
On the Accuracy of Embeddings for Internet Coordinate Systems

Eng Keong Lua, Timothy Griffin, Marcelo Pias, Han Zheng, Jon Crowcroft
University of Cambridge, Computer Laboratory

Email: {eng.keong-lua, timothy.griffin, marcelo.pias, han.zheng, jon.crowcroft}@cl.cam.ac.uk

Abstract

Internet coordinate systems embed Round-Trip-Times
(RTTs) between Internet nodes into some geometric space
so that unmeasured RTTs can be estimated using distance
computation in that space. If accurate, such techniques
would allow us to predict Internet RTTs without extensive
measurements. The published techniques appear to work
very well when accuracy is measured using metrics such
as absolute relative error. Our main observation is that ab-
solute relative error tells us very little about the quality of
an embedding as experienced by a user. We define sev-
eral new accuracy metrics that attempt to quantify various
aspects of user-oriented quality. Evaluation of current In-
ternet coordinate systems using our new metrics indicates
that their quality is not as high as that suggested by the use
of absolute relative error.

1 Introduction and Motivation

An Internet coordinate system starts with a collection of
nodes and measured Round-Trip-Times (RTTs) between
some pairs of these nodes. It then embeds the nodes into
a geometric space by associating each node with a point in
that space. The goals of such an embedding are twofold.
First, the embedding should be accurate in the sense that
the geometric distance between embedded nodes should,
in some sense, closely approximate their RTTs. Second,
the methods should remain accurate even when the input
is a small subset of all possible RTT measurements. That
is, a node’s coordinates should allow even the unmeasured
RTTs to be estimated accurately.

Many Internet coordinate systems have been described
in the literature. Accuracy is typically assessed using met-
rics similar to absolute relative error, which forms an av-
erage over every pair of nodes of the absolute value of the
difference between their embedded distance and their orig-
inal distance. Note that an embedding technique does not
require a full mesh of RTT measurements, but assessing its

accuracy surely does. The main conclusion of this paper is
that by itself an accuracy metric such as absolute relative
error tells us very little about the quality of an embedding
as experienced by a user.

Our own experiences and experiments with Internet co-
ordinate systems have been disappointing in several re-
spects. First, distance estimation results are often unpre-
dictable in the sense that many nodes obtain good estimates
while a few obtain extremely bad results. In a real-world
setting it seems that nodes cannot determine the quality of
their estimates without performing exactly the full probing
that coordinate systems are intended to eliminate. Second,
we observed that the quality of an embedding often varied
considerably with small changes to the topology of the un-
derlying network — something which would be beyond the
control of most users of a coordinate system. Third, we ob-
served that the quality of embeddings often varies consid-
erably as the number of participating nodes changed, even
when the underlying topology remains fixed. In short, these
observations suggest that it is very hard to predict when a
coordinate system will work well at any given node.

Highly aggregated accuracy metrics, such as absolute
relative error, seem to give little indication of these types
of quality problems. This experience led us to question
the usefulness of metrics such as absolute relative error,
at least in isolation from other means of assessing quality.
This paper presents several new accuracy metrics that at-
tempt to capture more application-centric notions of qual-
ity. The first is called relative rank loss at node A (rrl at
node A), and is intended to be useful for applications used
by nodes that need to know only their relative distance of
other nodes. That is, node A needs to answer question such
as ”Which node is closer to me, B or C?” — which we will
call A’s proximity query for nodes B and C. The metric rrl
at node A is defined as a type of swap distance and takes
values between 0 (all proximity queries at A are correctly
estimated) and 1 (none of the proximity queries at A are
correctly estimated). For example, an rrl at node A of 0.5
tells us that node A has a 50 percent chance of getting the



correct answer to a proximity query. We then define aggre-
gate versions of rrl such as the average rrl over all nodes,
and the maximal rrl value over all nodes. The other new
metric we define is closest neighbors loss at node A (cnl at
node A). This metric is intended to be useful to nodes using
applications that are interested only in determining which
nodes are closest. The value of cnl at node A is 0 if the
nodes closest to A remain closest in the embedding, and 1
otherwise. Again, we then define aggregate versions of cnl
such as the average global cnl over all nodes. For example,
an average global cnl value of 0.5 would tell us that 50 per-
cent of the nodes have a different set of closest neighbors
in the original space than they have in the embedded space.

When we compare the accuracy of embedding tech-
niques using our new metrics the results can be very poor,
even in simple tree and hub-and-spoke networks. Our new
metrics capture and quantify, at least partially, some of our
disappointment with the quality of the embedding tech-
niques. However, it remains that no single accuracy met-
ric can capture the quality of an embedding technique. It
seems better to develop a collection of accuracy metrics
that are each designed to quantify a specific aspect of user-
oriented quality. By no means do we want to suggest that
our new metrics represent a complete or definitive set —
they are simply an initial attempt at exploring this space.

This paper is complementary to the work presented
in [23], which shows that RTT violations of the triangle
inequality are a common, persistent, and widespread con-
sequence of Internet routing policies. We strongly suspect
that such violations will degrade every embedding tech-
nique with respect to any accuracy metric, at least when
the embedding maps into a geometric space where the tri-
angle inequality does hold. The results of the current paper
and those of [23] are not very encouraging, to say the least.
On the positive side, we feel that research is always im-
proved with a better understanding of the fundamentals. In
this case, we believe an improved understanding suggests
a new and potentially interesting line of research, which
we will call Embeddable Overlay Networks (EONs). An
EON is an overlay where routing nodes have been selected
to avoid violations of the triangle inequality (for overlay
forwarding) and the overlay topology has been selected to
embed with high accuracy with respect to multiple useful
accuracy metrics. To do this well will require new insights
and new algorithms.

Paper Outline. Section 2 presents a short survey of the
embedding techniques described in the literature. Section 3
presents the basic terminology of network embeddings and
our new accuracy metrics. In Section 4 we present an em-
bedding experiment using our data collected on PlanetLab.
We use a full Lipschitz embedding technique which makes
use of all nodes as the landmarks (reference nodes) with-
out any dimensionality reduction, and evaluate the results
with our new metrics. In Section 5, we conducted exper-

iments using our PlanetLab data sets and new accuracy
metrics, but on other techniques that are based on numer-
ical minimization — Vivaldi [8] and Big Bang Simulation
(BBS) [18–20]. In Section 6, we revisit these previously
published experiments and use their data sets to re-evaluate
their accuracy with our new accuracy metrics. Section 7
concludes with some topics for future work.

2 A Brief Survey of Embedding Techniques

Among the recently described Internet coordinate systems
are the Global Network Positioning (GNP) [16], Light-
houses [17], Virtual Landmarks [21], Internet Coordinate
System (ICS) [11], Matrix Factorization [15], Practical In-
ternet Coordinates (PIC) [7], Vivaldi [8], Big Bang Sim-
ulation (BBS) in Euclidean space [18], and BBS in Hy-
perbolic space [19, 20]. Basically, Internet coordinate sys-
tems comprise of two categories of network embeddings
of finite metric space into low dimensional Euclidean or
non-Euclidean (e.g. Hyperbolic) space, namely, numeri-
cal minimization of some defined objective distance error
functions for nodes-to-landmarks distances; and initial Lip-
schitz embedding with some form of dimensionality reduc-
tion using distance matrix factorization (which is a form of
mathematical optimization and minimization techniques of
error functions).

ICS and Virtual Landmarks systems are based on Lip-
schitz embedding of a finite metric space into Euclidean
space and use the Principal Component Analysis (PCA) to
reduce dimensionality. Typically, the accuracy of such em-
beddings is studied only after some type of dimensional-
ity reduction technique has been applied. Matrix factoriza-
tion based on Singular Value Decomposition (SVD) is of
the form D = USV T , where D is the distance matrix, U
and V are orthogonal matrices and S is an diagonal ma-
trix with nonnegative elements arranged in decreasing or-
der which measure the significance of the contribution from
each principal component. This is related to PCA on the
distance matrix row vectors in ICS and Virtual Landmarks,
where the first d rows of the matrix U are used as coor-
dinates for the network nodes. The Matrix Factorization
embedding uses the distance matrix whose rows are not lin-
early independent (has rank strictly less than n where n is
the number of nodes). It is expressed as the product of two
smaller matrices of A and B (through SVD or Nonnegative
Matrix Factorization (NMF) algorithms), which contain the
outgoing and incoming vectors respectively for each node.
Estimated distances between nodes are derived from the
dot product of these two vectors. Lighthouses technique
makes use of multiple local bases L together with a tran-
sition matrix in vector space, to allow flexibility for any
node to determine coordinates relative to any set of land-
marks provided it maintains a transition matrix for global
basis G. It uses linear matrix factorization such as the QR



decomposition (Gram-Schmidt orthogonalization).

For techniques involving minimization of some defined
objective distance error functions, many algorithms are
proposed to compute the coordinates of the network nodes.
For example, GNP and PIC systems use the Simplex
Downhill to minimize the objective distance error function:
sum of relative errors. The problems of using the Simplex
Downhill method is the slow convergence, sensitive to the
initial coordinates or position of the network nodes, and
the potential of getting stuck in the local minima. This
leads to the eventual assignment of different coordinates
for the same node depending on the minimization process
(e.g. selection of the initial position). So, methods that
are clever to converge to the global minimum are required.
Both Vivaldi and BBS (Euclidean and Hyperbolic spaces)
algorithms are based on the numerical minimization of sum
of distance error functions that are related to the problem
of minimizing the potential energy of newtonian mechan-
ics principles. Vivaldi system is constantly adjusting the
coordinates of the nodes because each node contacts a ran-
dom set of nodes in a decentralized manner. Each node
cannot find a global minimum fit, and it cannot guarantee
that a given error function minimization does not increase
the global error, although Vivaldi ensures nodes always de-
crease the local error. Hence, the error term in each small
time-step is monitored to derive the optimal sets of coordi-
nates selected.

The Big-Bang Simulation (BBS) (Euclidean and Hyper-
bolic) systems model the network nodes as a set of par-
ticles, having a position in Euclidean space. The nodes
are traveling under the effect of the potential force field
which reduces the potential energy of the nodes. This is
related to the total embedding distance error of all node
pairs in Euclidean space. Each node pair is effected by
the field force induced between them depending on their
node pair’s embedding distance error, i.e. the embedding
distance error of the distance between the node pair. The
node is also affected by simulated friction force. BBS sys-
tems have the advantage over conventional gradient min-
imization schemes, such as steepest descent and Simplex
Downhill, due to the kinetic energy accumulated by the
moving nodes which enable them to escape the local min-
ima. Hyperbolic geometric space is the target embedding
space for the BBS (Hyperbolic) system. A distance de-
creases as it moves away from the origin. Similar to Eu-
clidean line distance, the Hyperbolic distance line between
two nodes is defined as the parametric curve, connecting
between the nodes, over which the integral of the arc length
is minimized. Unlike Euclidean line distance, a Hyperbolic
line distance bents towards the origin point. The extent to
which the bend depends on the curvature of the Hyperbolic
space. The bending becomes larger when space curva-
ture increases, and thus, Hyperbolic distance between two
nodes increases. There are three embedding methods in

BBS systems: All Pairs (AP) embedding — Embedding
is done for full mesh of the n nodes of the network topol-
ogy comprising of n(n−1)

2 distance pairs (n is the number
of network nodes). Two Phases (TP) embedding — Em-
bedding is done using landmarks similar to GNP, where
the landmarks are embedded first and the coordinates of the
other nodes are calculated from the distance to several cho-
sen closest landmarks through minimization of the sym-
metric distortion in these node-to-landmark pairs. Specif-
ically, TP embedding requires k + 1 landmarks’ measure-
ments for k-dimensional coordinate vectors. Log-Random
and Neighbors (LRN) embedding [20] — It aims to in-
crease neighbor distances accuracy. The LRN embedding
concurrently embed nodes through minimization of objec-
tive error function of n nodes and LRN subset, which com-
prises of the node pairs whose distance is below a cer-
tain threshold, i.e. the threshold is selected so that the
number of distance pairs that are below the threshold is
O(n. log n), and together with a set of randomly sampled
distance pairs that are selected uniformly at random with
probability log n

n . The number of randomly sampled dis-
tance pairs is equivalent to n. log n. The LRN algorithm
embeds all the n nodes concurrently. The objective func-
tion is the sum of embedding errors for all n nodes in the
system, and the embedding error of one node is the error of
distance from that node to the LRN subset of nodes.

3 Embeddings and Their Accuracy

This section rigourously defines several accuracy metrics
for embeddings. We use the Lipschitz embedding as a run-
ning example to illustrate and motivate our metric defini-
tions.

A metric space is a pair M = (X, d) where X is a set
equipped with the distance function d : X → �

+ — for
each a, b ∈ X the distance between a and b is given by the
function d(a, b). We require that for all a, b, c ∈ X ,

(anti-reflexivity) d(a, b) = 0 if and only if a = b,

(symmetry) d(a, b) = d(b, a),

(triangle inequality) d(a, b) ≤ d(a, c) + d(c, b).

Note that we will ignore the fact that in reality, violations
of the triangle inequality exist for Internet RTTs ( [23]).

Suppose that M1 = (X1, d1) and M2 = (X2, d2) are
metric spaces. Every one-to-one function φ from X1 to X2

naturally defines a metric space called the embedding of
M1 in M2 under φ, defined as φ(M1) = (φ(X1), d2). We
normally abuse terminology and simply say that φ embeds
X1 into X2, leaving the distance functions to be inferred
from the context. If φ embeds X1 in X2 and Z is a subset
of X1, then φ also defines an embedding of Z in X2 in the
natural way. One simple case is where X1 is a finite set,



X2 is �n with the standard notion of Euclidean distance,
d2(x, y) = ‖x − y‖ =

√∑
1≤i≤n (xi − yi)2.

If L = {l1, l2, . . . , lm} ⊆ X , then we can
map each a ∈ X to a point in �m as φL(a) =
(d(a, l1), d(a, l2), . . . , d(a, lm)). This is called the Lip-
schitz embedding of X using landmarks L. If L = X , we
refer to φX = φ as the full Lipschitz embedding.
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Figure 1: A binary tree of depth 2.

We illustrate the full Lipschitz embedding with a simple
example. Any weighted undirected graph G = (V, E, w)
naturally gives rise to a metric space M(G) = (V, d),
where d(a, b) is the length of a shortest path between nodes
a and b. Figure 1 presents one example — a simple binary
tree of depth 2, where each edge represents a distance of 1,
and gives rise to the following distance matrix:

1 2 3 4 5 6 7
1 0 1 2 2 1 2 2
2 1 0 1 1 2 3 3
3 2 1 0 2 3 4 4
4 2 1 2 0 3 4 4
5 1 2 3 3 0 1 1
6 2 3 4 4 1 0 2
7 2 3 4 4 1 2 0

Note that this distance matrix itself can be viewed as a
full Lipschitz embedding into a�7 by reading each row as
the 7-dimensional coordinate of the associated node. For
example, (0, 1, 2, 2, 1, 2, 2) are the coordinates of node
1.

3.1 Relative Error

We seek embeddings that are accurate. There are sev-
eral ways to capture this formally, and in the context of
Internet coordinate systems the most appropriate notion
may depend on the needs of an application. Some appli-
cations require that the distances in the embedding accu-
rately reflect the original distances. Note that with the bi-
nary tree example above distances are not well preserved
— we can calculate the distance between φ(1) and φ(7) =
(2, 3, 4, 4, 1, 2, 0) as approximately 4.47, yet it is only
2 in the original metric space.

If we multiply each coordinate φ(x) by a scalar value β,
and redefine the embedding as φ′(x) = βφ(x), we could
improve this notion of accuracy. As in [21], we choose
β to minimize the absolute relative error for all pairs of
nodes, given by

∑
x, y∈X

|‖φ′(x)−φ′(y)‖−d(x, y)|
d(x,y) . For the

example above, this gives a value for β of approximately
0.5, which reduces the distance between the embeddings of
nodes 1 and 7 to approximately 2.3. The average absolute
relative error is obtained by dividing the absolute relative
error with n(n − 1), where n is the total number of nodes.
The maximum local absolute relative error is the maximal
absolute relative error over all nodes.

A similar accuracy metric is stress, defined as∑
x�=y∈X(‖φ′(x)−φ′(y)‖−d(x,y))2∑

x�=y∈X d(x,y)2 . Note that both stress and

relative error quantify the magnitude of the differences be-
tween original distances and embedded distances. If stress
(or relative error) is 0, then we have an embedding that pre-
serves distances exactly (an isometry).
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Figure 2: Absolute Relative Error measures for Lipschitz
embedding on binary trees, depth 1 to 8.
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Figure 3: Scalar independent measures for Lipschitz em-
bedding on binary trees, depth 1 to 8.

3.2 Distortion

In the theoretical literature on embeddings (for example,
[10, 12–14]) the most common notion of accuracy is cap-
tured by distortion. This measure is invariant under scalar
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Figure 4: The view from a leaf in a binary tree of depth 4.
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Figure 5: Hub and Spoke accuracy.

multiplication. That is, distortion(φ) = distortion(αφ),
for all α �= 0 — and so provides a notion of accuracy that is
independent of the absolute values of distances. Distortion
measures the worst-case change in the relative distances of
the embedding.

First, define the ratio r(φ, x, y) = ‖φ(x)−φ(y)‖
d(x, y) . The

expansion of φ, expansion(φ), is the maximum value of
r(φ, x, y) as x and y range over X (x �= y). The con-
traction of φ, contraction(φ), is the minimum value of
r(φ, x, y) as x and y range over X (x �= b). The distortion
of φ is defined as the ratio distortion(φ) = expansion(φ)

contraction(φ) .
Note that the distortion(φ) is always greater than or equal
to 1. The equality holds only when there exists a constant
α such that r(φx, y) = α for every x, y. In this case
φ′(x) = φ(x)/α is an isometry.

One way to gain intuition for the meaning of distortion
is to imagine that contraction(φ) = 1 (which could al-
ways be achieved with scalar multiplication). In this case
there is no contraction in the embedding, only expansion,
and the largest expansion is achieved by some pair x, y,
where the distance between x and y in the embedding is
expansion(φ) times the original distance d(x, y).
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Figure 6: The view from a leaf in a hub with 30 spokes.

Note that distortion is a global worst-case measure,
which may be relevant to applications (such as mapping)
that require a global picture of the entire embedding. How-
ever, most Internet coordinate applications will be inter-
ested only in local distortion — the amount of distor-
tion seen from any one node. For a fixed x, we define
expansion(φ, x), to be the maximum value of r(φ, x, y)
as y range over X (x �= y), and contraction(φ, x), to
be the minimum value of r(φ, x, y) as y range over
X (x �= y). Then the local distortion is defined to be
distortion(φ, x) = expansion(φ, x)

contraction(φ, x) . The maximum lo-
cal distortion is the maximal distortion(φ, x) over all x.

3.3 A New Metric: Relative Rank Loss (rrl)

Many applications only need to know the relative distance
of other nodes. They need to answer question such as ”Is
A closer than B?” What is important for such applications
is that the relative rankings of distances is not lost. For
this notion of accuracy we define relative rank loss (rrl)
to be between 0 (for no loss of relative order) and 1 (for a
complete reversal of order). This is a slight generalization
of swap distance, a well-known edit distance on strings.
For example, between strings s1 = abcd and s2 = acdb
there is a swap distance of 2. We need to generalize this
slightly to account for the fact that multiple nodes can be
equidistant from a given node.

First, define the function

R(x, y) =




-1 if x < y
0 if x = y
1 if x > y

We say that x and y are swapped w.r.t. z if
R(d(z, x), d(z, y)) �= R(‖φ(z) − φ(x)‖, ‖φ(z) −
φ(y)‖) and denote this as swapped(z, x, y). That is, if
swapped(z, x, y) holds, then z’s relative distance rela-
tionship to x and y is different in the original and embedded



spaces. Define P (z), a subset of (X − {z}) × (X − {z}),
to be

{(x, y) | x �= y and swapped(z, x, y)}.
Finally, define the local relative rank loss at z to be

rrl(φ, z) =
| P (z) |

s
,

where s = (|X|−1)(|X|−2)
2 . Note that rrl(φ, z) is between

0 and 1. It can be interpreted as the probability that the
relationship between any two nodes in (X − {z}) × (X −
{z}) will have a different relative order (from z’s point of
view) in the original and embedded spaces (assuming all
pairs (x, y) have equal probability of being chosen).

Define the maximal local relative rank loss at z to be
the maximal value of rrl(φ, z) as z ranges over X . The
average local relative rank loss at z, denoted rrl(φ), is

defined as
∑

x∈X rrl(φ, x)

|X| .

3.4 A New Metric: Closest Neighbors Loss
(cnl)

Some applications are interested only in determining which
nodes are closest, and so require that embeddings accu-
rately preserve the set of closest nodes. For a node x, we
define its local closest neighbors loss to be 0 if the nodes
closest to x in X are mapped to the nodes closest to φ(x),
and 1 otherwise. We denote this value by cnl(φ, x). If we
take the average over all nodes in X , we denote the global
value as cnl(φ). We often multiply this global cnl by 100
and speak of the percentage of nodes whose nearest neigh-
bors are not preserved.

3.5 Examples of Inherent Inaccuracy —
Topology Matters

We now apply the accuracy measures defined above to sev-
eral simple topologies. Figure 2 presents the relative error
and maximum local relative error measures for binary trees
of depth 1 (3 nodes) through 8 (511 nodes). Note that it
is not obvious or intuitive how to interpret these (small)
values. On the other hand, Figure 3 presents the scalar-
independent measures for the same set of binary trees. The
plot for cnl tells us that about 96 percent of the 511 nodes
in a tree of depth 8 have a different closest neighbors set
in the Lipschitz embedding. The plot for rrl shows that on
average nodes see over 20 percent of their relative distance
relationships swapped. The plot for maximal local rrl tells
us that at least one node saw over 30 percent of its relative
distance relationships swapped.

Figure 4 helps us to understand these inaccuracies. This
plot is from the perspective of a leaf node in a binary tree
of depth 4 (31 nodes). The signature plot marked with *’s

shows the distances of other nodes from this leaf, in ascend-
ing order. The signature plot marked with o’s shows the
distances of the same nodes in the Lipschitz embedding.
In the original metric space, the parent of this leaf is the
only node at distance 1. But in the embedding, this node
moves to a distance of about 1.8. There were two nodes
originally at distance 2 — the leaf’s sibling and its parent’s
parent. One of these (its sibling) has moved closer (and is
now closer than the leaf’s parent), to a distance just under
1, while the leaf’s parent’s parent moves out to a distance
of about 3.4. The local rrl for this node is 17.2 percent.
Note that it has lost its closest neighbor in the embedding.

Some topologies show a very different relationship be-
tween rrl and cnl. For example, Figure 5 shows the scalar-
independent measures for a family of hub-and-spoke net-
works. The graph have n spokes and 1 root, where n ranges
from 1 to 30. Here we see a rising cnl and a falling rrl af-
ter n = 6. The reason becomes clear when we look at the
view from a leaf node, as shown in Figure 6. We see that
the root nodes is pushed away to a distance of about 3.3.

3.6 The Scalability (Meta-) Metric

Suppose that a set of applications is only interested in a sub-
set of nodes, say just the North American sites. Would it be
better to use a coordinate system generated for all sites, or
one generated just from inter-site RTTs restricted to North
American sites? The answer to such questions will deter-
mine if embeddings of coordinate services could be truly
scalable.

If Y is a subset of X , we can obtain an embedding in
one of two ways. First, we could use the embedding tech-
niques to obtain φ(X), and then restrict this to the nodes
in Y , which we will denote as φ(X) ↓ Y . This is called
Superspace embedding. Alternatively, we could use the
embedding techniques on Y to get φ(Y ), which we call
the Subspace embedding. In general, φ(X) ↓ Y and φ(Y )
may be very different embeddings and have very different
behaviors with different accuracy measures.

For example, consider again Figure 3. Let X be the bi-
nary tree of depth 8. We can consider each of the sub-
trees of depths 1 to 7 as a Subspace Y of X . The figure
shows the scalar-independent accuracy measures for each
full Lipschitz embedding of Subspace φ(Y ). However, the
full Lipschitz embeddings derived from the Superspace,
φ(X) ↓ Y , will in general inherit some of the inaccuracies
of the Superspace embedding — that is the nodes outside
of Y in X impact the way Y is embedded.

4 An Experiment with the Lipschitz Embed-
ding

Although data sets studied in previous research comprised
large number of measurements, some of them were not
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Figure 7: PlanetLab site comet.columbia.edu with minimum rrl using full Lipschitz embedding.

full meshes. The Skitter project [3] used in Virtual Land-
marks [21], for instance, makes RTT data available from
a small number of monitoring nodes n to m target nodes,
where m is in the order of hundreds of thousands. This
yields an asymmetric data set of n × m where only es-
timated distances between monitoring nodes and target
nodes can be verified; distances between target nodes can-
not be determined. This issue can be overcome with mesh
data sets. We acknowledge the fact that finding representa-
tive mesh data sets is not an easy task. However, planetary-
scale testbeds such as PlanetLab [2] provides a distributed
platform not only for overlay-based services but also for
network measurements.

We used RTT data1 collected between all PlanetLab
nodes from March 22nd to March 28th 2004. During this
time period, there were over 150 participating sites with
a total of over 370 hosted nodes distributed in the Amer-
icas, Europe, Asia and Australia. We then calculated the
minimum RTT between each pair of nodes available be-
tween those dates on consecutive 15-minute periods. Thus,

for each day in this period there were 96 matrices of RTT
measurements, and the size of each matrix was 325 × 325.
Therefore, over the seven days period, we obtained 672
such matrices.

Since we wanted to perform this analysis only over our
estimate of propagation delays on the paths (and not the
queueing and congestion effects), we first constructed a sin-
gle distance matrix D, in which each entry represented the
minimum RTT between a pair of PlanetLab nodes over the
entire 7-day period. This avoided biases in the results due
to high variations in RTTs, e.g. during congested periods.
Our analysis of the data indicated that by taking the mini-
mum over a 7-day period, we can filter out congestion re-
lated effects which have periodic weekly patterns.

Many PlanetLab sites had multiple nodes per site.
For instance, the Computer Laboratory (University of
Cambridge) site hosted three nodes planetlab1,
planetlab2 and planetlab3 under the domain
cl.cam.ac.uk. The minimum RTTs between nodes
within a site were very small, often of the order of 1 ms.
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(a) North America (Lipschitz Superspace embedding). PlanetLab site with
maximum rrl.
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(b) North America (Lipschitz Subspace embedding). PlanetLab site with
maximum rrl.

Figure 9: PlanetLab site with maximum rrl using full Lipschitz Superspace and Subspace embeddings.
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Figure 8: PlanetLab site planetlab1-pop-mg.mp.br
with maximum rrl using full Lipschitz embedding.

Examining RTTs between all pairs of nodes was therefore
wasteful and biased our results by the distribution of nodes
in PlanetLab sites and by the fact that there were missing
entries on the original 325×325 distance matrix. Thus, we
selected a representative node in each site so as to build a
site by site distance matrix D′, and then we removed rows
and columns that contained missing entries. This process
reduced the distance matrix to 69×69 RTTs between sites.
Finally, we used the classification proposed in [5] to split
D′ into three sub-matrices of different sizes based on the
geographical locations of PlanetLab sites:

North America (NA-PL): 44 × 44 distance matrix

which contains RTTs between PlanetLab sites located in
North America. The majority of these sites obtain inter-
connectivity through the Abilene network.

Outside North America (ONA-PL): 25 × 25 distance
matrix with RTTs between research and commercial sites
outside North America. It includes sites in Australia, Eu-
rope, Latin America and Asia.

All sites (ALL-PL): the combination of NA-PL and
ONA-PL data sets, of size 69 × 69.

We apply the full Lipschitz embedding to the RTT dis-
tance matrix of the 69 PlanetLab sites in ALL-PL. Here
are the minimum, mean, and maximum values we found
for local rrl:

Min Mean Max
rrl 0.0887 0.1822 0.6058

The difference between the maximum and minimum
rrls is high (51.71%). Figure 7 presents data from the
PlanetLab site comet.columbia.edu, which had the
minimum local rrl measure. The x-axis enumerates sites
and the y-axis shows the RTT distance of each site from
comet.columbia.edu (in milliseconds). The signa-
ture plot marked with *’s indicates RTTs in the original dis-
tance matrix, and the sites on the x-axis have been sorted
to ensure that this plot is in ascending order of RTTs. The
signature plot marked with o’s is the geometric distances
between the same sites in the embedded geometric space.
For these signature plots, we have multiplied the Lipschitz
embedding by a scaling factor that minimizes relative er-
ror (as described in Section 3). Of course, this does not
impact the rrl or cnl measures, but it helps us visualize
the differences between distances in the original and em-
bedded spaces. Note that even in this best case (at least



with respect to local rrl), we see that the relative ranking
of many close nodes is reversed and the list of close neigh-
bors is not preserved. We saw similar results for binary
trees (Section 3), and we suspect that many of the inac-
curacies visible in Figure 7 may be a consequence of the
inaccuracies inherent in the Lipschitz embedding for the
underlying network topology. Note that a user of this em-
bedding at comet.columbia.edu would conclude that
nyu.edu was about as far away as utexas.edu!

Table 1: Local rrl of Lipschitz Subspace and Superspace
embeddings using NA-ALL and ALL-PL PlanetLab sites.

Embeddings Min rrl Mean rrl Max rrl

φ(NA-PL) 0.1141 0.1897 0.3023
φ(NA-ALL) ↓ NA-PL 0.1606 0.2916 0.4452
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Figure 10: CDFs of Local rrl for Lipschitz Subspace and
Superspace embeddings in Euclidean Space.

Figure 8 presents a signature plot for the site with the
maximum local rrl measure, where the results here are not
very impressive — site pop-mg.rnp.br has a 60.6%
chance of swapping the relative distance of any two nodes.
It would appear from looking at this plot that using this em-
bedding at site pop-mg.rnp.br would give very poor
results. Note that in these figures, the site has lost its list of
neighbors’ rankings in the embedding. In fact, the global
cnl measure is 84.06%, for ALL-PL data set, so only about
15% of the sites retain their closest neighbors in the em-
bedding.

We proceed to explore scalability (meta-) metric of the
Lipschitz embedding with our PlanetLab site data. We used
the data sets NA-PL (North America) as a Subspace of the
data set ALL-PL (All sites) of size 69. We call φ(NA-PL)
the Subspace embedding and φ(NA-ALL) ↓ NA-PL the
Superspace embedding of NA-PL. The minimum, mean,
and maximum local rrl for the full Lipschitz Superspace
and Subspace embeddings are shown in Table 1. This is

visualized in Figure 9(a) and Figure 9(b), which show the
nodes with the maximum rrls for Lipschitz Superspace and
Subspace embeddings. Note that the Lipschitz Subspace
embedding in Euclidean space, is a much better one. Fig-
ure 10 shows the CDFs of the local rrl, for the Lipschitz
φ(ALL-PL), φ(NA-PL) (Subspace), and φ(NA-ALL) ↓
NA-PL (Superspace) embeddings. It clearly shows that the
Lipschitz Subspace embedding in Euclidean space is bet-
ter than the Lipschitz Superspace embedding, at least with
respect to the local rrl measure of accuracy.

5 Using Other Embeddings

We run experiments to apply our new accuracy metrics us-
ing Vivaldi and BBS (Euclidean and Hyperbolic) systems
and our PlanetLab sites data. The ALL-PL (All sites) data
set of 69 sites consisting of North America and Outside
North America PlanetLab sites, are selected for this exper-
iments. We utilize the p2psim simulator [1] (which Vivaldi
embedding system is incorporated in), BBS (Euclidean)
and BBS (Hyperbolic) TP and LRN embeddings systems,
to generate 3-dimensional coordinates for our PlanetLab
ALL-PL (All sites) data set. We utilize the TP embed-
ding’s parameters of t = 15 landmarks (the first 15 nodes in
the data set chosen as landmarks) and 15 node-to-landmark
measurements (each of the other nodes measure their dis-
tance to 15 landmarks for distortion minimization). Table 2
shows the maximum, mean and minimum rrl and cnl ac-
curacy metrics for Vivaldi and BBS (Euclidean and Hyper-
bolic spaces) embeddings using ALL-PL PlanetLab sites
data.

Table 2: rrl and cnl accuracy metrics for Vivaldi and
BBS (Euclidean and Hyperbolic) embeddings using ALL-
PL PlanetLab sites

Embeddings Min rrl Mean rrl Max rrl cnl (%)

Vivaldi 0.0817 0.1476 0.3494 75.36
BBS (Euclidean) 0.0768 0.1263 0.2291 75.36

BBS TP
(Hyperbolic) 0.0382 0.2391 0.6286 72.46
BBS LRN

(Hyperbolic) 0.0680 0.1419 0.3670 68.12

Both BBS (Euclidean) and Vivaldi embeddings in Eu-
clidean space have the same cnl measure of 75.36%, but
Vivaldi embedding has a higher maximum rrl compared
to BBS (Euclidean). The BBS (Hyperbolic) TP embedding
has a much higher maximum rrl than BBS (Hyperbolic)
LRN embedding, but its minimum rrl is lower than BBS
(Hyperbolic) LRN embedding. BBS (Hyperbolic) LRN
embedding has the lowest cnl measure of 68.12%, com-
pared to the other embeddings. On the other hand, BBS
(Euclidean) embedding has the lowest maximum rrl and
BBS (Hyperbolic) TP embedding has the largest maximum



rrl compared to the other embeddings. Figures 11 and 12
show the signature plots of the PlanetLab node with max-
imum rrl for BBS (Hyperbolic) TP embedding in Hyper-
bolic space and Vivaldi embedding in Euclidean space re-
spectively. Both graphs show their lists of close neighbors
are being pushed away in the embedded target geometric
space.
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Figure 11: BBS (Hyperbolic) TP embedding using 69 Plan-
etLab ALL-PL (All sites) network topology — Nodes with
Maximum rrl.
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Figure 12: Vivaldi embedding using 69 PlanetLab ALL-
PL (All sites) network topology — Nodes with Maximum
rrl.

Similarly, we explore scalability (meta-) metric of the
Vivaldi and BBS embeddings with our PlanetLab site data.
The Vivaldi and BBS (Euclidean) Subspace and Superspace
embeddings have the same behavior as the Lipschitz Sub-
space and Superspace embeddings, i.e. the Subspace em-

Table 3: Local rrl for Vivaldi and BBS Subspace and Su-
perspace embeddings using NA-ALL and ALL-PL Planet-
Lab sites

Embeddings Min rrl Mean rrl Max rrl

Vivaldi
φ(NA-PL) 0.0853 0.1542 0.2625

φ(NA-ALL) ↓ NA-PL 0.1351 0.23 0.4507

BBS (Euclidean)
φ(NA-PL) 0.0819 0.1407 0.2614

φ(NA-ALL) ↓ NA-PL 0.1440 0.2170 0.3544

BBS (Hyperbolic) TP
φ(NA-PL) 0.0388 0.1512 0.3045

φ(NA-ALL) ↓ NA-PL 0.0410 0.1496 0.3101

BBS (Hyperbolic) LRN
φ(NA-PL) 0.0864 0.1713 0.3167

φ(NA-ALL) ↓ NA-PL 0.0930 0.1504 0.2824

bedding has better rrl accuracy than the Superspace em-
bedding in the Euclidean space. However, in BBS (Hyper-
bolic) TP and BBS (Hyperbolic) LRN Subspace and Super-
space embeddings, the Subspace embedding rrl accuracy
is close to the Superspace embedding as shown in the Ta-
ble 3. For BBS (Hyperbolic) TP embedding using the NA-
PL site data set, we adopt the same parameters as in the
TP embedding for the ALL-PL, which is t = 15 landmarks
(the first 15 nodes in the data set chosen as the landmarks),
and 15 node-to-landmark measurements (each of the other
nodes measure their distance to 15 landmarks for distor-
tion minimization). Figure 13 shows the CDFs of the lo-
cal rrl for the BBS (Hyperbolic) TP and LRN φ(ALL-PL),
φ(NA-PL) (Subspace) and φ(NA-ALL) ↓ NA-PL (Super-
space) embeddings. This results suggest that the Super-
space embedding tends to have a close or better rrl ac-
curacy than the Subspace embedding in the Hyperbolic
space.

6 Revisiting Previous Work with New Accu-
racy Metrics

It will be interesting to apply our new accuracy metrics
to Vivaldi and BBS (Euclidean and Hyperbolic) systems
(based on numerical minimization techniques) on their
data sets that were used in their work. We generate 3-
dimensional coordinates for these embeddings in our ex-
periments. With reference to BBS systems [18–20], we
utilize network topologies from the TRACER placement
method (the network topologies chosen by selecting the
first n nodes in the whole network) for our experiments
due to its suitability for geometric distance experiments.
We utilize the TP embedding’s parameters of t = 10 land-
marks and 6 node-to-landmark measurements: this means
that there are 10 landmarks chosen from the first 10 nodes
in the network topology and only 6 closest measurements
are carried out by other nodes to these 10 landmarks.
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Figure 13: CDFs of Local rrl metrics for Subspace and Superspace embeddings in Hyperbolic Space.

Table 4: rrl accuracy metric for Vivaldi and BBS (Euclidean and Hyperbolic) embeddings
Embeddings Data sets Min rrl Mean rrl Max rrl

Vivaldi 192 PlanetLab filtered nodes 0.0334 0.0894 0.2808
Vivaldi 1740 King nodes 0.0633 0.1306 0.5667
BBS (Euclidean) Topology of 50 nodes chosen among 600 nodes in Waxman Network 0.1310 0.2090 0.3639
BBS (Euclidean) Topology of 15 nodes chosen among 1000 nodes in BA Network 0.0220 0.0982 0.2857
BBS (Euclidean) Topology of 150 nodes chosen among 6474 nodes in Jan 2000 AS Network 0.3531 0.4553 0.6379
BBS (Hyperbolic) TP with 10
landmarks and 6 measurements

Topology of 150 nodes chosen among 1000 nodes in BA Network 0.0892 0.2452 0.4995

BBS (Hyperbolic) TP with 10
landmarks and 6 measurements

Topology of 150 nodes chosen among 6474 nodes in Jan 2000 AS Network 0.3305 0.4636 0.6452

BBS (Hyperbolic) TP with 10
landmarks and 6 measurements

Topology of 50 nodes chosen among 600 nodes in Waxman Network 0.1573 0.2647 0.4524

BBS (Hyperbolic) TP with 15
landmarks and 15 measurements

Topology of 200 nodes with lower degree chosen among 10670 nodes in
Mar 2001 AS Network

0.0228 0.1419 0.2153

BBS (Hyperbolic) LRN Topology of 200 nodes with lower degree chosen among 10670 nodes in
Mar 2001 AS Network

0.0802 0.1796 0.2389

There are two data sets used in the Vivaldi [8] work.
PlanetLab RTT data of filtered nodes: This is pair-wise
minimum RTTs of 192 PlanetLab nodes over a certain
period of time (not specified in [8]), from the PlanetLab
”ping” collection traces. It is filtered due to some nodes in
PlanetLab having security measures restricting ”ping” con-
nection from other nodes. King [9] data: This data set
contains 1740 Internet DNS servers RTT traces based on
the King collection method.

We selected the following data sets from the BBS (Eu-
clidean) [18] work. Waxman [22] Network Topology:
This data set contains undirected fixed network topolo-
gies of 600 nodes and the edge weights are generated
with random uniform distribution in the range of [1, 1000].
The edge weights are taken as �10E + 0.5	, where E is
randomly and uniformly distributed in the interval (0, 3].
Based on the 600 nodes’ connectivity, a Dijkstra algo-
rithm is performed to find the shortest path distance matrix.

Network topologies consist of the first 50 nodes chosen
among the 600 nodes in the Waxman Network. Barabási-
Albert [4, 6] (BA) Network Topology (considered to fol-
low the PowerLaw): This data set consists of undirected
fixed network topologies of 1000 network nodes and the
edge weights are generated with random uniform distribu-
tion in the interval of [1, 1000]. Based on the 1000 nodes’
connectivity, a Dijkstra algorithm is performed to find the
shortest path distance matrix. Network topologies consist
of the first 15 nodes chosen among the 1000 nodes in the
BA Network.

We used the following data sets from BBS (Hyperbolic)
[19, 20] work. Barabási-Albert (BA) [4, 6] Network
Topology (considered to follow the PowerLaw): This
data set consists of undirected fixed network topologies of
1000 nodes, and edge weights are generated with random
uniform distribution in the interval of [1, 1000] (same data
set in BBS (Hyperbolic) work [19]). Network topologies



0 50 100 150

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Nodes

D
is

ta
nc

e

Hyperbolic TP Embedding for 1000 Nodes BA Topology with 150 Tracers −−− MAX RRL (0.49946)

Original Distance
Hyperbolic Distance

(a) Node with Maximum rrl using network topology of 150 nodes chosen
from 1000 nodes in BA Network Topology.

0 50 100 150
−2

0

2

4

6

8

10

Nodes

D
is

ta
nc

e

Hyperbolic 3−DIM Embedding for AS00 topology of 6474 Nodes with 150 Tracers (t=10,6 measurements) −−− MAX RRL (0.6452)

Original Distance
Hyperbolic Distance

(b) Node with Maximum rrl in network topology of 150 nodes chosen from
6474 nodes in Jan 2000 AS Hierarchical Tree Network Topology.

Figure 14: BBS (Hyperbolic) TP embedding with 10 landmarks and 6 measurements — Nodes with Maximum rrl.

consist of the first 150 nodes chosen among the 1000 nodes.
A Dijkstra algorithm is performed to find the shortest path
distance matrix. January 2000 AS Network Topology
from University of Oregon (RouteViews): This hierar-
chical tree network topology consists of 6474 nodes, and
edge weights are generated with random uniform distribu-
tion in the interval of [1, 1000] (same data set in BBS (Hy-
perbolic) work [19]). Network topologies consist of the
first 150 nodes chosen among the 6474 nodes. A Dijkstra
algorithm is performed to find the shortest path distance
matrix. March 2001 AS Network Topology from Univer-
sity of Oregon (RouteViews): This data set is only used in
the BBS (Hyperbolic) LRN embedding work [20]. It con-
sists of a hierarchical tree network topology of 10670 nodes
that are randomly weighted, with edge weights distributed
uniformly in the interval of [1, 1000]. We extracted 200
weighted network topology of nodes with lower degree, or
stub ASes.

Table 4 summarizes the maximum, mean and minimum
rrl accuracy metric for Vivaldi and BBS (Euclidean and
Hyperbolic) embeddings using their data sets [8, 18–20].
The signature plots of the nodes having maximum rrl for
BBS (Hyperbolic) TP embedding in Hyperbolic space are
shown in Figure 14. Evidently, the result of TP embed-
ding in Hyperbolic space using AS Hierarchical Tree Net-
work Topology shows similar rrl inaccuracy behavior as
the Lipschitz embedding in Euclidean space from the per-
spective of the tree node in the synthetic binary trees which
we have illustrated in Section 3.5. This confirms that BBS
(Hyperbolic) TP embedding in Hyperbolic space has the
similar rrl inaccuracy behavior as Lipschitz embedding
in Euclidean space for tree-like network topology. Also,

0 50 100 150
−1

0

1

2

3

4

5

6

7

8

Nodes

D
is

ta
nc

e
BBS 3−DIM Embedding for AS00 topology of 6474 Nodes with 150 Tracers −−− MAX RRL (0.63786)

Original Distance

BBS Distance

Figure 15: BBS (Euclidean) embedding using network
topology of 150 nodes chosen from 6474 nodes in Jan
2000 AS Hierarchical Tree Network Topology — Node
with Maximum rrl.

from the BBS (Hyperbolic) TP embedding experiment us-
ing BA Network Topology, it shows similar rrl inaccuracy
behavior as the Lipschitz embedding using our PlanetLab
site data. All these experiments show that the lists of close
neighbors are being pushed away in the target Euclidean
and Hyperbolic spaces.

We attempt to make a comparison study of BBS (Eu-
clidean) and BBS (Hyperbolic) TP embeddings. The Jan
2000 AS Hierarchical Tree Network Topology (Route-
Views) data set is used for this comparison. We examine
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Figure 16: rrl Comparison of BBS (Hyperbolic) TP embedding with 15 landmarks and 15 measurements and BBS (Hy-
perbolic) LRN embedding, using network topology of 200 nodes with lower degree chosen from 10670 nodes in Mar 2001
AS Hierarchical Tree Network Topology.

the signature plot of nodes with the maximum rrl for BBS
(Hyperbolic) TP and BBS (Euclidean) embeddings, as il-
lustrated in Figure 14(b) and Figure 15 respectively. For
hierarchical tree-like network graphs, both embeddings in
Euclidean and Hyperbolic spaces have sharp bi-modal rrl
error behaviors. Similarly, in Euclidean space, the rrl
measure for the BBS (Euclidean) embedding shows sim-
ilar rrl inaccuracy behavior as the Lipschitz embedding
from the perspective of the tree node in the synthetic bi-
nary trees, which we have illustrated in Section 3.5.

We continue to run rrl accuracy metric on BBS (Hyper-
bolic) LRN embedding using the March 2001 AS Hierar-
chical Tree Network Topology (RouteViews) data set. This
is compared with BBS (Hyperbolic) TP embedding’s pa-
rameters of t = 15 landmarks, and 15 node-to-landmark
measurements for distortion minimization. Figure 16
shows the signature plots of the nodes with maximum rrl
for BBS (Hyperbolic) TP and LRN embeddings. In LRN
embedding, the list of close neighbors is being pushed
away very much further and it has a higher maximum
rrl compared to TP embedding. Both exhibit similar bi-
polar rrl error behavior in Hyperbolic space.

7 Discussion

Our goal in this experimental work is to apply our new ac-
curacy metrics to study the accuracy of estimated distances
predicted by Internet coordinate systems and to what extent
it varies among different pairs of nodes. The results of this
initial attempt are not very encouraging. However, it re-
mains that no single accuracy metric can capture the qual-
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Figure 17: Average Absolute Relative Error Metric versus
Number of Landmarks.

ity of the embedding techniques and it is worthwhile to de-
velop a collection of accuracy metrics that are able to quan-
tify user-oriented quality. Another interesting open prob-
lem is: Can we characterize the impact of network topolo-
gies that have good embeddings with respect to an accuracy
metric? We envisage to answer this through our newfound
future research on EONs and to discover its embeddability
which aim to give good quality embeddings with respect to
accuracy metrics. We also note that the number of land-
marks has some impact on the accuracy of the embedding
techniques: less information can give better accuracy re-
sults. Figures 17 and 18 show the accuracy metrics (aver-
age absolute relative error and rrl) versus number of land-
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marks of the embedding techniques for the binary tree of
depth 2 (Figure 1). The landmarks are selected sequen-
tially and incrementally from the list of nodes in the binary
tree. The results of this simple experiment indicate that
Lipschitz plain embedding (without any scaling) gives bet-
ter average relative absolute error and Vivaldi embedding
gives lower rrl with small number of landmarks. Other
embedding techniques have similar observation. This con-
tradicts the intuition that having more landmarks (i.e. hav-
ing more information) will give better accuracy results. A
complete understanding will require the investigation of
structural effects of the number of landmarks and land-
marks’ selection with respect to accuracy metrics.
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Notes
1The all-pairs RTT measurement data was being continuously col-

lected by Jeremy Stribling and it is available from http://www.pdos.
lcs.mit.edu/∼strib/pl app/


