAlgorithm: Typically, an AS-level source tree and an AS-
ered by each maximal uphill path, and use that number dsvel sink tree share multiple ASes. We use the following
the popularity measure of the corresponding maximal uphilligorithm to choose one of them as the common-AS. Based
path. Next we construct a tree by adding the maximal upen the fact that most AS-level routes follow the shortest AS
hill paths sequentially, starting from the most popular.onepath [19], the algorithm first searches for the shared ASes
If adding a new maximal uphill path introduces non-treehat are closest to the root ASes in batftTree(s) and
links, i.e., gives a node a second parent, we discard thatnkTree(d). If we are left with multiple candidates, we
maximal uphill path. As a result, the prefixes covered byick the one that has the highest probability to appear on
that discarded maximal uphill path will not be covered byPath(s, d) in the measurement. We must also consider two
the resulting tree. Theree proximity of the corresponding special cases: (a) one or both root ASes can be shared, and
AS-level source tree is defined as the percentage of prefix@s) there may be no shared AS betweenrtigasured trees.
covered by the resulting tree. While this greedy metho&or case (a), we return either one or both root ASes as the
does not guarantee that we cover the largest number of pemmon-AS(es), while for case (b), we consider all ASes as
fixes, we believe it provides a reasonable estimate on hoghared, and we pick based on their occurrence probabhilities
well an AS-level source tree approximates a real tree. Evaluation: Given the data we have, we can use two meth-
Using theBGP data set, we can build an AS-level sourceods to evaluate the above algorithm. The firstis to apply the
tree for each of the 190 view points. The distribution ofalgorithm on the AS-level source and sink trees described
the tree proximities is shown as the solid curve in Figure 4n Section 4.2. This method is straightforward and is used
About 90% of the trees have a proximity over 0.95, and oven the case study of BRoute discussed in Section 6. This
99% are above 0.88. This shows that the AS-level souraaethod however has the drawback that it is based on limited
trees indeed resemble real trees. This conclusion is cons@ownstream data, so the AS-level sink trees can be incom-
tent with the finding by Battista et.al. [9], who noticed thatplete. In this section we use a different method: we evaluate
a set of AS relationships can be found to perfectly matcthe algorithm using thercT'ree(d) to replace the incom-
the partial view of BGP routes from a single vantage pointplete sinkTree(d). The basis for this method is the obser-
We also built AS-level sink trees using tB&P data set. vation that the AS-level trees are only used to determine the
We identified 87,877 prefixes that are covered by at leasind-segments of a path (we do not need the AS-level path

itself), and the AS-level source tree may be a good enoughe 99 nodes that have at least 100 complete downstream
approximation of the AS-level sink tree for this restrictedroutes, 69 (70%) nodes have at least 90% of the ASes in
goal. This in fact turns out to be the case in our data sets.their AS-level sink tree mapped onto top-1 sink-segments,

Using theBGP data set, we construct an AS-level sourcevhile 95 (96%) nodes have at least 90% of their ASes
tree for each vantage point, infer the common-AS for eactnapped onto top-2 sink-segments.
pair of vantage points, and then compare the result with Based on these end-segment properties, we map the
the actual AS paths in the BGP tables. To make sure weommon-AS onto top-1 or top-2 end-segments. In the first
have the correct path, we exclude those AS paths whose lastse, we return the available bandwidth of the top-1 end-
AS is not the AS of the destination vantage point. For theegment. In the second case, we return the average of the
15,383 valid AS paths, the common-AS algorithm selectavailable bandwidth of the two top-2 end-segments as the
the wrong common-AS for only 514 paths, i.e. the succegzath bandwidth estimate. This method will work well if
rate is 97%. Furthermore, for the 14,869 correctly inferrethe reason for having top-2 end-segments is load balancing,
common-ASes, only 15 are not top AS, which confirms ousince the traffic load on both end-segments is likely to be
intuition that the common-AS inferred is typically a top- similar.
AS, where the maximal uphill and downhill paths meet.

6 End-Segment Bandwidth Measurement

5.2 End-Segment Mapping BRoute uses Pathneck to measure end-segment bandwidth.
Given that the AS-level source and sink trees Closely fO“OV)Mthough Pathneck 0n|y pro\/ides available-bandwidth up-
a tree structure, the common-AS can be easily used to ideper or lower bounds for links on the path, it also pin-
tlfy a unique branch in both the AS-level source and Sin'points the bottleneck location, so we know if the mea-
tree. We now look at how well this AS-level tree branchsured path bandwidth applies to the source-segment or sink-
can be used to determine IP-level end-segments of the paiaggment. In BRoute, each node can easily use Pathneck
Ideally, for any ASA € srcT'ree(s), we would like to measure the available bandwidth bounds on its source-
to see that all upstream paths fromthat passA share segments. However, to measure sink-segment bandwidth,
the same source-segment If this is the case, we say system nodes need help from other nodes in the network.
is mapped onto e, and every timeA is identified as the BRoute can collect end-segment bandwidths in two
common-AS, we know that the source-segment of the patodes: infrastructure mode and peer-to-peer mode. In the
is e. In practice, upstream paths frosthat passA could infrastructure mode, we use bandwidth landmarks that have
go through different source-segments, due to reasons sugygh downstream bandwidth to measure the sink-segment
as load-balance routing or multihoming. To quantify thepandwidth of system nodes. The bandwidth landmarks
differences among the source-segments that an AS can m@h use the same physical machines as the traceroute land-
onto, we define theoverage of source-segments as follows. marks. In this mode, a system node uses its AS-level source
Suppose ASA is mapped tok(k > 1) source-segments tree to pick a subset of bandwidth landmarks. The system
e1, ez, ..., ex, each of which coversi(e;)(1 < i < k) node will use Pathneck to measure source-segment band-
paths that passl. The coverage oé; is then defined as idth, using the selected bandwidth landmarks as destina-
n(e;)/ Zle n(e;). If we haven(e1) > n(es) > ... > tions. Similarly, the bandwidth landmarks, at the requést o
n(ex), thene; is called the top-1 source-segmeat,and the system, will measure the sink-segment bandwidth using
ey are called the top-2 source-segments, etc. In BRoutthe system node as Pathneck’s destination. Clearly, each
we use 0.9 as our target coverage, i.e., if the top-1 sourcbandwidth landmark can only support a limited number of
segment; has coverage over 0.9, we sdys mapped onto system nodes, but a back-of-envelop calculation shows that
er. a bandwidth landmark with a dedicated Internet connection
We use thdRocketfuel data set to analyze how many end-of 100Mbps can support at least 100K system nodes, as-
segments are needed to achieve 0.9 coverage. The 30 Assiming the default Pathneck configuration.
level source trees built from this data set include 1687 ASes In the peer-to-peer mode, end-segment bandwidths are
(the same AS in two different trees is counted twice), 110ineasured by system nodes themselves in a cooperative
of which are mapped onto a single source-segment (i.ashion. Thatis, each system node chooses a subset of other
coverage of 1). Among the other 586 ASes (from 17 treegystem nodes as peers to conduct Pathneck measurements,
that are mapped onto multiple source-segments, 348 can e as to cover all its end-segments. We use a simple greedy
covered using the top-1 source-segments, so in total, (11@&uristic to find the sampling set. The main idea is to al-
+ 348 = 1449) (85%) ASes can be mapped onto a uniqueays choose the path whose two end nodes have the largest
source-segment. If we allow an AS to be covered using theumber of un-measured end-segments. In Rtanetlab
top-2 source-segments, this number increases to 98%, i.data set, this algorithm finds a sampling set that includes
only 2% (17 ASes) cannot be covered. only 7% of all paths, which shows it is indeed effective.
We used thePlanetlab data set, which includes many The peer-to-peer mode scales well, but it needs to support
downstream routes for each node, to look at the sinkaode churn, which can be complicated. Also, some system
segment uniqueness. We found that the above conclusiandes may not have sufficient downstream bandwidth to ac-
for source-segments also applies to sink-segment. Amormgrately measure the available bandwidth on sink-segments

of other system nodes.

need to improve our understanding of several aspects of the

Based on the peer-to-peer mode, we conducted a caglgorithms, including end-segmentinference, path alokgla
study of BRoute on Planetlab using the design of Figure handwidth estimation, and landmark selection. Finally and
The results show that over 70% of paths have a commoperhaps most importantly, we would like to deploy BRoute,
AS inference accuracy over 0.9, and around 80% of path®th as a public service and as a platform for ongoing eval-
have an available bandwidth inference error within 50%uation and research.

Although not perfect, these results are encouraging censi

ering that available bandwidth is a very dynamic metric.
1]

7 Related Work 2l

BRoute is motivated by coordinate-based systems [22, 12}
used for delay inference, but it does not explicitly con-
struct a geometric space. BRoute instead leverages e ‘-1]
isting work on AS relationships [14, 26] as described in
Section 4.1. Recent work on AS relationships identifica-[6]
tion [9, 19] could help improve BRoute. For example, [19] 7]
shows how to infer the AS path for a pair of nodes using
only access to the destination node. (8]
AS-level source/sink trees are an important part of theyg
BRoute design. Others have also identified such tree struc-
ture, but at the IP level. For example, Broido et.al. [10 10]
pointed out that 55% of IP nodes in their data set are i
trees. Recently, Donnet et.al. [13] propose the Doubletree
algorithm, which uses an IP-level tree structure to redude?
traceroute redundancy in IP-level topology discovery. Us-
ing our terminology, the Doubletree is a combination of a2!
source-node IP-level source tree and a destination-nade IP
level sink tree. In contrast, BRoute leverages AS-leved trel13]
and we quantify how closely they approximate real trees.
BRoute uses Pathneck [15] for bandwidth measuremenitst]
since it also provides the bottleneck location. For dif'ls]
ferent application requirements, other bandwidth measur[a
ment tools [11, 21, 18, 17, 23, 25] can be used. In a broad
sense, BRoute is a large-scale measurement infrastruct{td
that uses information sharing to estimate available band-
width efficiently. Several measurement architectures ha &
been proposed, but they typically focus on ease of deploy-
ment and of data gathering. A good survey can be found in

2]. [18]

8 Conclusion and Future Work [19]

In this paper, we presented the system architecture and ppie]
mary operations of BRoute—a large-scale bandwidth esti-
mation system. We explain we take advantage of Interngfy)
route sharing, captured as AS-level source/sink treeg-to r
duce bandwidth estimation overhead. We show that AS5,
level source/sink trees closely approximate a tree stragctu
and demonstrate how to use this AS-level information to in—23]
fer end-segments, where most bottlenecks are located. IA a
small case study on Planetlab, 80% of the available band-
width estimates obtained from BRoute are accurate withif%
50%. [25]
Our BRoute study is only a first step towards a practical,
scalable bandwidth estimation infrastructure. More workog)

ﬁzeferences

AS hierarchy data set. http://www.cs.berkeley.edu/
“sagarwal/research/BGP-hierarchy/ .

Internet measurement infrastructure. http://www.caida.
org/analysis/performance/measinfra .

IP to AS number mapping data sehttp://www.research.
att.com/“jiawang/as_traceroute .
Planetlab.https://www.planet-lab.org .

RIPE RIS (Routing Information Service) Raw Datahttp://
www.ripe.net/projects/ris/rawdata.html .
Rocketfuel Data Sets.http://www.cs.washington.edu
research/networking/rocketfuel .

Route Server Wiki. http://www.bgp4.net/cgi-bin/
bgp4wiki.cgi?Route_Server_Wiki .

University of Oregon Route Views Project. http://www.
routeviews.org

] G.D. Battista, M. Patrignani, and M. Pizzonia. Compgtthe types

of the relationships between autonomous systemsPrdg. |IEEE
INFOCOM, April 2003.

A. Broido and k. clafy. Internet topology: Connectiivf ip graphs.
In Proc. SPIE International Symposium on Convergence of IT and
Communication, 2000.

R. Carter and M. Crovella. Measuring bottleneck linkesg in
packet-switched networks. Technical report, Boston Usite
Computer Science Department, March 1996.

F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi:ezehtral-
iZZg(c)i4net\Nork coordinate system. Bnoc. ACM SSGCOMM, August
B. Donnet, P. Raoult, T. Friedman, and M. Crovella. Edfit algo-
rithms for large-scale topology discovery. Rnoc. ACM SGMET-
RICS June 2005.

L. Gao. On inferring autonomous system relationshipthe Inter-
net. IEEE/ACM Trans. Networking, December 2001.

N. Hu, L. Li, Z. Mao, P. Steenkiste, and J. Wang. Locatintprnet
bottlenecks: Algorithms, measurements, and implicatidnsProc.
ACM S GCOMM, August 2004.

N. Hu, O. Spatscheck, J. Wang, and P. Steenkiste. Qgptimnet-
work performance in replicated hosting. The Tenth International
Workshop on Web Caching and Content Distribution (WCW 2005),
September 2005.

N. Hu and P. Steenkiste. Evaluation and characteomaif available
bandwidth probing techniquetEEE JSAC Special Issuein Internet
%%W Measurement, Mapping, and Modeling, 21(6), August
M. Jain and C. Dovrolis. End-to-end available bandiidfleasure-
ment methodology, dynamics, and relation with TCP throughm
Proc. ACM SGCOMM, August 2002.

Z. M. Mao, L. Qiu, J. Wang, and Y. Zhang. On AS-level patfer-
ence. Into appear in SGMETRICS 05, June 2005.

Z. M. Mao, J. Rexford, J. Wang, and R. Katz. Towards anukate
égdlg?vel Traceroute Tool. IfProc. ACM SSGCOMM, September
B. Melander, M. Bjorkman, and P. Gunningberg. A new ¢ménd
probing and analysis method for estimating bandwidth &oéttks.
In Proc. IEEE GLOBECOM, November 2000.

] T. S. E. Ng and H. Zhang. Predicting Internet networktatise

with coordinates-based approachesPtac. |[EEE INFOCOM, June
2002.

V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. @ell.
pathchirp: Efficient available bandwidth estimation fortwark
paths. InProc. PAM, April 2003.

N. Spring, R. Mahajan, and D. Wetherall. Measuring I§gblogies
with rocketfuel. InProc. ACM S GCOMM, August 2002.

J. Strauss, D. Katabi, and F. Kaashoek. A measuremedy sif
available bandwidth estimation tools. Rroc. ACM IMC, October
2003.

L. Subramanian, S. Agarwal, J. Rexford, and R. H. Katza@cter-

is needed in several areas. First, larger scale measurement izing the Internet hierarchy from multiple vantage points.Proc.

studies are need to evaluate and refine BRoute. Second, we

IEEE INFOCOM, June 2002.

