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Abstract

In this work we develop an approach for anomaly detec-
tion for large scale networks such as that of an enterprize
or an ISP. The traffic patterns we focus on for analysis are
that of a network-wide view of the traffic state, called the
traffic matrix. In the first step a Kalman filter is used to fil-
ter out the “normal” traffic. This is done by comparing our
future predictions of the traffic matrix state to an inference
of the actual traffic matrix that is made using more recent
measurement data than those used for prediction. In the
second step the residual filtered process is then examined
for anomalies. We explain here how any anomaly detection
method can be viewed as a problem in statistical hypothe-
sis testing. We study and compare four different methods
for analyzing residuals, two of which are new. These meth-
ods focus on different aspects of the traffic pattern change.
One focuses on instantaneous behavior, another focuses on
changes in the mean of the residual process, a third on
changes in the variance behavior, and a fourth examines
variance changes over multiple timescales. We evaluate
and compare all of these methods using ROC curves that
illustrate the full tradeoff between false positives and false
negatives for the complete spectrum of decision thresholds.

1 Introduction

Traffic anomalies such as attacks, flash crowds, large file
transfers and outages occur fairly frequently in the Internet
today. Large enterprise networks often have a security op-
erations center where operators continuously monitor the
network traffic hoping to detect, identify and treat anoma-
lies. In smaller networks, these tasks are carried out by
general network administrators who are also carry out other
day-to-day network maintenance and planning activities.
Despite the recent growth in monitoring technology and in
intrusion detection systems, correctly detecting anomalies
in a timely fashion remains a challenging task.

One of the reasons for this is that many of today’s

security solutions yield equipment that collects and ana-
lyzes traffic from one link at a time. Similarly many re-
search efforts consider anomaly detection on a per link ba-
sis [2, 8, 3]. To detect traffic anomalies one typically seeks
to characterize, or build a model, of what constitutes nor-
mal behavior. After filtering out normal looking traffic,
anomaly detection methods analyze the residual traffic pat-
tern for deviations. Considering only one link is limiting.
Since any flow will traverse multiple links along its path,
it is intuitive that a flow carrying an anomaly will appear
in multiple links, thus increasing the evidence to detect it.
Instead in this paper, we focus on using data from all the
links in an enterprise or ISP network simultaneously. Since
any anomaly has to traverse multiple links on route to its
destination, an anomaly has the potential to be visible in
any of the links its traverses. Since we cannot know in ad-
vance where anomalies will originate, nor the path they will
take, it is advantageous to consider the behavior of all the
links in an enterprise simultaneously when developing both
a model of ”normal” traffic and a method for analyzing the
”residuals”.

A traffic matrix is a representation of the network-wide
traffic demands. Each traffic matrix entry describes the av-
erage volume of traffic, in a given time interval, that orig-
inates at a given source node and is headed towards a par-
ticular destination node. In an enterprise network these
nodes may be computers, whereas in an ISP network the
end nodes can be routers. In this paper we propose to use
predictions of traffic matrix behavior for the purposes of
anomaly detection.

Since a traffic matrix is a representation of traffic vol-
ume, the types of anomalies we might be able to detect
via analysis of the traffic matrix are volume anomalies
[12]. Examples of events that create volume anomalies
are denial-of-service attacks (DOS), flash crowds and al-
pha events (e.g., non-malicious large file transfers), as well
as outages (e.g., coming from equipment failures).

Obtaining traffic matrices was originally viewed as a
challenging task since it is believed that directly measuring



them is extremely costly as it requirements the deployment
of monitoring infrastructure everywhere, the collection of
fine granularity data at the flow level, and then the pro-
cessing of large amounts of data. However in the last few
years many inference based techniques have been devel-
oped (such as [22, 23, 19, 18, 20, 6] and many others) that
can estimate traffic matrices reasonably well given only
per-link data such as SNMP data (that is widely available).
These techniques focus on estimation and not prediction.

In this paper we build upon one of our previous tech-
niques [20, 18] for traffic matrix estimation by using it to
provide predictions of future values of the traffic matrix. A
traffic matrix is a dynamic entity that continually evolves
over time, thus estimates of a traffic matrix are usually pro-
vided for each time interval (e.g., most previous techniques
focus on 5 or 10 minute intervals). We predict the traffic
matrix one step (e.g., 5 minutes) into the future. One of
the key ideas behind our approach lies in the following ob-
servation. Five minutes after the prediction is made, we
obtain new link-level SNMP measurements, and then esti-
mate what the actual traffic matrix should be. We then ex-
amine the difference between our prediction (made without
the most recent link-level measurements) and the estima-
tion (made using the most recent measurements). If our es-
timates and predictor are usually good, then this difference
should be close to zero. When the difference is sizeable
we become suspicious and analyze this residual further to
determine whether or not an anomaly alert should be gen-
erated.

We compare four different methods for signalling alerts
when analyzing residual traffic. The simplest method com-
pares the instantaneous residual traffic to a threshold. The
second method considered is a small variation on the de-
viation score idea presented in [2]. Their key idea is to
compare a local (temporally) variance calculation with a
global variance assessment. The deviation score used in
[2] is computed using output signals of a wavelet transform
applied to IP flow level data from a single link. We apply
this idea of comparing the local to the global variance on
our filtered residual signal. In our third scheme, we apply
wavelet analysis only on the filtered traffic (in [2] wavelet
analysis is applied directly on the original signal). We sig-
nal an alert when the detail signal (now a type of residual) at
each of a few different timescales exceeds a threshold. We
raise an alarm only if the threshold is exceeded at multiple
timescales. The fourth method uses a generalized likeli-
hood ratio test to identify the moment an anomaly starts,
by identifying a change in mean rate of the residual signal.
These last two methods, introduced here for the first time,
are particular applications of known statistical techniques
to the anomaly detection domain.

Our approach is different from other approaches in that
usually anomaly detection is performed directly on moni-
tored data that is captured at the target granularity level. In-

stead we perform anomaly detection on origin-destination
(OD) flows, a granularity of data that we infer from other
measurements (link statistics). Our study shows that it is
possible to follow such an approach towards a positive out-
come.

To validate our methods we use both real data from the
Abilene network and a synthetic anomaly generator that
we developed. These two approaches are complementary
as their advantages and disadvantages are opposite. The
advantage of evaluating using real world traces is that we
test our methods on actual anomalies that have occurred
in the Internet. The disadvantage of using only collected
traces is that the statistical parameters of the anomaly can-
not be varied. One cannot therefore identify the limits of
a method. For example, one cannot ask ”would we still
detect the anomaly if its volume were lower?”. Using syn-
thetically generated anomalies in which we carefully con-
trol the anomaly parameters, we can stress test and identify
the limits of an algorithm. However the synthetic anoma-
lies are limited because we have no evidence of them in the
Internet. Our approach to validation thus employs both of
these approaches in order to extract the benefits of each.

We use ROC (Receiver Operating Characteristic) curves
as our key evaluation criteria. ROC curves have received
wide usage in medical diagnosis and signal detection the-
ory, but relatively little in network security. A ROC curve is
a graphical representation of the tradeoff between the false
positive and false negative rates for every possible deci-
sion threshold. We include a brief description of the mean-
ing and theory behind ROC curves to illustrate a general
methodology for analysing network security solutions. We
use these to compare our four solutions. The advantage of
this approach is that it permits scheme comparison through-
out the entire range of decision thresholds. This eliminates
the difficulty that arises when one tries to compare meth-
ods each of which uses a particular and seemingly ad hoc
threshold choice. In addition, we also present the perfor-
mance of these methods in terms of their detection time.
This is important as most anomaly detection methods incur
some lag time before reaching a decision. Finally we assess
the false positive and false negative rates our schemes yield
as the volume of an anomaly is varied from low-volume
anomalies to high-volume ones.

The most important, and only, work to date that uses
a network-wide perspective for volume anomaly detection
was that of [12]. In this work, the authors used the en-
semble of all the links in a network and performed Princi-
ple Components Analysis to reduce the dimensionality of
the data. They illustrate that by projecting onto a small
number of principal components one could filter out the
”normal” traffic. The traffic projected onto the remaining
components is analyzed for anomalies using a G-statistic
test on the predictive error. While our paper essentially
tackles the same problem, our work differs in numerous
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ways: i) we process the incoming link data using kalman
filters rather than PCA analysis and generate traffic matrix
predictions; ii) the granularity we focus on is that of OD
flows whereas they use link data when analyzing residu-
als. (Note, they use the OD flows as a secondary step, after
detecting an anomaly, in order to identify the source); iii)
they consider a single test on the residual traffic whereas
we propose two new ones and conduct a comparative eval-
uation of four schemes; iv) our method for validation dif-
fers since we supplement the Abilene data with synthetic
anomaly testing; v) our evaluation is different because we
make use of ROC curves for evaluation, examine detection
lag times as well as sensitivity to anomaly volume sizes.

Section 2 describes how we model the OD flows and
our solution for traffic matrix prediction. The methods
for analyzing filtered traffic and determining how to de-
tect an anomaly are presented in Section 3. We discuss
our approach to validation and fully describe our synthetic
anomaly generator in Section 4. All of our evaluations and
the results are shown in Section 5.

2 Modeling Normal Traffic

We assume that the monitoring infrastructure in our net-
work can easily obtain per-link statistics on byte counts (as
in SNMP today). From this we want to infer the traffic ma-
trix that includes all pairs of origin-destination (OD) flows.
This is the classic traffic matrix estimation problem. If we
design a realistic model for the evolution of the network’s
traffic matrix, then we can use this to filter our usual behav-
ior. For the sake of completeness we now summarize our
linear dynamic state space model for the OD flows and our
Kalman filter method for estimating the traffic matrix. This
was originally presented in [18]. We expand on our previ-
ous work by illustrating how this can be used to make future
predictions of the traffic matrix and describe the resulting
residual processes that can be obtained when filtering via
this approach.

Since the OD flows are not directly observable (measur-
able with today’s technology) from the network, we refer to
them as hidden network states or simply as network states.
The link load levels (e.g., total bytes per unit time) are
directly observable in networks, and are captured via the
SNMP protocol that is widely deployed in most commer-
cial networks today. Because the total traffic on a link is the
sum of all the OD flows traversing that link, the relationship
between SNMP data and OD flows can be expressed by the
linear equation Yt = AtXt + Vt, where Yt represents the
vector of link counts vector at time t, and Xt is the OD
flows organized as a vector (hidden network states). At de-
notes the routing matrix whose elements at(i, j) are 1 if
OD flow j traverses link i, and zero otherwise. (In some
networks fractional routing is supported.) The term Vt cap-
tures the stochastic measurement errors associated with the

data collection step. All these parameters are defined for a
general discrete time t.

To capture the dynamic evolution of OD flows we need
a model that specifies Xt+1 as a function of Xt. We seek a
model that can be used for prediction of the OD flows one
step into the future. Providing an efficient model that cap-
tures traffic dynamics is not so simple. It has been observed
that traffic entering the network is characterized by highly
variable behavior in time [13]. There are many sources of
this variability, including daily periodic behavior, random
fluctuations with relatively small amplitude, and occasional
bursts. Sudden changes in the traffic are not uncommon and
can be related to different benign causes such as the addi-
tion of new customers, network equipment failures, flash
crowds or to malicious activities such as attacks conducted
against the network. Ignoring the attacks for the moment,
our model for OD flows must be rich enough to incorpo-
rate these sources of variability for normal traffic. It is
also known that both temporal correlations within a sin-
gle OD flow exist, and that spatial correlations across some
OD flows occurs [18].

We adopt a linear state space model to capture the evolu-
tion of OD flows in time. This predictive model relates the
network state Xt+1 to Xt as follows: Xt+1 = CtXt +Wt,
where the state transition matrix Ct captures temporal and
spatial correlations in the system, andWt is a noise process
that accounts for both the randomness in the fluctuation of
a flow, and the imperfection of the prediction model. Lin-
ear stochastic predictive models, combined with Gaussian
noise, have been successfully applied to a large spectrum
of monitoring problems.

The matrix Ct is an important element of the system. A
diagonal structure for Ct indicates that only temporal cor-
relations are included in the model of an OD flow. When
Ct has off-diagonal elements that are non-zero, then spa-
tial correlation across OD flows have been incorporated
into the model. For traffic matrix estimation, using a non-
diagonal matrix for Ct is preferable so that one can bene-
fit from incorporating spatial correlation (as used in [20]).
When traffic matrix estimation is carried out, the main task
is that of taking a total byte count for each link and parti-
tioning it among the the multiple OD flows traversing that
link. When an anomaly occurs on a link, it is possible for
an anomaly (originating within one OD flow) to get spread
across all the OD flows on that link during the estimation
procedure. To avoid this phenomenon, that would make it
more difficult to detect anomalies in OD flows, we use a
diagonal structure for Ct (unlike the model used in [18]).

Putting the above elements together, our complete model
is that of a linear state space dynamical system, that relates
the observables (Yt) to the unobservables (Xt), and is given
by, {

Xt+1 = CtXt +Wt

Yt = AtXt + Vt

(1)
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We assume both the state-noise Wt and the
measurement-noise Vt to be uncorrelated, zero-mean
Gaussian white-noise processes and with covariance
matrices Qt and Rt:

E[WkW
T
l ] =

{
Qk, if k = l
0, otherwise

E[VkV
T
l ] =

{
Rk, if k = l
0, otherwise

E[WkV
T
l ] = 0 ∀k, l (2)

These assumptions might appear restrictive however a
large body of research in the control theory literature has
been devoted to Kalman filtering robustness. The lessons
learned from this literature are that because of the feedback
mechanism, and ongoing readjustment of estimated values,
Kalman Filters are robust to model imprecision as well as
to some deviation from gaussianity in the noise. The rule
of thumb for reaching a certain level of robustness is to use
noise with slightly larger variance for Wt than obtained by
direct evaluation of noise.

Given the above assumptions and a set of observations
{Y1, ..., Yt+1}, the task is to determine the estimation filter
that at the (t + 1)-st instance in time generates an optimal
estimate of the state Xt+1, which we denote by X̂t+1. Op-
timality is defined in the sense of Minimum Variance Error
Estimator that is defined as follows:

E[||Xt+1−X̂t+1||2] = E[(Xt+1−X̂t+1)T (Xt+1−X̂t+1)]
(3)

The classical tool for dealing with this type of problem is
the well known Kalman Filter [10]. It addresses the general
problem of trying to estimate a discrete state vector when
the observations are only a linear combination of this un-
derlying state vector. The Kalman filter estimates the sys-
tem state process by using a two step approach, that iterates
for each time t. We use X̂t|i we refer to the estimation of
Xt based on time i, t ≥ i. (We introduce here the more
general case of time-varying systems, where all the param-
eters are indexed by time.)
• Prediction Step: Let X̂t|t denote the estimate of the

state at time t given all the observations up to time t (i.e.
Y t). This term has a variance that is denoted by Pt|t. Let
X̂t+1|t denote the one step predictor. This prediction is
made using all the observed data up to time t. Since the
model Xt+1 = CtXt + Wt includes the noise term Wt

(with covariance Qt), this prediction will have some asso-
ciated variability, that is denote as Pt+1|t. In the prediction
step, we are given X̂t|t and Pt|t, and compute both our pre-
diction, and the variance of this prediction, as follows.{

X̂t+1|t = CtX̂t|t

Pt+1|t = CtPt|tC
T
t +Qt

(4)

• Estimation Step: In this step, the kalman filter updates
the state estimate Xt+1|t+1, and its variance (Pt+1|t+1) by
using a combination of their predicted values and the new
observation Yt+1. The new estimate at time t + 1 is given
by,


X̂t+1|t+1 = X̂t+1|t +Kt+1[Yt+1 −At+1X̂t+1|t]
Pt+1|t+1 = (I −Kt+1At+1)Pt+1|t(I −Kt+1At+1)T

+Kt+1Rt+1K
T
t+1

(5)
The new estimate at time t + 1 for X̂t+1|t+1 is com-

puted using the prediction from the previous time instant
X̂t+1|t that is adjusted by a correction factor. Consider
the latter part of this equation. By multiplying our pre-
diction X̂t+1|t by At, we generate a prediction for the
link counts Ŷt+1. Hence the term in brackets [Yt+1 −
At+1X̂t+1|t] = Yt+1 − Ŷt+1 is the error in our predic-
tion of the link counts. This term is multiplied by the ma-
trix Kt+1 that is called Kalman gain matrix. It is obtained
by minimizing the conditional mean-squared estimation er-
ror E[X̃T

t+1|t+1X̃t+1|t+1|Y t] where the estimation error is

given by X̃t|t = X̂t|t −Xt. By applying some basic linear
algebra, we can write it as:

Kt+1 = Pt+1|tA
T
t+1[AtPt+1|tA

T
t+1 +Rt+1]−1 (6)

Hence this second step takes the new observation of
Y when it becomes available, and corrects its previous
prediction. The above equations together with the initial
conditions of the state of the system X̂0|0 = E[X0] and
the associated error covariance matrix P0|0 = E[(X̂0|0 −
X0)(X̂0|0 − X0)T ] define the discrete-time sequential re-
cursive algorithm, for determining the linear minimum
variance estimate, known as Kalman Filter.

In our previous paper [18], the traffic matrix is popu-
lated (i.e. estimated) using X̂k+1|k+1. Nevertheless, it is
clear that the Kalman filter gives more information than
only estimates. Using the predictive ability of the filter it is
possible to estimate the future evolution of the traffic ma-
trix. The correction step in Equation (5) essentially cap-
tures the part of the process that our model could not pre-
dict. It is this unpredictable part that we want to track for
anomaly detection. Based on the study in [18], we know
that the Kalman filter method for estimating the traffic ma-
trix works well. Hence most of the time, the correction
factors are negligible. Now if at some time instant we see
a large correction of our prediction , we could flag this as
anomalous and generate an alert.

We are thus motivated to examine the errors that our one-
step predictor generates. The errors in our prediction of the
link values are denoted by,

εt+1 = Yt+1 −At+1X̂t+1|t,
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In Kalman filtering terminology this error is typically
the innovation process. It is the difference between
the observed (measured) value Yt+1 and its prediction
At+1X̂t+1|t. The innovation process εt is considered to be
white gaussian noise with a covariance matrix given by :

E
[
εt+1ε

T
t+1

]
= At+1Pt+1|tA

T
t+1 +Rt+1. (7)

Since in our case, we are interested in anomalies in the
OD flows, we can define, by extension, the residual ηt+1,

ηt+1 = X̂t+1|t+1 − X̂t+1|t = Kt+1εt+1,

that is the difference between the new estimate of the state
(X̂t+1|t+1), corrected using the most recent measurement
at time (t + 1), and its prediction X̂t+1|t made based only
on information available up to time t. It is also a measure of
the new information provided by adding another measure-
ment in the estimation process. Using Equation (5), we can
see that the error in the OD flow estimate is related to the
error in the link estimate via ηt+1 = Kt+1εt+1.

This is also a zero-mean gaussian process, whose vari-
ance St+1 can be easily derived as

St+1 = E[ηt+1 η
T
t+1] = Kt+1(At+1Pt+1|tA

T
t+1+Rt+1)KT

t+1

(8)
The residual process can be shown to be asymptotically

uncorrelated, i.e. E
[
ηt η

T
l

]
= 0, t 6= l. This can be un-

derstood by observing that asymptotically the gain matrix
of Kalman filter Kt+1 converge to a fixed point K̄. The
residual is an important measure of how well an estima-
tor is performing. A non-zero residual could mean that an
anomaly has occurred, and in the next section 3, we present
a few schemes for further examining this residual time se-
ries to detect anomalies.

In this section, we presented the Kalman filtering method
in its general settings under non-stationary assumptions. In
the following sections, we will assume a stationary situa-
tion where the matricesA,C,Q andR are constant in time,
making it possible to drop their subscripts. However, the
rest of the methodology presented in this paper can easily
be generalized to incorporate time dependency.

There is an issue of calibration for using such a Kalman
filter model because the matrices C,Q and R need to be
calibrated. We developed and presented in [20] an Expec-
tation Maximization based approach for calibrating these
matrices. In [20] we showed that for reliable OD flow es-
timation we need to recalibrate the Kalman filter every few
days when the underlying model changes. When there are
anomalies, this might suggest that the model should be re-
calibrated every time an anomaly occurs. However, one
interesting result of this current paper is that this recali-
bration step is often not needed if the goal is just anomaly
detection. For example, in applying our anomaly detection
schemes on the Abilene data, we found that no recalibra-
tion was needed for 7 days (covering 74 anomalies). Hence

the requirements for recalibration appear to be stronger for
traffic matrix estimation than for anomaly detection.

3 Analyzing Residuals

Before explaining our four methods for examining residu-
als to look for anomalies, we discuss some important issues
regarding sources of errors, understanding the meaning of
decision thresholds, and how they are selected. In doing
so, we explain our methodology for comparing different
anomaly detection schemes.

There are two sources of errors that can appear in the
residual process. One is from errors in the underlying
traffic model, while the second will come from anomalies
in the traffic. Suppose, for a moment, that we consider
any general random process Zt that we want to check for
anomalies. Let Ẑt denote our prediction for this process
based upon a model. Since our model may not be exact,
we let ζt denote the expected prediction error, a zero-mean
random variable with known covariance. If we define ξt as
the anomaly term at time t, we can write :

Zt = Ẑt + ζt + ξt.

In this equation ξt is a random variable accounting for the
unexpected change caused by the anomalies, i.e. ξt = 0
if there are no anomalies and ξt 6= 0 when there is an
anomaly.

There is an important decision to be made as to which
data granularity to examine in order to try to observe
anomalies. We can consider either looking at the predic-
tion errors observed on the link data Yt or the estimation
errors on the OD flows Xt. Our experience showed us that
detection schemes work better when operating at the gran-
ularity level of the OD flow rather than at that of the link.
Although we cannot observe the OD flow directly, we can
observe the error in our prediction of the OD flow and that
turns out to be plenty sufficient for our purposes. We point
out that the four schemes we discuss for examining errors
can be applied to either type of error. These methodologies
require only that we understand the covariance process of
the associated ζt process.

To detect anomalies on the SNMP link counts, one
should use the statistics of the innovation process in place
of the statistics of ζ. This is readily available in our model
since it is equivalent to the statistics of the innovation pro-
cess in the Kalman Filter. The innovation obtained as the
output of the Kalman filter is exactly the prediction error
ζt + ξt.

Anomaly detection on OD flows is more tricky as the
prediction error is not directly observable (as OD flows are
hidden). However, the good news is that the covariance of
ζ is known and equal to Pt+1|t+1. Moreover, the residual
ηt+1 = X̂t+1|t+1 − X̂t+1|t = Kt+1εt+1 can be observed
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and its covariance can be derived as St+1. And last but not
least the estimation error ζ and the residual η are correlated
gaussian processes, i.e one might use one for estimating the
other and the least squared error estimator is :

ζt + ξt ≈ −KtAtPt|t−1S
−1
t ηt (9)

The approximation comes from the fact that this is just an
estimation of an unobserved value (the OD flows estima-
tion error) based on an observed value (residual).

3.1 Anomaly detection as a statistical test

We now wish to illustrate how any anomaly detection
scheme can be viewed as a statistical hypothesis test. To
do this, we first explain how such tests are evaluated. The
tested are evaluated by exploring the fundamental tradeoff
between the false positive and false negative rates. Hypoth-
esis testing explains how to pick decision thresholds when
faced with balancing this particular tradeoff.

All four of the schemes we use to evaluate the residuals
rely on the selection of a threshold that is used to decide
whether or not an alarm is raised. In fact, any anomaly or
change detection method will require that a threshold be
selected. In our evaluation of these methods we consider
all possible thresholds for each method. We do this by as-
sessing the performance of our method using Receiver Op-
eration Characteristic (ROC) curves.

ROC curves have been developed in the context of sig-
nal detection [5], and have been widely used for medical
analysis purposes [24]. ROC curves are useful because the
describe the full tradeoff between false positives and false
negatives over the complete spectrum of operating condi-
tions (i.e., decision threshold settings). In an ROC curve,
we plot the false positive rate on the x-axis and one minus
the false negative rate on the y-axis. The y-axis thus repre-
sents the true positives (the anomalies we want to catch).
An algorithm is considered very good if its ROC curve
climbs rapidly towards the upper left corner of the graph.
This means that we detect a very high fraction of the true
anomalies with only a few false positives. Sample ROC
curves can be seen in Figure 1 (to be fully explained later).

To quantify how quickly the ROC curve rises to the up-
per left hand corner, one simply measures the area under
the curve. The larger the area, the better the algorithm.
ROC curves are essentially parametric plots as each point
on the curve corresponds to a different threshold. Each
point illustrates a particular tradeoff between false positives
and false negatives. Each algorithm results in one curve,
and by comparing these curves we can compare algorithms.
The curve with the largest area underneath it corresponds to
the better algorithm. Since each curve represents the entire
range of thresholds, we can compare algorithms throughout
their entire region.

ROC curves are grounded in statistical hypothesis test-
ing. As mentioned earlier, any anomaly detection method
will at some point use a statistical test to verify whether
or not a hypothesis (e.g., there was an anomaly) is true
or false. Recall that ξt is our residual process and should
be zero (or roughly zero) when there is no anomaly. We
can form the hypothesis H0 : ξt = 0 for the case when
there is no anomaly. We can form an alternate hypothesis
H1 : ξt! = 0 for the case when there an anomaly occurs.
This last hypothesis is difficult to handle mathematically,
so for the sake of simplicity of exposition, we rewrite the
alternate hypothesis as H1 : ξt = µ. (Conceptually we
can continue to think of this as the case when an anomaly
occurs). The random variable ξt in each hypothesis is as-
sumed to have some distribution. Upon observing a sample
of this random variable we compare it to a threshold to de-
cide if we reject H0 (thereby accepting H1) or vice versa.

Let FPR denote the false positive rate, the probability
that we detect an anomaly given there was no anomaly. Put
otherwise, this is the likelihood that we reject H0 when it
was true. The false negative rate, FNR, is the probability
that we detect nothing when an anomaly occurs (or the like-
lihood that we accept H0 when we should have rejected it).
In order to decide whether or not to acceptH0, we compare
our observation of ξt to a threshold. The Neyman-Pearson
criteria says that we should construct this decision thresh-
old to maximize the probability of detection (true positives)
while not allowing the probability of false alarm to exceed
some value α.

The optimization problem to solve is to find the maxi-
mum probability of detection (1-FNR) such that FPR ≤
α. The likelihood ratio is defined as the ratio of FPR/FNR.
The Neyman-Pearson lemma says that the optimal decision
threshold is one that satisfies the likelihood ratio test.

FPR

FNR
≤ T (α)

In solving for T (α) (i.e., deriving the curve), each point
of this curve corresponds to one value of the decision
threshold. In practice, this curve is plotted as the correct
detection rate,i.e. 1 − FNR as a function of false positive
rate FPR thus yielding the ROC curve.

For a fixed FPR = α, all values 1 − FNR ≤ β∗ are
achievable by a non-optimal anomaly detector, or equiv-
alently all points below the optimal ROC curve can be
achieved. The ROC curve can be derived analytically typ-
ically only under simple assumptions (such as ξt is Gaus-
sian). In this case the derived curve is an optimal curve.
The optimal curve is not a perfect solution (i.e., 100% true
positive detection and 0% false positives) because usually
there is some inherent noise in the process this limits the
best decision one can make.

As a simple example, consider the case when ξt is a
gaussian random variable with a cumulative distribution
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given by Φ. The ROC curve for the hypothesis H0 : ξt = 0
vs. H1 : ξt = µ is given by :

1− FNR = 1− Φ(Φ−1(FPR)− µ)
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Figure 1: Optimal ROC curve for a gaussian hypoth-
esis testing between H0 : ζ = 0 vs. H1 : ζ = µ.

Fig. 1 shows the ROC curve for this case for three dif-
ferent alternate hypotheses H1. In practice, the optimal
ROC curves cannot be derived, which limits our ability to
see how far a particular detection scheme is from optimal,
where optimal is determined based on the underlying noise
of the system. However since each scheme yields a differ-
ent ROC curve, these remain a powerful means of compar-
ison across schemes. If one curve has less area beneath it,
then it is clearly inferior, regardless of the threshold level
selected.

3.2 Basic analysis using Variance
The first anomaly detector that will be described is also
the simplest one. As seen previously in normal operational
condition one might assume that ξt = 0 and that the pre-
diction error ζt follows a process with mean 0 and known
variance. Under the situation that the statistics of ζt, the
prediction error are fully known, it is easy to construct a
statistical test following the Neyman-Pearson theorem. For
this purpose we might use the construction given in Eq. 9.

The approach consists of constructing the process τt =
−KtAtPt|t−1S

−1
t ηt and rising an alarm for an OD pair i

whenever τti > T ×
√

(Pt+1|t+1)ii where T is the thresh-
old. Actually, this approach verifies if the prediction error
is inside a confidence interval. This anomaly detector is the
optimal one for the case where ζt + ηt follow a gaussian
distribution. However, if this hypothesis in not precisely
true (as frequently in practice), application of this anomaly
detector will lead to a ROC curve that is lower than the
optimal one.

An interesting property of this method is that the test is
verified as soon as a new observation has been processed by
the Kalman filter and it can therefore trigger an anomaly
very fast. However the drawback of the approach is that
each test is being done independently of past observations.
This might lead to high false positive rate when the process
ζt has a heavier tail than the gaussian. One might want to

have a less sensitive approach that will not raise an alarm
based on only one observation diverging from the bound.

3.3 CUSUM and Generalized Likelihood
Ratio test

The previous method missed an essential fact, since we
are in the context of random processes, tests executed at
each time t are not independent. The classical approach
for detecting a change in a random process is the CUSUM
(Cumulative Summation) method and its variants [4]. The
main intuition behind the CUSUM method is that when a
change occurs the log-likelihood ratio of an observation yi,
defined as si = log L1(y)

L0(y) , shifts from a negative value to a
positive one (as after the change hypothesis H1 becomes
more likely). This means that the log-likelihood of ob-
serving a sequence of N observations {yN−1

0 }, defined as
SN−1 =

∑N−1
i=0 si, that was decreasing with N , begins to

increase after the change. The minimum value of Sj gives
an estimate of the change point. Therefore a simple statis-
tical test for change detection consists of testing whether :

Sk − min
0≤j≤k

Sj > T,

where Sk is the log-likelihood ratio defined previously and
T is a threshold. After a change has been detected, the time
of change can be estimated as :

t̂c = arg min
0≤j≤k

{Sj}

The previously described CUSUM algorithm has been
widely used for anomaly detection. However it suffers
from a key drawback. It is stated in the context of a simple
hypothesis, where the alternative hypothesis H1 should be
completely defined, i.e. the level of the change or in other
terms the intensity of the anomaly should be known a pri-
ori. However in practical settings, this is exactly unknown
as by definition anomalies are not predictable.

A solution for this issue is provided by the General Like-
lihood Ratio Test. In this approach the level of change in
the CUSUM algorithm is replaced by its maximum likeli-
hood estimate. To describe the approach let’s fix a scenario.
Suppose an anomaly occurs and this results in a shift in the
mean of the residual process. After the shift, the estima-
tion error will no longer be a zero mean random variable
of variance σ (σ is assumed to be known), but instead is
translated to a mean µ, that is unknown, and the same vari-
ance. The GLR algorithm uses a window of estimation er-
ror {τ j+N−1

j } and applies for each i, j ≤ i ≤ j+N−1 the
following test. It first estimates the mean of the estimation
error over the window {i, . . . j +N − 1} as

µ̂ =
1

j +N − 1− i

j+N−1∑
l=i

τl
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It then performs a simple CUSUM test with µ̂ as the level
change value and we raise an alarm if a change is de-
tected. We implemented here a variant of the classical GLR
method described in [7]. This method is very powerful
since there exists a proof that this is the best estimator when
level change µ and variance σ are unknown. However its
main drawback is that it adds some delay for the detection
of the anomaly since it needs some observations after the
anomaly to estimate the deviation level. The detection de-
lay will not be constant and will depend on the anomaly.
For example, the effect of small volume anomalies on the
mean will propagate slowly and thus may not be detected
as quickly as large volume anomalies.

3.4 Multiscale analysis using variance
Multi scale analysis has been proposed as a promising ap-
proach to make robust anomaly detectors and is now com-
monly accepted as a powerful tool. The rational behind
using multiscale analysis is that anomalies should appear
at different time scales and by monitoring these multiple
scales one should be able to reduce the False Positive Rate,
because a change appearing on only one time scale will not
trigger an alarm.

We implemented a multi-scale analysis based on a cas-
cade decomposition of the original signal τt into a low fre-
quency approximation aL

t and a cascade of details di
t. The

multi-scale decomposition lead to the following relation :

τt = aL
t +

L∑
i=1

di
t.

where :

di
t =

∑
s

τs2−iψ(2−is− t), i = 1, . . . , L,

aL
t =

∑
s

τs2−Lφ(2−Ls− t),

and ψ(.) is a mother wavelet function and φ(.) its corre-
sponding scaling functions [14].

Now, an anomaly detection mechanism, similar to that
described in the basic analysis using variance subsection,
is applied to each details time series. For each level l ∈
[1, L]we create a 0-1 sequence: each time instant t is as-
signed either a 0 or 1 where 0 indicates that no anomaly
was detected and 1 means an anomaly was flagged. By
summing across these 0-1 time series, for a given time in-
stant, we have the number of times that an anomaly was de-
tected across all the details signals. The larger this numer,
the more time scales at which the anomaly was detected.
(In practice, we sum not over a single time instant, but over
a small window in each signal). An anomaly flag is raised
if the anomaly is detected at a sufficient number of scales.

The computation of the wavelet introduces a lag in the de-
tection; this lag will be a function of of the largest scale
used.

3.5 Multi scale variance shift
This method is derived from [2]. In this paper the authors
detect the difference between the local and the global vari-
ance of the process. They first remove the trend of the sig-
nal using a wavelet transform, i.e. the remove the approx-
imation part of a wavelet transform. Thereafter they use a
small window to compute a local variance. Whenever the
ratio between this local variance and the global variance
(computed on all the data) exceeds a threshold T then an
alarm is triggered.

This method is in fact a special case of the multiscale
analysis previously described, where only two scales are
analyzed, the scale at which the global variance is calcu-
lated and the local scale where the local variance is cal-
culated. The approach can be assimilated to wavelet trans-
form with a Haar wavelet. The other interesting point of the
approach is that it detects a variation in the variance of the
process in place of detecting a variation in the mean as pre-
viously described approaches. It is noteworthy that other
approaches could also be adapted to detecting changes in
variance in place of the mean.

This method will also experience a detection lag time,
since the wavelet approach introduces a lag due to the time
needed to compute the wavelet transform in the two scales.
The width of the window of time over which to computes
the local variance is very important and will depend on the
duration of the anomaly to detect.

4 Validation Methodology

The validation of any anomaly detection method is always
fraught with difficulty. The challenge comes from our in-
ability to establish the ”ground truth”. Among the most
interesting performance metrics for such methods are the
false positive and false negative rates. However computing
these rates requires us to know exactly which events (and
corresponding point in time) were anomalies and which
were not. One common approach to evaluating anomaly
detection algorithms is to collect live data in the form of
a packet or flow level trace, and then to have this trace
”labeled”. Labeling or marking a trace is the procedure
by which each anomalous event is identified along with its
start and finish time. Perhaps the best way to do this in to-
day’s world is for a security operations expert to do the la-
beling either via visual inspection or with the help of tools.
They have a wealth of real world experience that is hard
to automate. Although this is currently our best option,
the labeling method is not perfect as operators can make
mistakes, either missing an anomaly or generating a false
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positive. The advantage of using labeled traces is that they
capture real world events. The disadvantage is that such
traces contain a fixed number of events whose parameters
cannot be varied. For example, one cannot ask ”suppose
the volume of the attack had been a little lower, would our
algorithm have caught it?”

A second approach to validation is to synthetically gen-
erate attacks. The advantage of this approach is that the
parameters of an attack (attack rate, duration, number of
flows involved, etc.) can be carefully control. One can then
attempt to answer the above question. This enables sensi-
tivity testing of any detection algorithm. Clearly the disad-
vantage is that these attacks have not happened anywhere
and thus may be of less interest.

We believe that a good approach to validation of an
anomaly detection algorithm should contain both of the
above approaches, so as to obtain the benefits of each
method. For our set of real world data with anomalies, we
obtained four weeks of traffic matrix data from the Abilene
Internet2 backbone network. Abilene is a major academic
network, connecting over 200 US universities and peering
with research networks in Europe and Asia. This data was
labeled using the method in [12]. We developed our own
synthetic anomaly generator and implemented it in Matlab.
This is described in detail further below.

4.1 Abilene Data
The Abilene backbone has 11 Points of Presence (PoP)
and spans the continental US. The data from this net-
work was collected from every PoP at the granularity of
IP level flows. The Abilene backbone is composed of Ju-
niper routers whose traffic sampling feature was enabled.
Of all the packets entering a router, 1% are sampled at ran-
dom. Sampled packets are aggregated at the 5-tuple IP-flow
level and aggregated into 5 minute bins. This thus dictates
the underlying time unit of all of our estimations and de-
tections. The raw IP flow level data is converted into a
PoP-to-PoP level matrix using the procedure described in
[11]. Since the Abilene backbone has 11 PoPs, this yields
a traffic matrix with 121 OD flows. Note that each traffic
matrix element corresponds to a single OD flow, however,
for each OD flow we have a four week long time series de-
picting the evolution (in 5 minute increments) of that flow
over the measurement period.

4.2 Synthetic Anomaly Generation
Our approach to synthetically generation anomalies makes
use of the Abilene traffic matrix. The idea is to select either
one, or a set of, OD flows to be involved in the anomaly, and
then to add anomalies on top of the baseline traffic level for
those OD flows. Our reasons for adding anomalies on top
of the existing traffic matrix are as follows. We want to

detect anomalies using the ensemble of all network links,
we need to populate the load of the entire network. Other
methods are available such as [17]. But they generate sin-
gle link packet traces while we need multi-link SNMP data.
Thus we rely on our measured dataset for generating mali-
cious data.

Using the abilene traffic matrix allows us to recreate
realistic loads network-wide. This includes all the many
sources of variability exhibited on the set of network links.

To inject an anomaly into this network, we use a three
step procedure. These procedure is carried out for each OD
flow involved in the anomaly.

1. Extract the long-term statistical trend from the se-
lected OD flow. The goal is to capture the diurnal
pattern by smoothing the original signal.

2. Add Gaussian noise onto the smoothed signal.

3. Add one of the anomalies as described in Table 1 on
top of this resulting signal.

These three steps are depicted pictorially in Figure 2. It
was shown in [19] that OD pairs in an ISP exhibit strong
diurnal patterns. These 24-hour cycles represent normal
types of variability in aggregated traffic. Another normal
source of variability in OD flows simply comes from noise
[13], and thus the first two steps are intended to represent
the level of traffic in an OD flow right before the anomaly
starts; this should look like regular non-anomalous traffic.
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Figure 2: Three steps for synthetic generation of an
anomaly.

We extract the diurnal trend using a discrete wavelet
transform; wavelet methods here useful since these trends
are typically non-stationary. Evidence of the ability
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of spectral methods to capture the underlying trends in
highly aggregated traffic has been observed in [19, 8, 2].
We compute the first five approximation signals using a
Daubechies-5 mother wavelet with 5 levels. We keep the
approximation signal at the 5th level, thus filtering out ev-
erything except this smoothed signal. This smoothed, or
de-noised, signal is shown in the top left plot of Figure 2
as the solid line. We add to this baseline signal a zero mean
Gaussian noise who variance is computed as follows. We
take the first 5 detailed signals from our wavelet transform,
and compute the variance of the sum of the 5 detailed sig-
nals. A sample signal produced after step 2 is depicted in
the upper right plot of Figure 2. An important reason to
use a signal that has been smoothed and only supplemented
with Gaussian noise is to ensure that there is no anomaly in
this OD flow other than the one we are about to add.

The last step is to add an anomaly onto this baseline
traffic. This is depicted in the bottom plot of Figure 2
where we see the anomaly added on top of the filtered OD
flow. In our synthetic anomaly generator we characterize
each anomaly by four parameters, namely, volume, dura-
tion, number of OD flows involved, and a shape function.
The shape function refers to the rate of increase when the
anomaly begins (also called ramp up), as well as the rate
of decrease as the anomaly tapers off. We include four dif-
ferent shape functions: ramp, exponential, square and step.
The ramp function is further characterized by a slope pa-
rameter, and the exponential shape by its rate parameter.
Our intent is to define a feasible range for each of these
parameters such that we are able to capture the general be-
havior of known anomaly types as well as to encompass a
broader range of behaviors.

As pointed out in [15], there are unfortunately no com-
prehensive studies yet that provide detailed statistical de-
scriptions of a broad set of volume anomalies. There are a
handful of studies [2, 11, 16, 9, 3] that provide useful pieces
of information towards this end. The characterization part
of these studies often touch briefly on a wide variety of
metrics, from attack rate and duration to others such as the
distribution of source or victim IP addresses, type of proto-
col involved in the attack, and the effect on the end system
(e.g., number of sessions open), etc. Some of these studies
do provide a few statistics on the parameters we wish to cal-
ibrate. Whenever possible, we draw upon these works and
include their findings as particular examples. As it is hard
to generalize from these specific cases, we allow our pa-
rameters to vary through a broader range than those found
in these studies.

The types of anomalies we would like to be able to
mimic include: DDOS, flash crowd, alpha, outages and
ingress/egress shift. Since we focus on detecting changes
in traffic volume patterns, we do not include other anoma-
lies such as worms and scans. A DDOS attack represents a
flooding attack against a single destination. These attacks

can have either a single source (DOS) or many distributed
sources (DDOS). The latter occurs when many machines
(called ’zombies’) are compromised and a single attacker
sends commands to all of the zombies enabling them to
jointly flood a victim. A flash crowd occurs when there
is a surge in demand for a service and is typically mani-
fested by a large number of clients trying to access, and
thus overwhelming, a popular Web site. Flash crowds can
be predictable (e.g. a scheduled baseball game, or a soft-
ware release) or unpredictable (e.g., news breaking event)
[9].

An alpha anomaly refers to the transfer of a file(s) with
an unusually large number of bytes. This typically involves
one OD flow as there is a single source and a single desti-
nation. An outage refers to scenarios such as failures which
can cause the load on a link to drop to zero. Such drops can
either be short-lived or long-lived, and the short-lived out-
ages are not infrequent since failures of one sort or another
are fairly commonplace in the Internet today [1]. An egress
shift occurs when the destination of an OD flow moves
from one node to another. This can happen in a traffic ma-
trix if there is a change in a BGP peering policy, or even a
failure, as many OD flows can have multiple possible exit
points from an ISP. Policy changes could also cause a shift
of ingress point for a particular destination. In [21] the au-
thors showed that traffic movement due to ingress or egress
shifts, although not frequent, does indeed happen. None of
these anomalies, other than DDOS attacks, are malicious.
Yet all of them will generate potentially sudden and large
shifts in traffic patterns, thus appearing anomalous.

In Table 1 we list our five parameters characterizing an
anomaly. For each parameter we list the options for values,
or value ranges, that the parameter can take on. We allow
the duration to be anything from minutes, to hours, to days
and for forever. We include the forever case as this includes
the ingress and egress shift anomalies that will last until
there is another policy change. Since [21] indicates these
events are not that frequent, we can view the shift in traffic
pattern as ”permanent”. The duration of an anomaly can
vary throughout a large range, and it is unclear what the
future will bring. Although most DDOS attacks observed,
in the backscatter data of [16], lasted between 5 and 30
minutes, there were some outliers lasting less than 1 minute
and others that lasted several days. Similarly, the majority
of the DDOS events in the Abilene data of [11], lasted less
than 20 minutes; a few outliers exceeds 2 hours. Alpha
and flash crowd events could be of any length, although
typically alpha events would be shorter than flash crowd
events. In general, we do not include events whose order
or magnitude of duration are less than minutes because we
are adding these events on top of the Abilene data that is
available to us with a minimum time interval of 5 minutes.

We change the traffic volume in two ways when anoma-
lies occur. Sometimes we use a multiplicative factor δ that
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is multiplied by the baseline traffic to generate the new traf-
fic load. Using δ ∼ 0, we can easily capture outage scenar-
ios. When an egress shift occurs, we assume that a subset
of the prefixes travelling between the source and destina-
tion router are being shifted to a new exit point. This will
shift a portion of the router-to-router traffic (as these poli-
cies are more likely to affect only a subset of the IP level
prefixes) from the old OD pair to the new one. Remov-
ing 10%, for example, of the original OD flow’s data is
simply captured by using δ = 0.9. This amount of traffic
is added into the new OD flow using the constant additive
term ∆. Allowing 1 ≤ δ ≤ 2, we can capture a variety of
either alpha, flash crowd or DOS events. Note that because
we are considering aggregate flows at the router to router
level, doubling the traffic from an ingress router is already
an enormous increase in traffic load. Large increases can
occur when there are many end hosts behind the router that
are involved in the anomaly (e.g., zombies, flash crowd).
We don’t consider δ > 2 because such attacks are so obvi-
ously irregular that they are trivial to detect. We also allow
a change in volume to be indicated by simply adding a con-
stant factor, ∆, into the existing volume. This can capture
the effect of a DDOS attack in which many zombies flood
a victim at their maximum rate.

The number of sources and destinations indicates the
number of OD flows involved in an anomaly. The notation
(1, 1) refers to a single source and a single destination. This
could happen either for a DOS attack or an alpha event. The
case of (N, 1) arises for DDOS and flash crowds. In the
case of a link failure, all the OD flows traversing the link
are affected. The case of (2, 2) can occur for an ingress
or egress shift. By this we mean that there are two OD
flows involved (that share either a common source or des-
tination). One of these flows will experience an increase
in volume, while the other experiences an equal amount of
decrease. We do not include the case of (k, k) because we
assume that one BGP policy will change at a time.

As mentioned earlier, our shape function can take on one
of four possible forms: a ramp, exponential, square or step
function. The shape function is multiplied by the extra vol-
ume amount before it is added onto the baseline traffic.
This thus determines the ramp up and drop-off behavior
of most anomalies. Not only are these shapes intuitively
useful, but there is also some evidence for them in existing
datasets. In [3] the authors found that a flash crowd can be
characterized by a rapid rise in traffic that is then followed
by a gradual drop-off over time. It also has been shown for
flash crowd events that although their ramp up can be very
quick, it is typically not instantaneous [9]. The initial in-
crease of a DDOS attack could be captured by a ramp; this
allows us the flexibility of representing scenarios in which
the zombies reach their maximum flood rates in succession
(medium slope) or via a very sharp rise [3] (steep slope).
Outage anomalies could exhibit a near instantaneous drop

in volume and thus we include the ’square’ function. Alpha
events could exhibit either a near instantaneous increase in
volume or a ramp up. The step function is included to rep-
resent the ingress or egress shift anomalies because in these
cases the change in traffic pattern is permanent (at least un-
til the next policy change).

When we generate an anomaly we randomly select the
values for these four parameters. Some combinations of
them will look like the anomalies we have discussed. By
varying each of the four characteristics in our generator, we
can create a wide variety of anomalies.

5 Results

5.1 False Positive and False Negative Perfor-
mance

We start by looking at the performance of our methods in
the Abilene network. The abilene data contains 27 anoma-
lies. Within each method, for each value of the thresh-
old, we examine the entire traffic matrix (thus traversing all
anomalies and non-anomalies). We can thus compute one
false positive percentage and one false negative percentage
for each threshold configuration of a scheme. The perfor-
mance of our 4 methods on the Abilene data is depicted in
the ROC curve of Figure 3(a). We see clearly that the ba-
sic method performs best. For a false positive rate of 7%, it
misses no anomalies (100% true positives), while the next
best method catches about 85% of the true anomalies for
the same false positive rate. The wavelet method was un-
able to achieve 0% false negatives. Thus we observe an
incomplete curve that does not reach the FNR = 0 limit,
even with a huge threshold.
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Figure 3: ROC curves using Abilene and Synthetic data

We now examine the performance of our algorithms us-
ing our synthetic anomaly generator. We generated about
500 different anomalies by varying the parameters of our
generator. For these attacks, the duration was varied ran-
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Parameter Duration Volume Num (Src,Dst) Shape
possible Minutes ∆ (1, 1) Ramp
values Hours 1 ≤ δ ≤ 2 (N, 1) Exponential

Days δ = 1.1 or 0.9 (2, 2) Square
Forever δ ∼ 0 all ODs on 1 link Step

Table 1: Anomaly description parameters. ∆ is an additive factor, δ is a multiplicative factor.

domly between 5 min and 2 hours. The volume of the
original OD flow added on top of the anomalous OD pair
ranged between 40% and 140%. The number of OD pairs
involved was between 1 and 7 OD pairs per anomaly, and
those selected were randomly chosen. The performance of
our four schemes for these 500 scenarios is presented in
Figure 3(b). For this data, the basic and GLR performed
best and equivalently. It is interesting to note that the rank-
ing of the four schemes, in terms of the ROC curve areas
is not entirely consistent between the Abilene data and the
synthetic ones. The main difference occurs with the GLR
method that does not perform very well for the Abilene data
but does for the synthetic data. The reason may lie in the
statistical properties of the anomalies themselves. In our
synthetic generator the way we add extra volume is equiva-
lent to changing the mean of the OD flow for the duration of
the anomaly. Since the GLR method is focused on detect-
ing changes in the mean, it does well. It is possible that the
anomalies in the Abilene data experience variance changes
as well as mean changes. If this were true, it would explain
why the vshift method is second best for the Abilene data.
We leave the exploration of the statistical properties of the
anomalous moments for future work.

When using marked traces we should be careful. There
is always the risk that an anomaly is undetected or a nor-
mal behavior is marked as an anomaly. We conducted a
visual inspection to remove any false positive(s) detected
using the algorithms presented in [12]. We did not check
for the false negatives. Consider the examples in Figures
4(a) and 4(b). On the top plots we show how a single OD
pair evolves in time. The dashed line is our kalman fil-
ter estimation of this OD flow. We can see how it tracks
the changes in the OD flow. On the bottom plots we show
the residual process for each of these two example flows.
We also include the markings produced by the labeling al-
gorithm in [12]. Each box greater than 0 means that an
anomaly was marked at this time. In figure 4(a) our resid-
ual process indicates that there were two anomalies, while
the labeling procedure only marks one of them. According
to our methodology above, we would thus label the first
spike as a false positive since we use the labeling method
to represent the “truth”. This anomaly could easily have
been a legitimate one. A similar situation arises for our
second example flow. For these two examples, a simple
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Figure 4: Example of the Innovation of an OD pair

visual inspection of the upper curve is enough to indicate
that these events should have been True Positives since the
two anomalies per flow indicate the beginning and ending
of the anomaly. Because our algorithm may be able to de-
tect events that the labeling algorithm of [12] does not, yet
we use this algorithm to compute the FP ratio, it means that
our computed false positive rate should be considered as an
upper bound instead of the true value of the false positive
ratio.

5.2 Detection Time
One of the critical performance aspects of any anomaly de-
tection algorithm is the speed with which it can detect the
anomaly. The onset of attacks and/or anomalies on the In-
ternet today is extremely rapid thus creating real-time re-
quirements for anomaly detection algorithms that are chal-
lenging. Few, if any, of the previous work we have seen,
evaluate their algorithms in terms of detection time. We
define detection lag as the time at which we detect a true
anomaly minus the time the anomaly began. Since the un-
derlying time unit of our traffic matrix data is 5 minutes,
each additional lag corresponds to an increment of 5 min-
utes. (Note that our methods are not intrinsically tied to a 5
minute time interval.)

Each anomaly in the two sets (Abilene and synthetic)
generates one sample detection lag value. We ensemble all
these values and summarize them using a cumulative distri-
bution. The results for the Abilene data are shown in Fig-
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Figure 5: CDF of the detection lag using Abilene and Syn-
thetic traces

ure 5(a) while the results for the synthetic data are shown
in Figure 5(b). In both cases, the basic method and GLR
methods exhibit excellent detection times. In the case of
Abilene data, the GLR method detected 90% of the anoma-
lies with no lag, while the basic method detected 95% of
the anomalies with no lag. For the synthetic data, the GLR
curve is not visible because it lies on the line where the
y-axis is 1 (underneath the basic curve). For the synthetic
cases, both the GLR and basic methods were able to detec-
tion 100% of the anomalies with no lag at all. The wavelet
analysis method performs less well; in particular there ap-
pear to be some difficult anomalies that can take over half
an hour to detect. It is interesting that the vshift method
performs well for the synthetic data but not for the Abi-
lene data. In the synthetic case to detect an anomaly the
volume should be high enough to raise an alarm as soon
as it is observed otherwise it remains undetected and we
cannot computes a lag time. Whereas in the Abilene data
the vshift method is able to detect a subtle deviation in the
statistics of the process and therefore need more samples to
detect it. The motivation for using a wavelet method was
an intuition that “an anomaly should diffuse itself at several
time scales”. However, in the results the anomalies appear
differently at different time scales, and hence this approach
was not very powerful in detecting anomalies. Other uses
of wavelet methods in this context might prove more ben-
eficial. For example, they might be useful for classifying
anomalies since wavelet methods can give a rich descrip-
tion of the anomaly dynamics. This interesting problem is
out of the scope of this paper.

5.3 Sensitivity Analysis

It is intuitive that enormous anomalies will be easy to detect
and that very tiny ones are going to be missed. It is interest-
ing to explore the space in between and see the impact of
the false positive and false negative ratios as the volume of
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Figure 6: FNR and FPR as a function of the anomaly size

anomalies get smaller and smaller. In Figure 6(a) we plot
the false negative ratio versus the percentage increase in
the anomalous flow. To get a broad range of anomalies, for
each tested volume level, we generate 50 anomalies with
various start times or number of OD flows involved. We
did this for 10 different volumes with 1.2 ≤ δ ≤ 2.

Figure 6(a) matches our intuition. If the OD flow in-
creases by only 10 or 20% of its original value, we going to
miss the anomalies. However the drop off of three methods
is similar and fairly quick in the range of 40 - 100%. This
implies that if the load from an ingress node doubled, it
should be easy to catch all anomalies (low missed anomaly
rate). Note that this justifies the fact that we don’t use δ > 2
in our synthetic anomaly generator.

The curve for the false positive rate (Figure 6(b)) is sur-
prising. Initially we would have expected for this also to
be a decreasing curve. But, as the anomaly becomes larger
(δ ≥ 1.5) all the flows sharing a link have their estimates
corrected by a large amount. Thus the error is spread inside
the kalman filter to normal OD flows. This in turn increases
the innovations leading to more false positives. This will
not impact the ability to detect an anomaly but rather cloud
the identity of the OD flow carrying the anomaly.

6 Conclusions

Our solution to tackling volume anomalies in large net-
works consists of many parts. First we select an interesting
granularity level at which to perform anomaly detection,
namely that of a traffic matrix. Second we use kalman fil-
ters to filter the predictable part of the traffic and to isolate
the prediction error. The form of our model allows us to
obtain the prediction error on the unobservable part of the
network system (the OD flows) as well as for the observ-
able part (link loads). Third, we proposed two detection
schemes, but compared the performance of four of them.
Finally we discuss how to make decisions about the pres-
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ence of anomalies through the use of statistical hypothesis
testing. We argue that the main measure of performance
of an anomaly detector should be the ROC curve that ex-
plicitly captures the relationship between false positive and
false negative rates. We give a mathematical foundation for
this approach through the Neyman-Pearson theorem that
identifies how to select decision thresholds when balancing
the false positive and false negative tradeoff.

We considered four detection schemes that differ in the
statistical change they seek to detect. Interestingly, but per-
haps not surprisingly in retrospect, we found that the GLR
method (whose goal is to detect changes in the mean) per-
forms best when the anomaly is one that causes a change in
the mean (e.g., in the synthetic cases). Similarly we found
that the ’vshift’ method performs better for the Abilene data
than the synthetic data. We hypothesize that this occurs be-
cause the statistical properties of the anomalies themselves
in the Abilene data contain changes in the variance of the
residual traffic process. (We intend to verify this in future
work by adding extra features into our synthetic anomaly
generator that will alter the variance of the anomaly.) If the
latter hypothesis is true, the implication is that the statisti-
cal change method that works best is the one checking the
parameter that undergoes a deviation in the anomaly. On
the one hand, this is motivation to do a study of the statisti-
cal properties of anomalies themselves. On the other hand,
it suggests that the best method for network administrators
could be a composite method that makes use of multiple
different kinds of tests.

In our study, the wavelet based method did not perform
well. Due to the popularity of wavelet based analyses, this
raises interesting questions as to when wavelet analysis is
and isn’t useful for the problem domain of anomaly detec-
tion. Most importantly, from a practical point of view, it is
good news that the simplest method performed best across
all validation tests. This could be due to the fact that the
Kalman model for the OD flows correctly models the nor-
mal traffic and thus the first filtering step is successful itself
in isolating anomalies.
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