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Abstract— The well-known PASTA (“Poisson Ar-
rivals See Time Averages”) property states that, under
very general conditions, the fraction of Poisson arrivals
that observe an underlying process in a particular state is
equal, asymptotically, to the fraction of time the process
spends in that state. When applied to network inference,
PASTA implies that a Poisson probing stream provides
an unbiased estimate of the desired time average. Our
objective is to examine the practical significance of the
PASTA property in the context of realistic RTT, loss rate
and packet pair dispersion measurements with a finite
(but not small) number of samples. In particular, we
first evaluate the differences between the point estimates
(median RTT, loss rate, and median dispersion) that re-
sult from Poisson and Periodic probing. Our evaluation
is based on a rich set of measurements between 23 Plan-
etLab hosts. The experimental results show that in al-
most all measurement sessions the differences between
the Poisson and Periodic point estimates are insignifi-
cant. In the case of RTT and dispersion measurements,
we also used a non-parametric goodness-of-fit test, based
on the Kullback-Leibler distance, to evaluate the similar-
ity of the distributions that result from Poisson and Pe-
riodic probing. The results show that in more than 90%
of the measurements there is no statistically significant
difference between the two distributions.

1 Introduction
In the context of active measurements, a sequence of
probing packets is injected in a network path with the ob-
jective to measure end-to-end properties such as Round-
Trip Time (RTT), loss rate, or available bandwidth (re-
lated to the time-spacing, or dispersion, between succes-
sive packets). A central issue in active measurements
is the characteristics of the probing process [1]. From
a mathematical perspective, it is often claimed that “the
right way” to do probing (or sampling) is to use a Poisson
process (meaning that the interarrivals between probing
packets should be independent and exponentially distrib-

uted with the same mean) [2, 3, 4, 5, 6].
Poisson probing derives its strength from the well-

cited PASTA property, which stands for “Poisson Arrivals
See Time Averages” [7]. Consider a stochastic system
and suppose that we want to infer the fraction of time
pX the system spends in a state X . Let us assume that
this time average exists. A stream of N “probes” arrives
in the system based on a Poisson process, recording the
system’s state at the arrival time instant. PASTA states
that the expected value E[fX,N ] of the fraction of Pois-
son probes that observe the system at state X is equal to
the time average pX . This powerful result does not make
any assumptions about the stochastic system, except that
the time average pX exists; stationarity or ergodicity may
be needed in order to prove that however.

The underlying reason for the validity of PASTA is
that the monitored system cannot “anticipate” the next
probing event, due to the memoryless nature of the Pois-
son measurement process. Notice that the the Poisson
probes may be interacting with the monitored system.
In the case of a queueing system, for example, prob-
ing packets can be backlogged, serviced, or dropped, as
any other packet, and they may also affect the magni-
tude of the time average pX . It is also important to note
that PASTA is an asymptotic result: fX,N tends to pX

as the number of probes N tends to infinity. The sam-
ple average fX,N , even though an unbiased estimate, can
significantly deviate around pX depending on N and on
the variability and correlation structure of the underlying
system [8].

On the practical side, the most common measurement
approach is to use Periodic probing, rather than Poisson
probing. For instance, the popular ping utility generates
a periodic probing stream. An important advantage of
Periodic probing is that the duration of a measurement
session can be a priori known, given the number of sam-
ples and the probing period. Furthermore, scheduling
periodic packet transmissions at mainstream (not real-
time) operating systems is easier and more accurate than



scheduling random, and potentially very short or very
long, packet interarrivals. It should be noted that the
use of Periodic probing does not mean that the result-
ing estimate will be necessarily biased, especially if the
probing rate is sufficiently high. It is true, however, that
only Poisson probing can provably result in an unbiased
estimate under general conditions.

An important question, which is still unresolved to the
best of our knowledge, is whether PASTA “matters” in
the pragmatic context of RTT, loss rate, and bandwidth
(or dispersion) measurements in the Internet. Given that
Periodic probing has some important practical benefits,
we need to know whether Poisson and Periodic probing
sequences lead to significantly different estimates. In this
paper, we focus on three significant path performance
metrics: RTT, loss rate and dispersion of back-to-back
packet pairs. Our objective is to evaluate the differences
that result from Poisson and Periodic probing, both in
terms of point estimates for the first moment of the un-
derlying distributions, as well as in terms of differences
in the distributions themselves. Note that, since this is
a measurement study over wide-area Internet paths, we
do not know whether Poisson and/or Periodic probing
measure the actual time average of the previous perfor-
mance metrics. Instead, we can only examine whether
the two probing techniques observe the same (but poten-
tially wrong!) path performance.

In Section 2, we describe our measurement collection
process. In Sections 3, 4, and 5 we analyze the RTT, loss
rate, and dispersion measurements, respectively. Our re-
sults show that in almost all measurement sessions the
differences between Poisson and Periodic point estimates
are insignificant. In the case of RTT and dispersion mea-
surements, there is no statistically significant difference
between the Poisson and Periodic distributions in about
90% of the measurements. We conclude with some ad-
ditional remarks in Section 6.

2 Measurement methodology
We collected measurements of RTT, packet loss rate,
and packet pair dispersion in network paths between
23 PlanetLab hosts. Specifically, we used PlanetLab
nodes at the following sites: RNP (Brazil), UC San
Diego, UC Berkeley, U-Oregon, U-British Columbia, U-
Texas, UIUC, Georgia Tech, CMU, MIT, U-Maryland,
INRIA (France), Intel Research Cambridge (UK), UPC
(Spain), U-Reykjavik (Iceland), EPFL (Switzerland),
Helsinki Inst. of Tech. (Finland), U-Tsinghua (China),
Hong Kong Univ. of Science & Tech, National Tai-
wan Univ, Equinix (Singapore), U-Tokyo (Japan), and
U-Melbourne (Australia). The measurements reported
in this paper were collected from 53 source-destination
pairs. Each measurement session (or simply “session”)
consists of 600 Poisson probes and 600 Periodic probes

transmitted at the same average rate. The two probing
streams of a session start at the same time, and so they
cover approximately the same time window.

A session is characterized by a source-destination pair,
the average probing interarrival I , and the packet size L.
The probing interarrival was 10ms, 20ms, 50ms, 100ms,
500ms, or 1sec, meaning that a session lasts from 6 sec-
onds to 10 minutes, depending on I . For the RTT and
loss rate sessions L was 32, 64, 480, or 1400 bytes, while
for the dispersion measurements L was 480, 800, or 1400
bytes. The number of successfully completed sessions
was 1272 for each of the RTT and loss rate measurements
and 954 for the dispersion measurements.

It turned out that some paths were either too slow for
our probing streams (especially with I=10ms or 20ms
and large packet sizes), or they were extremely con-
gested. In a pre-processing step, we filtered out all ses-
sions in which the loss rate was higher than 10% in the
RTT and dispersion analysis; those sessions were in-
cluded, however, in certain parts of the loss rate analy-
sis (as noted in § 4). The number of sessions we were
left with was 892 for RTT and loss rate and 749 for dis-
persion. The RTT and dispersion time measurements
were obtained with kernel-level (libpcap) timestamps,
reported in a resolution of one microsecond.

3 RTT measurements
Comparison of median RTTs: The sample median is a
robust point estimate for the first moment of a distribu-
tion. Let Te and Tp be the median RTTs estimated from
the Poisson and Periodic probing streams, respectively,
in a particular session. We define the relative difference
between the two RTT medians as εT = 2Te−Tp

Te+Tp
. Fig-

ure 1 shows the empirical CDF of εT . About 60% of
the sessions do not see any difference (εT ≈ 0), while
about 85% of the sessions have |εT | <1%. The maxi-
mum relative difference is 4%. The results are actually
quite similar for the relative difference of RTT means.
Consequently, at least in relative error terms, Poisson and
Periodic probing result in practically the same RTT esti-
mate. The fact that the two probing processes measure
almost equal median RTTs, however, does not mean that
they also observe the same RTT distribution; we examine
this issue next.

Goodness-of-fit test: To further explore the differ-
ences between Poisson and Periodic probing, we also ex-
amine the RTT distributions measured by the two prob-
ing processes. Let Se and Sp be the Poisson and Periodic
RTT samples, respectively, collected in a particular ses-
sion. We form the following null hypothesis:

H0 : Se and Sp follow identical distributions. (1)

The alternate hypothesis is that there is a statistically
significant difference between the two distributions. A
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Figure 1: The relative difference εT between Poisson and
Periodic RTT medians.
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Figure 2: A session in which the KS test performs poorly.

non-parametric goodness-of-fit test can reject H0 with a
low P-value when the two given samples have a statisti-
cally significant difference, even if the underlying distri-
butions are strongly non-Gaussian. Recall that P-value is
the lowest significance level α at which we can reject the
null hypothesis. The P-value is between 0 and 1. H0 is
often rejected when the P-value is less than 0.05-0.10.

Our initial approach was to use the well-known
Kolmogorov-Smirnov (KS) test. This test, however, as-
sumes that the underlying distributions are continuous.
Furthermore, it is quite sensitive to that assumption be-
cause it focuses on the maximum vertical distance be-
tween the two empirical CDFs. It is important to note
that the RTT distribution at an Internet path can be al-
most discontinuous when several probing packets mea-
sure the same RTT value that is determined by constant
propagation and transmission delays. This discontinu-
ity is located at the minimum (or close to the minimum)
measurement, and it is more likely in lightly loaded paths
with small queueing delays because the latter can only
increase the RTT measurements.

For example, Figure 2 shows the two RTT empiri-
cal CDFs measured in a session from MIT to U-Oregon
(I=20ms, L=480 bytes). Note that for all practical pur-

poses the two distributions are identical. The KS test,
however, rejects H0 with a low P-value (P=0.08). The
reason the test fails is the discontinuity at about 87.5ms.
The maximum vertical distance between the two CDFs
is 7.4%, it occurs at the 25-th percentile of the Poisson
distribution, while the horizontal offset with the Periodic
distribution at that point is only 31 microseconds! It is
noted that we observed similar failures with other non-
parametric statistical tests, such as the Kruskal-Wallis
analysis-of-variance test.

To deal with the previous discontinuity problems, we
constructed a more robust non-parametric goodness-of-
fit test based on the Kullback-Liebler (KL) distance, also
known as relative entropy [9]. For two discrete proba-
bility mass functions (pmf’s) q1 and q2, defined over the
same set of values Q, the KL distance of q1 relative to q2

is

D(q1 ‖ q2) =
∑

i∈Q

q1(i) log2

q1(i)
q2(i)

(2)

It can be shown that D(q1 ‖ q2) ≥ 0 and that D(q1 ‖
q2) = 0 if and only if the two distributions are identical.
Notice that D(q1 ‖ q2) 6= D(q2 ‖ q1).

The KL test proceeds in three steps:

1. Estimate the pmf’s se and sp (defined on the same
set of bins) from the samples Se and Sp, respec-
tively. The details of the binning procedure are de-
scribed in the Appendix.

2. Calculate the KL distance D(se ‖ sp) of the Pois-
son relative to the Periodic sample.

3. Estimate the distribution of the KL distance
D(se,i ‖ s̄e,i) between randomly chosen partitions
Se,i and S̄e,i of the Poisson sample Se (“bootstrap-
ping”). Specifically, suppose that we randomly par-
tition Se in two samples Se,i and S̄e,i. Let se,i and
s̄e,i be the corresponding pmf’s, and so D(se,i ‖
s̄e,i) is the KL distance of this partition. If we re-
peat this random partitioning process many times,
we can estimate the distribution of D(se,i ‖ s̄e,i).

4. Reject the null hypothesis if D(se ‖ sp) is “too
large” relative to the distribution D(se,i ‖ s̄e,i).
Specifically, estimate the P-value as

P ≈ Prob[D(se ‖ sp) ≤ D(se,i ‖ s̄e,i)] (3)

and reject H0 if P < 0.1.

Figure 3 shows an example of the distribution of D(se,i ‖
s̄e,i) together with the KL distance D(se ‖ sp) for a par-
ticular session. The KL test is more robust than the KS
test in the presence of CDF discontinuities. The reason
is that instead of relying on a single point of maximum
vertical difference, the KL test considers the difference
between the two distributions across all bins, weighted
by the probability mass at each bin. For the example of
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Figure 3: An example of the KL distance distribution for
a particular session.
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Figure 4: Distribution of P-values for the null hypothesis
H0, applied to RTT sessions.

Figure 2, the KL test reports a P-value of 0.88, meaning
that the null hypothesis cannot be rejected.

Figure 4 shows the distribution of P-values reported
by the KL test for various probing interarrivals I . We see
that we can reject H0 for only 5-10% of the sessions at a
significance level of 10%. The rest of the sessions have
significantly higher P-values, meaning that we cannot re-
ject H0. So, for more than 90% of the measurement ses-
sions we can assume that the RTT distributions observed
by Poisson and Periodic probing are identical.

Note that the two larger average probing periods,
500ms and 1000ms, result in lower P-values, implying
wider (but still not statistically significant) differences
between the two RTT distributions. When I is 500ms
and 1000ms the measurement process lasts for 300sec
and 600sec, respectively, and the underlying process
shows significant variability during that time window.
Consequently, the two probing processes are more likely
to observe different values of the underlying process.

4 Loss rate measurements
For the loss rate estimates, we used the same set of ses-
sions as in the case of RTTs, except that we now use only
the 600 probing packets from the source to the destina-
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Figure 5: The difference εl between Poisson and Periodic
loss rate estimates.

tion (ignoring the packets in the reverse direction). Let
le and lp be the loss rates, defined as the fraction of lost
packets from the Poisson and Periodic streams respec-
tively, in a given session. The difference between the two
loss rates is εl = le − lp. Figure 5 shows the empirical
CDF of εl, for the sessions in which we observed some
loss, either in Poisson probes, or Periodic probes, i.e., for
sessions where (le + lp) > 0, but neither le or lp exceeds
10%. Note that in about 80% of the sessions the two loss
rates are within 1%, while the maximum loss rate differ-
ence is less than 3%.

In theory, we could compare the two loss rates le and
lp using a hypothesis test for the equality of two pro-
portions. Such tests however assume that the underlying
loss events are independent, which is not true for Inter-
net losses. Instead, we examine the agreement between
Poisson and Periodic probing categorically, classifying
the sessions in six classes depending on the loss rate esti-
mated by the Poisson probes. These categories are: loss-
less (le = 0), low loss (le ∈ (0, 1%]), medium loss (le ∈
[0.9%, 5%]), high loss (le ∈ [4.5%, 10%]), very high loss
(le ∈ [9%, 20%]), and broken (le ∈ [18%, 100%]). The
categories have a small overlap to avoid boundary effects
when examining the agreement between the two probing
processes. Note that for this categorization and in the
following analysis we include the sessions that have a
higher loss rate than 10%.

Figure 6 shows the fraction of sessions in each cate-
gory (the number at the top of each group). About 78%
of the sessions are classified as lossless or low loss. For
each category we also show, with two or three adjacent
bars, the fraction of sessions for which the loss rate es-
timates with Poisson and Periodic probing agree (central
bar), as well as the fraction of sessions for which Peri-
odic probing leads to a lower (left bar) or higher (right
bar) category. Notice that the two probing techniques
agree in more than 70% of the sessions. Given that the
loss process in a congested link can be highly bursty,
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Figure 7: The relative difference ε∆ between Poisson and
Periodic dispersion medians.

and since our sample size is rather small to accurately
estimate low loss rates, it is not surprising that about 10-
30% of the sessions observe different loss categories with
Poisson and Periodic probing.

5 Packet pair dispersion measurements
Comparison of median dispersions:

In the dispersion measurements, we send back-to-back
packet pairs of size L from the source to the destination.
The latter measures the time spacing (“dispersion”) ∆
between the arrival of the first and the second packet.
The dispersion at the destination is related to the cross
traffic load and available bandwidth in the network path
[4]. Specifically, the higher the cross traffic load is at the
path’s bottleneck, the wider the dispersion of the packet
pairs at the destination due to the interference of cross
traffic between the probing pair.

For these measurements, if one of the two packets is
lost, the corresponding pair is ignored. Note that the av-
erage probing interarrival I controls the time spacing be-
tween successive packet pairs, not between packets of the
same pair, which are always sent back-to-back.

Let ∆e and ∆p be the median dispersions estimated
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Figure 8: Distribution of P-values for the null hypothesis
H0, applied to dispersion sessions.

from the Poisson and Periodic probing streams, respec-
tively, for a particular session. We define the rela-
tive difference between the two dispersion medians as
ε∆ = 2∆e−∆p

∆e+∆p
. Figure 7 shows the empirical CDF of ε∆.

Note that about 90% of the sessions have |ε∆| <2.5%,
while the relative difference does not exceed 8%. Conse-
quently, as in the case of RTTs, we see that the Poisson
and Periodic probing processes estimate practically the
same dispersion, at least in terms of a point estimate for
the first moment.

Goodness-of-fit test: We also examined whether the
two probing processes observe the same dispersion dis-
tribution. To do so, we used again the KL test described
in § 3. This time the null hypothesis H0 is that the two
dispersion samples (Poisson and Periodic) for a given
session follow an identical distribution. Figure 8 shows
the distribution of P-values reported by the KL test, for
various probing interarrivals I . Notice that the P-value is
less than 10% for only 5-10% of the sessions. The rest of
the sessions have significantly higher P-values, implying
that we can assume H0 to be true.

6 Discussion
The experimental results in this paper indicate that there
may not be a significant difference between Poisson and
Periodic probing, at least in the context of real Internet
measurements. This does not mean that we recommend
the use of Periodic probing over Poisson probing. We
note however that measurement studies that use, or have
used, Periodic probing should not be dismissed based on
that fact, and they may also have practical benefits com-
pared to Poisson probing. A few additional remarks on
the accuracy of Poisson and Periodic probing follow.

First, it is important to note that the fraction of dropped
Poisson probing packets at a network queue does not es-
timate the packet loss rate, i.e., the fraction of dropped
packets among all arrived packets; instead, it estimates
the fraction of time that the queue is full. The latter is



equal to the loss rate in a queue with Poisson packet ar-
rivals; this follows applying the PASTA property to all
packets (not only the probing packets). For more bursty
traffic, however, the packet loss rate can be higher than
the fraction of time that the queue is full. Consequently,
even if Poisson and Periodic probing observe the same
loss rate, that fraction should not be expected to be equal
to the underlying loss rate.

Second, Periodic probing at a certain interarrival I
cannot ”see” effects that occur in lower time scales (or
higher frequency). In the case of loss rate estimation, in
particular, loss events in Drop-Tail queues can be very
bursty. If the duration of loss bursts is much lower than
I , then Periodic probing may underestimate both the full-
queue probability and the loss rate. Poisson probing,
however, with a sufficiently large number of samples,
should be able to estimate the full-queue probability.

Third, it is important to note that even if we gener-
ate a Poisson probing stream at the source, the probing
packets may not arrive at the bottleneck link as a Pois-
son process. Consider, for instance, that the output of an
M/D/1 queue is not a Poisson process. In more prac-
tical terms, if the probing packets go through a store-
and-forward link with capacity C, then their interarrivals
after that link cannot be lower than L/C, where L is the
packet size. Consequently, the probing packets will no
longer be a Poisson stream and PASTA will not apply.
This issue is important for Internet measurements, given
that most network paths go through multiple queues.

Appendix: Density estimation
Suppose that we are given two samples S1 and S2 that
take values in a range RS . We want to approximate the
probability density functions of the two samples with the
probability mass functions q1(i) and q2(i) defined over
a set of bins Q, such that q1(i) and q2(i) is the frac-
tion of measurements in the i′th bin from S1 and S2,
respectively, and

∑
i∈Q q1(i)=

∑
i∈Q q2(i)=1. We select

the initial bin size w based on the Freedman-Diaconis
rule as w = 2n−1/3IQ, where n is the number of sam-
ples in the joint sample S1∪S2 and IQ is the interquartile
range of RS [10]. We then proceed to determine the bin
boundaries, with the first bin placed based on the min-
imum measurement, and to estimate the functions q1(i)
and q2(i).

The problem, however, is that some bins may not in-
clude enough measurements from each sample. When
that is the case we are not able to accurately estimate the
“likelihood ratio” log2

q1(i)
q2(i)

of Equation 2. To guarantee
that each bin contains at least a certain number of mea-
surements from both samples, we use an adaptive his-
togram approach. Specifically, if a bin does not include
at least 1% of the measurements from each sample, we
merge that bin with the bin at its right. The process is

repeated until the previous constraint is met. If there are
no measurements from that sample at any of the right
bins, we merge the problematic bin with the bin at its
left. In practice, we found that the previous heuristic is
quite robust, as long as the two samples take values over
approximately the same range.
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