
Delving into Internet Streaming Media Delivery: A Quality
and Resource Utilization Perspective

Lei Guo1, Enhua Tan1, Songqing Chen2, Zhen Xiao3, Oliver Spatscheck4, and Xiaodong Zhang1

1Department of Computer Science and Engineering
The Ohio State University

Columbus, OH 43210, USA

{lguo, etan, zhang}@cse.ohio-state.edu

2Department of Computer Science
George Mason University
Fairfax, VA 22030, USA

sqchen@cs.gmu.edu
3IBM T. J. Watson Research Center

19 Skyline Drive
Hawthorne, NY 10532, USA

xiaozhen@us.ibm.com

4AT&T Labs-Research
180 Park Ave.

Florham Park, NJ 07932, USA

spatsch@research.att.com

ABSTRACT
Modern Internet streaming services have utilized various
techniques to improve the quality of streaming media deliv-
ery. Despite the characterization of media access patterns
and user behaviors in many measurement studies, few stud-
ies have focused on the streaming techniques themselves,
particularly on the quality of streaming experiences they of-
fer end users and on the resources of the media systems
that they consume. In order to gain insights into cur-
rent streaming services and thus provide guidance on de-
signing resource-efficient and high quality streaming media
systems, we have collected a large streaming media work-
load from thousands of broadband home users and business
users hosted by a major ISP, and analyzed the most com-
monly used streaming techniques such as automatic protocol
switch, Fast Streaming, MBR encoding and rate adaptation.
Our measurement and analysis results show that with these
techniques, current streaming systems tend to over-utilize
CPU and bandwidth resources to provide better services to
end users, which may not be a desirable and effective way
to improve the quality of streaming media delivery. Moti-
vated by these results, we propose and evaluate a coordina-
tion mechanism that effectively takes advantage of both Fast
Streaming and rate adaptation to better utilize the server
and Internet resources for streaming quality improvement.

Categories and Subject Descriptors
C.2 [Computer Communication Networks]: Dis-
tributed Systems

General Terms
Measurement

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’06, October 25–27, 2006, Rio de Janeiro, Brazil.
Copyright 2006 ACM 1-59593-561-4/06/0010 ...$5.00.

Keywords
Traffic analysis, Multimedia streaming

1. INTRODUCTION
The Internet has witnessed the surge of multimedia con-

tent from many application areas such as education, med-
ical research and practice, news media, and entertainment
industries [13]. Although the majority of media traffic on
the Internet is delivered via downloading, pseudo stream-
ing, and P2P techniques, streaming service is superior in
handling thousands of concurrent streams simultaneously,
flexible responses to network congestion, efficient bandwidth
utilization, and high quality performance [17]. Different
from downloading or pseudo streaming small sized video
clips from a Web site such as YouTube [9], streaming long
duration and high quality media objects on the Internet has
several unique challenges. First, streaming services usually
require high and stable end-to-end bandwidth between a
media server and its clients. Due to the lack of Quality
of Service (QoS) guarantee on the packet switching based
Internet, the quality of Internet media streaming may sig-
nificantly degrade due to bandwidth fluctuations during a
streaming session, especially for delivering high quality video
such as HDTV. Second, the connection speed of Internet end
users ranges from slow dial-up connections to T1 or high
speed cable network services. Thus, a fixed encoding rate
for a media object is not desirable for clients with diverse
network connections. Third, streaming media users always
expect a small startup latency. However, due to the dy-
namics on the media server load and network bandwidth, a
client may experience a prolonged startup delay. In addi-
tion, the filling of the client play-out buffer, which is used
to smooth jitter caused by network bandwidth fluctuations,
further increases the user’s waiting time. With these chal-
lenges, a lot of studies have been conducted on the effective
utilization of server and Internet resources to deliver high
quality streaming media.

Today, more than 90% of streaming media traffic on the
Internet is delivered either through Windows media services
or RealNetworks media services [17]. These commercial
streaming services have adopted various techniques to ad-

dress the above challenges and to satisfy the ever-increasing
quality demands of users, such as TCP and HTTP based
streaming, Fast Streaming, multiple bit rate (MBR) encod-
ing and rate adaptation. Due to the wide deployment of Net-
work Address Translation (NAT) routers and firewalls that
often prevent UDP packet transversal, TCP-based stream-
ing has been widely used and now accounts for the majority
of Internet streaming traffic [17, 26]. Fast Streaming [2]
is a group of techniques supported by the Windows media
service, which aggressively utilizes the Internet bandwidth
by delivering a media object at a rate much higher than
its encoding rate, in order to minimize the user perceived
startup latency and guard against potential network band-
width fluctuations. MBR encoding is a technique that en-
codes a media object with multiple bit rates so that the
streaming server can deliver the same content with different
quality to clients with different network connections. MBR
encoding also enables dynamic stream switch among streams
of different rates encoded in the object during a user session,
in order to adapt to the current bandwidth, which is called
Intelligent Streaming [4] in the Windows media service and
SureStream [7] in the RealNetworks media service.

In spite of the wide deployment of these techniques, exist-
ing measurement studies of Internet streaming media mainly
focus on the characterization of media access patterns and
user behaviors, such as [10, 12, 13, 15, 31], which is helpful
to the design of media delivery systems such as server clus-
ters and media proxies [11, 30]. However, the mechanisms
of the commonly and practically used streaming techniques
themselves and their effects on improving Internet streaming
quality have not yet been thoroughly studied, which is nec-
essary to understand state-of-the-art of Internet streaming
media and to provide guidance on future Internet stream-
ing services. Despite several experimental studies in lab en-
vironments on the Windows and RealNetworks media sys-
tems [14, 22], to the best of our knowledge, to date, there is
no comprehensive study on the delivery quality and resource
utilization of these streaming techniques in the Internet en-
vironment. It is highly desirable for both streaming service
providers and system designers to be guided with an insight-
ful understanding of existing Internet streaming techniques.

In order to investigate Internet streaming quality and
the efficiency of resource utilization with the deployment
of these techniques, in this work, we have collected a 12-day
streaming media workload from a large ISP in the United
States. The workload covers thousands of broadband home
users and hundreds of business users who access both on-
demand and live streaming media. Through extensive anal-
ysis of the majority of TCP-based streaming traffic on the
Internet, we have the following observations:

• We found that the overhead of protocol rollover plays
an important role in user perceived startup latency,
and thus may have affected the way that media is
served by content providers. When UDP is not sup-
ported, the overhead of protocol rollover from UDP
to TCP contributes a non-trivial delay to the client
startup latency. More than 22% of protocol rollover is
longer than 5 seconds.

• By aggressively utilizing the Internet network band-
width, Fast Streaming shows both positive and neg-
ative features. Although Fast Streaming can help
smooth re-buffering jitter, it over-supplies media data

to end users by about 55%, and consumes more CPU
resources, which leads to a longer server response time.

• MBR-encoding is widely used in media authoring, and
nearly half of streaming video and audio objects on the
Internet are MBR-encoded. However, the rate adap-
tation functionality of MBR is poorly utilized, partic-
ularly when Fast Streaming is used.

• Overall, on the Internet, about 13% of home and 40%
of business streaming sessions suffer various quality
degradations, such as rebuffering, thinning, or switch-
ing to a lower quality stream.

Our measurement and analysis results show that with
these techniques, current streaming services tend to over-
utilize CPU and bandwidth resources to provide better ser-
vice to end users, which may not be a desirable and effective
way to improve the quality of streaming media delivery. Fur-
thermore, the Fast Streaming technique does not work with
rate adaptation, resulting in even worse user experiences
than normal TCP-based streaming upon long-term network
congestion. Motivated by these results, we propose Coordi-
nated Streaming, a mechanism that effectively coordinates
caching and rate adaptation in order to improve streaming
quality with an efficient utilization of the server and Internet
resources. The potential of such a mechanism in streaming
quality improvement is evaluated accordingly.

The remainder of this paper is organized as follows. Sec-
tion 2 describes our trace collection and processing method-
ology. Section 3 presents an overview of our collected work-
load. The measurement and analysis of the delivering qual-
ity and resource utilization of streaming media services are
performed in Sections 4, 5, and 6. The coordinating caching
and rate adaptation mechanism is discussed in Section 7.
Some related work is outlined in Section 8. Finally, we make
concluding remarks in section 9.

2. TRACE COLLECTION AND PROCESS-
ING METHODOLOGY

The prevailing streaming protocols on the Internet are
RTSP [25] and MMS [5]. In RTSP streaming, the client
and the server exchange streaming commands via RTSP,
running on TCP. The media data packets and stream-
ing control/feedback packets are delivered via RTP/RTCP
[24] (such as Windows and QuickTime media services) or
RDT [6] (RealNetworks media services), running on UDP
or TCP. In MMS streaming, all streaming commands and
control packets between a client and a server are exchanged
via MMS in the same TCP connection, and the media data
can be delivered over UDP or TCP. For both RTSP and
MMS streaming, when TCP is used to deliver media data,
the media and control packets are interleaved with RTSP
or MMS commands in a single TCP connection, instead of
using two separate TCP connections. In addition to RTSP
and MMS, media can also be streamed through HTTP [3].
Different from HTTP downloading (also known as pseudo
streaming [17]), HTTP streaming uses the HTTP protocol
to deliver both RTSP commands and media data. In Mi-
crosoft HTTP streaming, the RTSP headers are embedded
in the Pragma headers of HTTP messages. In RealNetworks
and QuickTime HTTP streaming, the RTSP commands are
embedded in HTTP message bodies with the base64 encod-
ing format.

Table 1: Home User Workload Overview
Content Product Number of Traffic (GB)
Type Type Requests TCP/UDP

WM 28,210 5.86/0.89
audio RM 9,139 0.79/2.26

on QT 244 0.00/0.082
demand WM 67,002 151.21/20.64

video RM 12,117 6.25/17.31
QT 113 0.01/0.34

WM 1,499 5.36/6.69
audio RM 1,164 0.25/2.39

live QT 4 0.00/0.14
media WM 950 13.50/2.85

video RM 643 5.69/3.09
QT 6 0.00/0.003

Table 2: Business User Workload Overview
Content Product Number of Traffic (GB)
Type Type Requests TCP/UDP

WM 9,725 3.67/0.01
audio RM 1,285 3.03/0.04

on QT 5 0.00/0.001
demand WM 5,762 21.18/3.31

video RM 1,057 3.94/0.42
QT 8 0.00/0.01

WM 493 5.56/0.01
audio RM 350 4.46/1.05

live QT – –
media WM 50 0.65/0.00

video RM 7 0.20/0.00
QT – –

In this study, we collected streaming media packets in a
data center of a major ISP from 2005-04-29 15:00 (Friday)
to 2005-05-10 20:30 (Tuesday), using the Gigascope appli-
ance [16]. The data center hosts servers for thousands of
business companies, and provides Internet access services
for a large cable company. The Gigascope is running on a
site close to the end users (broadband home users and busi-
ness users). To collect streaming packets of RTSP/MMS
requests, Gigascope captures all TCP packets from/to ports
554-555, 7070-7071, 9070, and 1755. According to a recent
measurement study that collects RTSP/MMS packets based
on keyword matching [17], our port number selection covers
97.3% of the RTSP/MMS streaming requests 1. Meanwhile,
we also collected UDP streaming traffic via ports 5004-5005,
6970-6980, and 7000-7010, which are the most popular ports
for UDP streaming. For UDP streaming traffic over other
port numbers due to network address translation (NAT),
we calculate the traffic volume based on the summary infor-
mation that a client reports to its server when a streaming
session is terminated. Compared to existing studies that are
based on server logs [12, 15, 26, 27, 31], in which only the
summary information of streaming sessions is available, our
study is conducted at the packet level, which facilitates more
detailed analysis on the quality and the resource utilization
of various Internet streaming techniques.

The initial trace processing is as follows. We first grouped
TCP packets by TCP connections, based on the IP ad-
dress, port number, and TCP SYN/FIN/RST flag. Then
we extracted the RTSP/MMS commands from each stream-
ing request. Based on the analysis of these commands,
we identified and parsed media data and streaming control
packets from the TCP or corresponding UDP streams, and
dumped the corresponding RTP/RTCP, RDT, and MMS
packet headers. Finally, we identified home users and busi-
ness users in our traces based on IP prefix matching.

Our trace collection and processing methodology have
been validated by extensive experiments on various me-
dia server and player products, including Windows Media
Player and Windows Server 2003, Real Player and Helix
Server, QuickTime Player and Darwin Server. All these
products have extensions to the standard RTSP and RTP
protocols. Due to the lack of documentation, we reverse-
engineered proprietary protocols by capturing and analyzing
media traffic under different environments, with the help of

1There are about 2.6% RTSP/MMS/HTTP streaming re-
quests using port 80 or 8080, which are hard to distinguish
from regular HTTP downloading traffic. We exclude this
traffic in this study.

tools such as tcpdump/windump, ethereal, and NIST Net
network emulator.

3. TRAFFIC OVERVIEW
We have captured 126 GB of streaming data (compressed

in gzip format) during the 12-day period. In our work-
loads, there are 7,591 home users accessing 1,898 servers in
121,091 requests, and there are 219 business users accessing
911 servers in 18,742 requests. Both users and servers are
identified by their public IPs, and the real number of busi-
ness users would be much larger due to the usage of NAT
(a business IP may host up to 64 users as shown in Section
4.2).

3.1 Streaming traffic by user communities
Table 1 and 2 show the traffic breakdowns based on the

content types (audio/video, live/on-demand) and media ser-
vice products in the home user and business user workloads,
respectively. In these tables, WM, RM, and QT denote
Windows, RealNetworks, and QuickTime media services,
respectively. In our workloads, most streaming traffic is
delivered over Windows media services (80.7% and 85.5%
of the requests in the home and business user workloads,
respectively), and RealNetworks is next (19.0% and 14.4%
of the requests in the home and business user workloads,
respectively). Only a small fraction of streaming traffic is
delivered over QuickTime. These tables also indicate that
TCP is responsible for the majority of streaming traffic on
the Internet, confirming previous studies such as [17, 26].

In the home user workload, 2.20% and 31.05% of the re-
quests access live and on-demand audio objects, and 1.32%
and 65.43% of the requests access live and on-demand video
objects, respectively. Video is responsible for the majority
of streaming media requested by home users. In contrast,
in the business user workload, 4.50% and 58.77% of the re-
quests access live and on-demand audio, while 0.30% and
36.43% of the requests access live and on-demand video, re-
spectively. Audio is responsible for the majority of stream-
ing media requested by business users. In addition, although
the volume of live media traffic is far less than that of on-
demand media traffic in both workloads, compared to home
users, business users are more likely to access live media,
most of which is audio.

Figure 1(a) and Figure 2(a) show the distribution of file
length (in terms of playback duration) of on-demand au-
dio and video objects in each streaming session requested
by home and business users, respectively. These figures in-
dicate that business users tend to request audio and video

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000

C
D

F

File Length (sec)

Biz
Home

(a) On-demand audio file length

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100 1000 10000

C
D

F

Playback Duration (sec)

Biz
Home

(b) On-demand audio playback duration

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 1 100 10000

C
D

F

Playback Duration (sec)

Biz
Home

(c) Live audio playback duration

Figure 1: On-demand and live audio distributions in the home and business user workloads

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000

C
D

F

File Length (sec)

Biz
Home

(a) On-demand video file length

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100 1000 10000

C
D

F

Playback Duration (sec)

Biz
Home

(b) On-demand video playback duration

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100 1000 10000

C
D

F

Playback Duration (sec)

Biz
Home

(c) Live video playback duration

Figure 2: On-demand and live video distributions in the home and business user workloads

objects with longer file lengths. Specifically, for audio ob-
jects, as shown in Figure 1(a), more than 70% of sessions in
the business user workload request objects with a file length
between 200–400 seconds, the typical duration of a pop song;
in contrast, for home users, more than 50% of audio sessions
request files with a length around 30 seconds, most of which
are music preview samples.

Figure 1(b) and Figure 2(b) further compare user play-
back durations of on-demand audio/video sessions in the
home and business user workloads. As shown in Figure 1(b),
for more than half of on-demand audio sessions in the busi-
ness user workload, the user playback duration is about 200–
400 seconds, corresponding to the length of a typical pop
song as in Figure 1(a). Figures 1(c) and 2(c) show the play-
back duration of live audio/video sessions in the home and
business user workloads. From these figures, we can see that
for both live and on-demand audio/video sessions, the play-
back duration of business users is much longer than that of
home users (note that the x-axis is in log scale).

The above results indicate that business users tend to lis-
ten more audio on the Internet and tend to stick to the
media content being played longer than home users. How-
ever, looking into the URLs and the Referer headers of
RTSP commands in the trace, we found that the major-
ity of streaming media accessed by home users and business
users are both from news and entertainment sites. Thus, the
different access pattern of business users is not due to the
accesses of business related media content, but rather due to
the working environments of business users—audio is more
preferred possibly because it attracts less attention when
they are working, and the long playback duration might be
because their business work prevents them from frequently
changing media programs.

Table 3: Traffic by different hosting services
Hosting Content Home User Business User
Service Type Vol. (GB) Req. Vol. (GB) Req.

Third audio 13.82 27,896 10.19 9,810
Party video 126.24 54,136 13.71 3,820
Self audio 11.41 12,188 7.64 2,056

Hosting video 95.33 26,939 16.00 3,085

3.2 Streaming traffic by media hosting ser-
vices

In general, there are two approaches that a content
provider can use to deliver its streaming media. The first
is that a content provider can host the streaming server it-
self. We call this self-hosting. The second is that a content
provider can ask help from a third party, such as a com-
mercial content delivery network (CDN) or media delivery
network (MDN), to avoid service management and hard-
ware/software investments. We call this third-party hosting.
For both self-hosting and third-party hosting, the portals
of streaming media are usually on the Web sites of their
content providers.

We identified service providers in our workloads by their
host names and IP addresses. The host names are extracted
from the URLs of media objects encoded in RTSP/MMS
packets. We have identified 24 third-party media services,
including 22 CDNs/MDNs and 2 media services hosted by
ISPs (we anonymize the company names due to customer
privacy concerns).

Table 3 shows the volume and number of requests of
streaming traffic served by third-party media services and
self-hosting media services in the home and business user
workloads, respectively. In the home user workload, third-
party media services serve 56.8% of the traffic and 67.7%

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 0 5 10 15 20 25

T
ra

ffi
c

(G
B

)

Domain Rank

Biz
Home

(a) Third-party media services

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 0 40 80 120 160 200

T
ra

ffi
c

(G
B

)

Domain Rank

Home

(b) Self-hosting media services in the
home user workload

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 0 10 20 30 40 50 60 70

T
ra

ffi
c

(G
B

)

Domain Rank

Biz

(c) Self-hosting media services in the
business user workload

Figure 3: Service providers ranked by traffic volume

of the requests. In the business user workload, third-party
media services serve 50.3% of the traffic and 72.6% of the
requests. The percentages of audio traffic served by third-
party services are similar for home and business users, but
business users request more video from self-hosting media
services. Our further investigation finds that a substantial
amount of such video traffic comes from a news site and a
sports site outside United States, which might be due to the
foreign employees in these business companies. In general,
more than half streaming traffic is served by third-party
hosting services in both workloads.

Figure 3(a) and Figures 3(b), 3(c) further show the rank
of traffic volume served by different service providers in the
home and business user workloads, for third-party hosting
services and self-hosting services, respectively. Most stream-
ing traffic is served by the top five CDNs/MDNs and the top
two self-hosting commercial sites (one video site and one
well-known search engine site).

4. PROTOCOL ROLLOVER AND USER
STARTUP LATENCY

Although traditionally UDP is the default transport pro-
tocol for streaming media data transmission, in practice,
UDP is often shielded at the client side. Therefore, today
streaming media data are often delivered over TCP or even
HTTP. Among the three options, generally UDP is tried first
upon a client request. If UDP is not supported due to either
server side or client side reasons, TCP can be used instead.
If TCP is not supported either, HTTP will be used. Such
a procedure is called protocol rollover, which is conducted
automatically by the media player.

Due to the wide deployment of NAT routers/firewalls in
home user networks and small business networks, protocol
rollover plays an important role in the user perceived startup
latency and may have affected the way that media is served
by content providers. In this section, we first analyze the
impact of protocol rollover on the user perceived startup la-
tency, then investigate rollover avoidance in these streaming
media services.

4.1 Startup latency due to protocol rollover
Protocol rollover in RTSP works as follows (protocol

rollover in MMS is similar). Upon a client request, the me-
dia player sends a SETUP command with a Transport header,
specifying the transport protocol it prefers. If UDP is sup-
ported, the port numbers for receiving data and sending

feedback are also specified. Then in the Transport header
of the SETUP reply message, the streaming server returns the
protocol it selects. If it selects UDP, the port numbers for
sending data and receiving feedback are also returned. If
the player requests UDP but the server does not support it,
the server responds with the protocol it supports (i.e., TCP)
directly, and the protocol switches without additional over-
head. However, if the server supports UDP but the player is
shielded by a NAT router/firewall, the incoming UDP traffic
may not be able to go through the router. After a timeout,
the player has to terminate the current RTSP connection
and sends a new RTSP request in a new TCP connection,
specifying TCP as the transport protocol in the SETUP com-
mand. As a result, such a negotiation procedure for protocol
rollover takes a non-trivial time.

Thus, the startup latency of a user session can be further
decomposed into three parts: (1) protocol rollover time is
the duration from the beginning of the first RTSP/MMS re-
quest to the beginning of the last RTSP/MMS request in
the user session; (2) transport setup time is the duration
from the the beginning of the last RTSP/MMS request (or
the first request if no protocol rollover) to the time when
the transport protocol setup succeeds; (3) startup buffer-
ing time is the time to fill the play-out buffer of the media
player, starting from the transport setup success time to the
playback start time. In our workloads, we have found that
although most user sessions with protocol rollover try UDP
only once, some sessions may try UDP up to 3 times before
switching to TCP. As the negotiation process of protocol
rollover may take a non-trivial time, the protocol rollover
increases the startup latency a user perceives.

Assuming a five-second play-out buffer [1] is used, Fig-
ure 4(a) and Figure 4(b) show the distribution of startup
latency in Windows and RealNetworks media services, re-
spectively, for RTSP sessions with protocol rollover in the
home user workload (the distribution for business user work-
load is similar). In Windows media services, more than 22%
of the streaming sessions have a rollover time longer than
5 seconds, in addition to the normal startup latency due
to the transport setup and the initial buffering. Figure 4(b)
shows that RealNetworks media services have an even longer
rollover time—more than 67% of the streaming sessions have
a rollover time longer than 5 seconds. We also observe that
in general the Windows Media service has a much shorter
buffering time than the RealNetworks Media service. This
is probably due to the higher buffering rate of Windows me-
dia streaming (see Fast Start in Section 5), since the object

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

C
D

F

Time (sec)

Rollover
Rollover+setup

Rollover+setup+buffer

(a) Startup time of rollover sessions in
Windows media services

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

C
D

F

Time (sec)

Rollover
Rollover+setup

Rollover+setup+buffer

(b) Startup time of rollover sessions in
RealNetworks media services

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

C
D

F

Time (sec)

Rollover+setup (session w/ rollover)
Setup (session w/o rollover)

(c) Startup comparison of sessions with
and without rollover in Windows media
services

Figure 4: Protocol rollover increases startup latency of streaming sessions

encoding rates of Windows and RealNetworks media in our
workloads are comparable. Figure 4(c) further compares
the delay from the session beginning time to the transport
setup completion time for sessions with and without pro-
tocol rollover in Windows media services in the home user
workload. As shown in the figure, about 37% of the sessions
with protocol rollover have a delay longer than 5 seconds.
In contrast, only about 13% of the sessions without protocol
rollover have a delay longer than 5 seconds.

4.2 Protocol selection and rollover avoidance
In most client side media players, although the transport

protocol of streaming media can be specified by a user man-
ually, the default protocol is usually UDP. In Section 3, we
have also found that the majority of streaming traffic in our
workloads is delivered over TCP. Thus, it is reasonable to
expect that a large portion of the user sessions experience
protocol rollover.

However, in the home user workload, we found that there
are only about 7.37% of streaming sessions trying UDP first
and then switching to TCP. In the business user workload,
only about 7.95% streaming sessions switch from UDP to
TCP. These results imply that TCP is directly used with-
out protocol rollover in most streaming sessions, despite the
default protocol setting in the player. We analyze this phe-
nomenon as follows.

The Windows streaming service allows the specification
of the transport protocol in the URL modifier at either the
client side or the server side. In Windows media stream-
ing, the URL passed to a media player is either input by a
user (client side action) or exported from a media meta file
stored on or dynamically generated by a Web server (server
side action). For example, rtspt means using TCP as the
transport protocol while rtspu means using UDP. We ex-
tracted URL modifiers from the summary of media playing
information, which is sent by the client in a RTSP/MMS
command when a session is terminated. In both home user
and business user workloads, we found that for more than
70% of the Windows streaming sessions, TCP is specified
as the transport protocol by content providers. This ex-
plains why TCP-based media streaming is so prevalent on
the Internet. Study [26] suggests that the NAT and firewall
deployment constrained the usage of UDP in streaming me-
dia applications. Our conjecture is that as content providers
are generally aware of the wide deployment of NAT and fire-
walls, they actively use TCP to avoid any possible shielding

or protocol rollover to end users. With such a configura-
tion, even if UDP is supported at both the client side and
the server side, the streaming media will still be delivered
over TCP directly.

To validate our conjecture, we further investigate the
NAT usage of home users and business users with the MMS
streaming in our workloads. Different from RTSP, in MMS
streaming, a client reports its local IP address to its server
in clear text. Extracting this information from the MMS
workload, we found that most MMS users in the home
and business user workloads report private IPs (such as
192.168.1.100), indicating that they access the Internet
through NAT. In the home user workload, about 98.3%
of the MMS requests are initiated from clients shielded by
NAT, and about 99.5% of the MMS clients are shielded by
NAT. These two numbers are 89.5% and 88.0% in the busi-
ness user workload, respectively. A NAT router hosts up
to 3 MMS clients in the home user workload, and up to 64
MMS clients in the business user workload. Thus, for these
clients, the TCP transmission specified on the server side
effectively avoids protocol rollover, and significantly reduces
user perceived startup latency.

On the other hand, RealNetworks media services try to
avoid protocol rollover by using NAT transversal techniques.
By reverse-engineering of the protocol, we find that different
from the Windows media service, in which a server sends
UDP packets to its client first through the port that the
client reports in the SETUP command, in the RealNetworks
media service, a client sends UDP packets to its server first,
so that the server can figure out the client’s external UDP
port number converted by NAT. To distinguish different user
sessions shielded by the same NAT, the server uses differ-
ent UDP port numbers to listen to UDP packets coming
from different sessions, which are generated by the server
dynamically and sent to its clients in the replies of SETUP

commands. As a result, UDP accounts for the majority of
streaming traffic in the RealNetworks media service, and
protocol rollover is less frequent than that in the Windows
media service. However, as indicated by Figure 4, once a
protocol rollover happens, the rollover time in the RealNet-
works media service is generally much longer than that in the
Windows Media service. Furthermore, this solution some-
how violates the standard RTSP specification because the
UDP port number that a client reports to its server in the
SETUP command is intentionally discarded.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000

C
D

F

File Length (sec)

Fast Cache
Normal TCP

(a) File length

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000

C
D

F

Encoding Rate (Kbps)

Fast Cache
Normal TCP

(b) Encoding rate

Figure 5: Features of media delivered by Fast Cache and normal TCP streaming

5. FAST STREAMING
In early streaming media services, a media object is

streamed at its encoding rate and a small play-out buffer
is used to smooth the streaming jitter. However, in prac-
tice, the play-out buffer may be exhausted, since the avail-
able bandwidth between a client and its server may fluc-
tuate from time to time. This is particularly important
for TCP-based streaming, in which the congestion control
mechanism constrains the streaming rate. As we have shown
in Section 4, content providers of Windows media services
often use TCP-based streaming directly to avoid protocol
rollover. In order to provide high quality streaming experi-
ence to end users, Windows Media services use Fast Stream-
ing techniques [2], including Fast Start, Fast Cache, Fast
Recovery, and Fast Reconnect 2. Both Fast Start and Fast
Cache transmit media data at a rate higher than the media
encoding rate 3. Fast Start can run over both TCP and
UDP while Fast Cache always runs over TCP. Fast Start
is enabled by almost all Windows media servers in order to
reduce the startup buffering time for clients. Basically, Fast
Start transmits data to the client as fast as possible until
the play-out buffer is filled. After the Fast Start period,
Fast Cache streams media data until the entire object is de-
livered or the session is terminated by the user. In order
to smooth out network bandwidth fluctuations, Fast Cache
transmits media data to a client at a speed usually up to
5 times the media encoding rate and the client maintains a
growing buffer for the early arrived data.

Table 4 shows the total volume of streaming traffic deliv-
ered over Fast Cache (FC), normal TCP streaming excluding
FC (TCP), and UDP streaming (UDP) in our workloads. As
the table shows, Fast Cache is widely used by both third-
party hosting services and self-hosting services, accounting
for 50.1% and 21.0% of the streaming traffic in the home and
business user workloads, respectively. There is less stream-
ing traffic delivered over Fast Cache in the business user
workload than in the home user workload, because the ac-
cess pattern of business users is different from that of home
users. Business users access more audio and live media than
home users. Audio media objects have low bit rates and
usually do not need Fast Cache, while live media objects

2As Fast Recovery and Fast Reconnect events are rare in
our workloads, we do not include them in this study.
3Similarly, RealNetworks media services can also stream a
media object at a rate higher than its encoding rate. Due to
page limits, we only present the analysis results of Windows
streaming services.

Table 4: Streaming Traffic with Fast Cache

Delivery home user business user
Method third-party self-hosting third-party self-hosting

FC 55.00 GB 68.72 GB 3.75 GB 6.24 GB
TCP 49.91 GB 15.27 GB 15.92 GB 16.79 GB
UDP 35.15 GB 22.74 GB 4.23 GB 0.62 GB

cannot be streamed over Fast Cache at all. The on-demand
video they access is different too.

Figure 5 compares the distribution of file length and en-
coding rate of objects delivered over Fast Cache supported
streaming and normal TCP streaming in on-demand Win-
dows video sessions of the home user workload. As shown in
the figure, Fast Cache is more widely used for objects with
longer file lengths and higher encoding rates. This is rea-
sonable because these objects are more sensitive to network
bandwidth fluctuations and thus Fast Cache can help more.

Due to page limit, in the remainder of this section, we only
present our analysis results of Windows media streaming
for TCP-based on-demand video sessions with a playback
duration longer than 30 seconds in the home user workload,
if not specified particularly (the results for the business user
workload are similar).

5.1 Fast Cache smoothes bandwidth fluctua-
tion

As mentioned before, Fast Cache supported streaming
smoothes the fluctuation of network bandwidth by main-
taining a growing buffer for the early arrived data. To un-
derstand how Fast Cache utilizes the network bandwidth,
we extract the Bandwidth header in a client’s PLAY com-
mand, and the Speed header in this command and that in
the server’s reply. The Bandwidth header contains the client
advertised bandwidth, which is either a default value set by
a user in the media player, or measured in real time before
media streaming with the so called “packet pair” technique.
The Speed header in a client’s PLAY command specifies the
delivery speed that the client requests, in multiples of the
media encoding rate, which is usually equivalent to the client
available bandwidth. The speed that a server agrees to of-
fer is specified in the Speed header of the reply to the PLAY

command, which is usually not greater than 5 times of the
media encoding rate. However, the actual streaming speed
may be smaller than the speed that the server claims in
the PLAY reply. Thus, we computed the average of actual
streaming rate during each user session based on the packet
level information in our workload (the startup buffering is
excluded).

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 20 40 60 80 100

K
bp

s

Sessions (%)

Actual streaming rate
Request streaming rate

Advertised Bandwidth

(a) Fast Cache supported streaming

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 20 40 60 80 100

K
bp

s

Sessions (%)

Actual streaming rate
Advertised Bandwidth

(b) Normal TCP streaming

Figure 6: The client advertised bandwidth, client requesting rate, and server streaming rate

Figure 6(a) shows the distribution of the client adver-
tised bandwidth, the client requested streaming rate (i.e.,
the product of the Speed value and the media encoding
rate), and the actual streaming rate for streaming sessions
with Fast Cache support. Figure 6(b) shows the advertised
bandwidth and the actual streaming rate for normal TCP
streaming. Comparing Figures 6(a) and 6(b), we find that
the actual streaming rate in Fast Cache supported stream-
ing is much closer to the client advertised bandwidth than
that in normal TCP streaming 4. So Fast Cache exploits
the unutilized network bandwidth under the constraint of
TCP congestion control. In other words, for normal TCP
streaming, it is possible to deliver the same media at a higher
transmission rate, or to deliver the media with a higher en-
coding rate.

In Windows media streaming, the default play-out buffer
size accounts for five seconds media playback [1]. Upon net-
work fluctuations, if the play-out buffer is empty, the client
has to stop to buffer data, and a playback jitter occurs. With
Fast Cache, the early buffered data could afford a smooth
playback much longer before rebuffering is necessary. We
define the rebuffering ratio of a streaming session as the to-
tal time for rebuffering over the total playback duration,
which reflects the streaming quality that a user experiences.
Figure 7(a) shows the rebuffering ratio of sessions streamed
with and without Fast Cache support (i.e. Fast Cache and
normal TCP streaming in the figure). To make a fair com-
parison, we only consider sessions requesting video objects
with an encoding rate between 200–400 Kbps. About 15% of
the normal TCP streaming sessions suffer rebuffering while
only about 8.5% of the Fast Cache supported streaming ses-
sions suffer rebuffering. Thus, Fast Cache can effectively
eliminate rebuffering in streaming sessions. We also observe
that for Fast Cache supported streaming, there are about
1.8% of the sessions with a rebuffering ratio larger than
50%, while for normal TCP streaming, there are only about
0.9% of the sessions with a rebuffering ratio larger than 50%.
The reason is that when rebuffering happens, normal TCP
streaming may switch to a stream of lower rate if the me-
dia object is MBR encoded (see Section 6.1), thus avoiding
further rebuffering. In contrast, stream switch is disabled in
Fast Cache supported streaming, thus the rebuffering may
happen repeatedly, resulting a large rebuffering ratio (see
Section 6.3).

Fast Cache supported streaming also decreases the possi-

4The 2 Gbps client advertised bandwidth corresponds to the
player’s connection speed setting “10 Mbps and above”.

bility of encountering network congestion by reducing the
data transmission time. Figure 7(b) shows the distribu-
tion of data transmission duration for Fast Cache supported
streaming sessions and normal TCP streaming sessions, re-
spectively. We can see that although in general the media
objects streamed with Fast Cache have higher file lengths
and encoding rates as shown in Figure 5, the transmission
time of Fast Cache supported streaming is much shorter
than that of normal TCP streaming (note that the x-axis is
in log scale).

5.2 Fast Cache produces extra traffic
Fast Cache continuously delivers a media object at a rate

higher than (usually up to five times) its encoding rate. In
reality, the entire media object can be delivered completely
to the user in the middle of the user’s playback. If the user
stops in the middle, the pre-arrived data for the remaining
part are wasted. Considering the well known fact that most
sessions only access the initial part of a video object [30], the
extra delivered traffic by Fast Cache would be non-trivial,
especially for large media objects such as movies.

In this study, we compute the over-supplied traffic as fol-
lows. The packet size and the time that a packet should be
rendered can be extracted directly from the RTP packet
header. Based on the timestamps of PLAY, PAUSE, and
TEARDOWN commands, we get the user playback duration
for each session. Assuming a default five-second play-out
buffer [1] on the client side, we compute the extra traffic for
each session. Figure 8 shows the extra traffic caused by Fast
Cache supported streaming and normal TCP streaming, for
all Windows streaming sessions in the home user workload.
On average, Fast Cache over-supplies about 54.8% of me-
dia data to clients due to clients’ early terminations, while
the over-supplied traffic is only about 4.6% for normal TCP
streaming sessions. Figure 9 shows the CDF of the aver-
age transmission speed (in multiples of the media encoding
rate) of Fast Cache supported and normal TCP streaming,
respectively. In the computation of the average tranmission
speed, we only consider the data transmission after the Fast
Start buffering period. The high data transmission speed in
Fast Cache supported streaming indicates the reason for the
over-supplied data.

5.3 Server response time of Fast Cache
In addition to over-utilizing the network bandwidth, by

transmitting media at a rate much higher than its encod-
ing rate, a streaming server running Fast Cache may also
consume more CPU, memory, disk I/O, and other resources

 0.8

 0.85

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Rebuffer Ratio (rebuffer time / play time)

Fast Cache
Normal TCP

(a) Rebuffering ratio

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

C
D

F

Transmission Duration (sec)

Fast Cache
Normal TCP

(b) Data transmission duration

Figure 7: Bandwidth fluctuation smoothed by Fast Cache

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

C
D

F

Over transferred bytes/total played bytes

Fast Cache
Normal TCP

Figure 8: Extra traffic produced by

Fast Cache

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

C
D

F

Speed

Fast Cache
Normal TCP

Figure 9: Average data transmis-

sion speed

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10

C
D

F

Server Response Time (sec)

Fast Cache
Normal TCP

(a) Third-party media service

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10

C
D

F

Server Response Time (sec)

Fast Cache
Normal TCP

(b) Self-hosting media service

Figure 10: The server response time to streaming requests

than a streaming server not running Fast Cache. As a re-
sult, a request may have to wait for a longer time to be
served when a burst of requests arrive at the server. We
define the server response time of a RTSP/MMS request
to be the duration from the time instant when a server re-
ceives the first command from a client, to the time instant
when the server sends its reply. Since our workloads are
collected by Gigascope at a site very close to end users, the
timestamp of a captured packet can be regarded as the time
instant when the client sends or receives that packet. We
use the timestamps of TCP handshake packets to estimate
the packet round trip time (RTT), and then compute the
server response time.

Figure 10(a) shows the distribution of the server response
time for streaming requests served by third-party media ser-
vices. We compare the response time of requests to servers
with and without running Fast Cache. For servers running
Fast Cache, about 43% of the requests have a response time
longer than 0.1 second, while for servers not running Fast
Cache, only about 9% of the requests have a response time
longer than 0.1 second. Figure 10(b) shows the correspond-
ing distribution of the server response time for streaming
requests served by self-hosting media services. For servers
running Fast Cache, about 21% of the requests have a re-
sponse time longer than 0.1 second, while for servers not
running Fast Cache, only about 5% of the requests have a
response time longer than 0.1 second. These results indi-
cate that the response time on servers running Fast Cache
is statistically longer than that on servers not running Fast
Cache. We also observe that the response time of the third-
party hosting service is larger than that of the self-hosting
service. As a commercial company, a third-party hosting

service may want to fully utilize its server resources with
many service subscribers. In contrast, self-hosting services
are more dedicated and thus are often less heavily loaded.

5.4 Server load of Fast Cache
To further investigate the system resources consumed by

Fast Cache, we conducted experiments with the Windows
server 2003 and the Windows media load simulator [8]. We
ran Windows server 2003 on a machine with 2 GHz Pentium-
4 CPU and 512 MB memory, and ran a Windows media load
simulator on a Windows XP client machine. The server ma-
chine and the client machine are connected through a 100
Mbps fast Ethernet switch. We generated two streaming
video files with the Windows media encoder, one is encoded
with 282 Kbps and the other is encoded with 1.128 Mbps,
both of which have a 20-minute playback duration. We du-
plicated each file with 50 copies, and saved each copy with
a different name. We first ran 50 normal TCP streaming
sessions for 5 minutes using the simulator, each of which re-
quests a different copy of the 282 Kbps video file simultane-
ously. Since the simulator does not support Fast Cache, we
ran 50 normal TCP streaming sessions requesting the 1.128
Mbps video using the simulator, in order to simulate the
streaming with Fast Cache support for the 282 Kbps video
(with 4 speed). This experiment was also conducted for 5
minutes, with each session requesting a different file copy
simultaneously. In each experiment, the simulator recorded
the CPU and memory usage reported by the server every
second. The average bandwidth usage was recorded in the
server logs. We repeated each experiment 10 times.

Figure 11 shows the average usage of CPU and bandwidth
of the server over the entire duration of the simulation (the

Normal TCP Fast Cache
0

2

4

6

8

10
P

ro
ce

ss
or

 T
im

e
(%

)

(a) CPU consumption of all
50 sessions

Normal TCP Fast Cache
0

2

4

6

8

10

12
x 10

5

B
an

dw
id

th
 (

bp
s)

(b) Average bandwidth con-
sumption per session

Figure 11: Server load comparison between Fast

Cache and normal TCP streaming

memory usages of Fast Cache and normal TCP streaming
are very close and thus are not presented). The bandwidth
usage of Fast Cache is 3.67 times of that of the normal TCP
streaming, while the CPU load of Fast Cache is 3.57 times of
that of normal TCP streaming. This indicates that the CPU
consumed by Fast Cache is approximately proportional to
the streaming delivery rate. Given that Fast Cache could
deliver a media object at a rate 5 times of its encoding rate,
Fast Cache increases server load significantly, and thus lim-
its the scalability of a streaming server. In our workloads,
the Windows media servers in the second largest media de-
livery network and the largest self-hosting media service (a
well known search engine site) do not support Fast Cache
at all (we anonymize their domain names due to customer
privacy concerns), which might be due to the concerns of
high resource demands of Fast Cache.

5.5 Effectiveness of resource over-utilization
Fast Cache delivers a media object to a client faster than

the playing speed by over-utilizing the bandwidth and CPU
resources. However, streaming a media object at a rate
higher than its encoding rate is only possible when the
available bandwidth between a client and its server is large
enough. Intuitively, when a media object is streamed at its
encoding rate, the higher the average bandwidth between a
client and its server over its encoding rate, the lower possi-
bility at which performance degradation occurs during the
playback. To understand whether Fast Cache performs bet-
ter than normal TCP-based streaming when the average
bandwidth between a client and its server is large enough,
we plot the CDF of rebuffering ratio for Fast Cache based
streaming sessions and normal TCP-based streaming ses-
sions in the home user workload in which the media encoding
rate of each stream is 200–320 Kbps and the client adver-
tised bandwidth (extracted from the Bandwidth header) is
at least 500 Kbps greater than the media encoding rate, as
shown in Figure 12. Compared with Figure 7(a), the two
curves in Figure 12 are very close, which means that, al-
though temporary network congestion may occur from time
to time, a small play-out buffer performs well enough to
smooth out bandwidth fluctuation during streaming, when
the average bandwidth is large enough. Thus, aggressively
over-utilizing the server and Internet resources is neither
performance-effective nor cost-efficient under a high band-
width condition. The higher speed at which Fast Cache can
stream a media object, the lower necessity is this speed for
a client. Furthermore, even if no extra traffic generated (as-

 0.8

 0.85

 0.9

 0.95

 1

 0 0.1 0.2 0.3 0.4 0.5

C
D

F

Rebuffer Ratio (rebuffer time / play time)

Fast Cache
Normal TCP

Figure 12: Effectiveness of resource over-utilization

sume the media object is played completely in each session),
the number of concurrent streams on a server is constrained
by the streaming speed, and thus limits the server’s capacity
to service bursty requests.

6. RATE ADAPTATION
In order to adapt to bandwidth fluctuations, major me-

dia services such as Windows media and RealNetworks me-
dia support three kinds of techniques for rate adaptation.
Stream switch enables a server to dynamically switch among
streams with different encoding rates for the same object,
based on the available network bandwidth. This technique
is called Intelligent Streaming in the Windows media ser-
vice [4] and SureStream in the RealNetworks media ser-
vice [7]. Stream thinning enables a server to only send key
frames to the client, when no lower bit rate stream is avail-
able. If the current bandwidth is not sufficient to transmit
key frames, a server can only send audio to client, which is
called video cancellation.

6.1 MBR encoding and stream switch
To enable stream switch, the media object must be en-

coded with multiple bit rates (MBR): the encoder generates
multiple streams with different bit rates for the same media
content, and encapsulates all these streams together.

Figures 13(a), 13(b), 13(c) and Figures 13(d), 13(e), 13(f)
show the distribution of the number of streams encoded in
on-demand and live media objects in the home user and
business user workloads, respectively. For video objects, we
show the number of audio streams and video streams in a
file separately (Figures 13(b), 13(c) for on-demand objects
and Figures 13(e), 13(f) for live objects). Because there are
only a small amount of live video objects in the business
user workload, we do not present them in Figures 13(e),
13(f). These figures show that about 42% of the on-demand
video objects in the home user workload are encoded with
at least two video streams. The number of video streams in
video objects is up to 12, and the number of video and audio
streams together in a video object is up to 20. The num-
ber of streams in live audio objects is relatively small, but
there are still 13% and 28% of the objects in home user and
business user workloads encoded with at least two streams,
respectively. These results indicate that the MBR encoding
technique has been widely used in media authoring, which
enables the rate adaptation—dynamically switching among
streams based on the available bandwidth.

The stream switch in RTSP protocols works as follows
(stream switch in MMS has a similar procedure). When a
RTSP session is established upon a client request, the media

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12

C
D

F

Number of Streams

Home
Biz

(a) On-demand audio objects

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9

C
D

F

Number of Streams

Home
Biz

(b) Audio in on-demand video objects

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12

C
D

F

Number of Streams

Home
Biz

(c) Video in on-demand video objects

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

C
D

F

Number of Streams

Home
Biz

(d) Live audio objects

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4
C

D
F

Number of Streams

Home

(e) Audio in live video objects

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10 11

C
D

F

Number of Streams

Home

(f) Video in live video objects

Figure 13: MBR encoding in the home and business user workloads

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100

C
D

F

Stream Switch Handoff Latency (sec)

Biz
Home

(a) Stream switch latency

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100 1000

C
D

F

Stream Switch: Duration of Low Quality (sec)

Biz
Home

(b) Low quality duration

Figure 14: Stream switch

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100 1000

C
D

F

Thinning Duration (sec)

Biz
Home

(a) Thinning duration

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000

C
D

F

Thinning Interval (sec)

Biz
Home

(b) Thinning interval

Figure 15: Stream thinning

player sends a DESCRIBE command to the server, asking for
the description of the requested media object. In the reply
to the DESCRIBE, the server sends the media description us-
ing SDP [19], including the description of each video/audio
stream encapsulated in the media object. Then the client
specifies the stream that it desires in the SETUP (Windows
media service) or SET PARAMETER (RealNetworks media ser-
vice) command, based on its current available bandwidth.
The server delivers the requested stream upon receiving the
PLAY command from the client.

If during playback, the available bandwidth drops below
the media encoding rate, the play-out buffer will be drained
off. In this case, the media player may send a request to ask
the server to switch to a lower rate stream. In Intelligent
Streaming (Windows media service), the media player sends
a SET PARAMETER with a SSEntry message body via RTSP,
specifying the current stream and the stream to switch to. In
SureStream (RealNetworks media service), the client sends
a SET PARAMETER command with an UnSubscribe header to
cancel the current stream and a Subscribe header to switch
to the new stream.

We extracted all related information from RTSP/MMS
commands, and analyzed these stream switches. To char-
acterize the overhead and frequency of stream switches, we
define the switch latency as the freezing duration between
the end of the old stream and the beginning of the new
stream, during which a user has to wait for buffering. We
also define the low quality duration of a streaming session as
the total playback time of streams with lower rates (relative

to the highest encoding rate that the content is transmitted
in this session).

Assuming a five-second play-out buffer [1], Figure 14(a)
and Figure 14(b) show the distribution of stream switch la-
tency and low quality duration in the home and business
user workloads, respectively. As shown in Figure 14(a),
about 30%–40% of the stream switches have a switch la-
tency greater than 3 seconds, and about 10%–20% of the
stream switches have a switch latency greater than 5 sec-
onds, which is non-trivial for end users. In Figure 14(b), we
observe that about 60% of the sessions have a low quality
duration less than 30 seconds, and 85% of the low quality
stream durations are shorter than 40 seconds.

6.2 Stream thinning and video cancellation
Stream thinning works in a similar way as stream switch.

To characterize the quality degradation due to stream thin-
ning, we define the thinning duration as the time duration
from the “thinning” command to the “un-thinning” com-
mand or the “stop playing” command, which reflects the
quality degradation time that a user suffers. We also define
the thinning interval as the interval between two consecutive
stream thinning events, which reflects the frequency of such
quality degradations. Figure 15(a) and Figure 15(b) show
the thinning duration and the interval for video sessions
longer than 30 seconds in the home and business user work-
loads, respectively. As shown in Figure 15(a), more than
70% of the thinning durations are shorter than 30 seconds.
Figure 15(b) shows most (70% in the home user workload

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100 1000

C
D

F

Rebuffering Duration (sec)

Fast Cache
Normal TCP

(Home user workload only)

Figure 16: Rebuffering duration for

Fast Cache and normal TCP stream-

ing sessions with rebuffering

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

C
D

F

Playback duration (sec)

All Sessions
Degradation Sessions

Smooth Sessions

(a) Home user workload

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

C
D

F

Playback duration (sec)

All Sessions
Degradation Sessions

Smooth Sessions

(b) Business user workload

Figure 17: Comparison of playback durations for sessions with and

without quality degradations

Table 5: Summary of streaming quality
streaming duration > 30 sec duration > 300 sec
quality home biz home biz

smooth playback 87.06% 59.96% 56.82% 19.73%
rebuffering only 8.65% 18.91% 32.87% 31.97%
stream switch 0.83% 16.30% 1.40% 37.42%

stream thinning 1.94% 3.42% 4.73% 6.80%
video cancellation 1.52% 1.41% 4.18% 4.08%

and 82% in the business user workload) thinning intervals
are longer than 30 seconds.

When bandwidth is too low to transmit the key frame of
video stream, the client may send a TEARDOWN command to
cancel the video stream, then the server sends audio only.
When the bandwidth increases, the client may set up and
request the video stream again.

6.3 Summary of Internet streaming quality
According to our extensive trace analysis and real ex-

periments, Fast Cache does not support rate adaptation in
practice. In a streaming session with Fast Cache enabled,
the client never requests to switch streams after the ini-
tial stream selection in the SETUP command, even if there
is a more suitable stream matching the decreased/increased
bandwidth during playback. Thinning and video cancel-
lation are also disabled when Fast Cache is enabled. As
a result, when the bandwidth drops below the encoding
rate, Fast Cache supported streaming performs like pseudo
streaming [17]: the player stops to buffer data for a while,
then continues to play the media for about five seconds (the
play-out buffer size), and this procedure repeats. With such
a configuration, if a sudden network congestion happens and
lasts for a long time, the streaming quality of Fast Cache
supported streaming could be even worse than that of nor-
mal TCP streaming. Figure 16 shows that when rebuffering
happens, the rebuffering duration of Fast Cache supported
streaming is much longer than that of normal TCP stream-
ing in the home user workload, because it cannot switch to
a lower rate stream upon network congestion.

Figure 17(a) and Figure 17(b) show the CDF of play-
back duration of TCP-based video streaming sessions that
are longer than 30 seconds in the home and business user
workloads, respectively. The three curves in each figure
denote all sessions, sessions without quality degradations,
and sessions with quality degradations (including rebuffer-
ing, stream switch, stream thinning, and video cancellation),

respectively. We can see that for sessions with longer dura-
tions, degradation happens with a higher probability. For
example, in the business user workload, 88% of the sessions
with quality degradations have a duration longer than 100
seconds, while 58% of the sessions without quality degra-
dations have a duration longer than 100 seconds. Table
5 further shows the breakdowns of sessions with and with-
out quality degradations for TCP-based video streaming ses-
sions that are longer than 30 seconds and longer than 300
seconds, in the home and business user workloads, respec-
tively. We can see that quality degradation happens less
frequently in the home user workload than in the business
user workload, which may be due to the longer playback
duration of business users as shown in Figure 17. For ses-
sions longer than 30 seconds, 13%–40% of the video sessions
still have quality degradation due to the rebuffering, stream
switch, stream thinning, and video cancellation. For ses-
sions longer than 300 seconds, the quality is getting worse.
Further investigation shows that in a significant amount of
video sessions with rebuffering, the requested media objects
are MBR encoded, and the lack of stream switch is largely
due to the usage of Fast Cache, which disables rate adapta-
tion.

In conclusion, the quality of media streaming on the Inter-
net leaves much to be improved, especially for those sessions
with longer durations.

7. DISCUSSION: COORDINATING
CACHING AND RATE ADAPTATION

Fast Cache and rate adaptation are two commonly and
practically used techniques that improve the experience of
streaming media users from different perspectives. Fast
Cache aggressively buffers media data in advance at a rate
higher than the media encoding rate, aiming to absorb the
streaming jitter due to network congestion. In contrast, rate
adaptation conservatively switches to a lower bit rate stream
upon network congestion. As shown in our analysis, both
techniques have their merits and limits. Fast Cache has its
problems such as increasing server load and producing extra
traffic. On the other hand, the latency of stream switch is
non-trivial in most sessions, due to the small size of play-out
buffer.

Combining the merits of both techniques, in this section,
we discuss Coordinated Streaming, a mechanism that coor-
dinates caching and rate adaptation. In this scheme, an

 0.8

 0.85

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Rebuffer Ratio (rebuffer time / play time)

Fast Cache
Normal TCP

Coordinated Streaming

(a) Rebuffering ratio

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

C
D

F

Over-transferred bytes/total played bytes

Fast Cache
Normal TCP

Coordinated Streaming

(b) Over-supplied data

 0.4

 0.6

 0.8

 1

 0.1 1 10 100

C
D

F

Stream Switch Handoff Latency (sec)

Normal TCP
Coordinated Streaming

(c) Switch handoff latency

Figure 18: Evaluation of Coordinated Streaming

upper bound and a lower bound are applied to the play-out
buffer of the client player. The upper bound setting prevents
aggressive data buffering while the lower bound setting elim-
inates the stream switch latency. When a streaming session
starts, the server transmits data to the client as fast as possi-
ble until the lower bound is reached. Then the playback be-
gins and the client continues to buffer data with the highest
possible rate until the buffer reaches its upper bound. With
a full buffer, the client buffers data at the media encoding
rate, and the buffer is kept full. When network congestion
occurs, the client may receive data at a rate lower than the
object encoding rate, and the buffer is drained off. If the
network bandwidth increases before the buffer drops below
its lower bound, the client will request data at a higher rate
to fill the buffer. Otherwise, the client will switch to a lower
rate stream. The selection of the lower rate stream should be
based on the following: in a typical bandwidth fluctuation
period, the current bandwidth should be able to maintain
normal playback of this lower rate stream and transmit ex-
tra data to fill the buffer to its upper bound. When the
network bandwidth is increased, the client may switch to a
higher encoding rate stream.

We conducted an ideal experiment as a proof of concept of
this scheme. We set the lower bound of the buffer size as 5
seconds to cover the normal stream switch latency as well as
the initial buffering duration, as the default play-out buffer
size is 5 seconds, and the average stream switch latency is
also about 5 seconds. The upper bound of the buffer size is
set to 30 seconds, considering the typical network fluctua-
tion periods that may affect streaming quality, such as low
quality duration, thinning duration, and thinning interval
(Figures 14(b), 15(a), and 15(b)). In a practical system, the
lower and upper bound of buffer size should be adaptively
tunable based on these quality degradation events. However,
we will show that even with the above simple configuration,
the streaming quality can be effectively improved and the
over-supplied traffic can be significantly reduced.

We simulated the Coordinated Streaming scheme based
on the packet level information of Fast Cache supported
streaming sessions, and compared the quality and band-
width usage of this scheme with that of Fast Cache sup-
ported streaming and normal TCP-based streaming. To
have a fair comparison, we only consider video sessions that
request objects with 200–400 Kbps encoding rates for a du-
ration longer than 30 seconds in the home user workload.
Figure 18(a) shows the rebuffering ratio in Fast Cache sup-
ported streaming, normal TCP streaming, and Coordinated
Streaming. As shown in this figure, the rebuffering ratio of

Coordinated Streaming is close to zero. The fraction of nor-
mal TCP streaming sessions with large rebuffering ratios is
close to or even smaller than that of Fast Cache supported
streaming sessions because many of them use rate adap-
tation to avoid rebuffering. Figure 18(b) shows the over-
transfered data in the above three schemes, and we can see
that Coordinated Streaming reduces 77% over-supplied traf-
fic produced by Fast Cache, although not as good as normal
TCP streaming. Figure 18(c) shows that the switch hand-
off latency of Coordinated Streaming is nearly zero, much
less than that of normal TCP streaming. Furthermore, the
number of stream switches in our scheme is only 33.4% of
that in normal TCP-based streaming.

8. RELATED WORK
Existing measurement studies have analyzed the Internet

streaming traffic in different environments and from differ-
ent perspectives. Li et al. [20] characterized the streaming
media stored on the Web, while Mena et al. [21] and Wang
et al. [29] presented an empirical study of Real audio and
Real video traffic on the Internet, respectively. These stud-
ies characterized the packet size, data rate, and frame rate
patterns of streaming media objects. Almeida et al. [10] and
Chesire et al. [13] studied the client session duration, object
popularities and sharing patterns based on the workload col-
lected from an educational media server and an university
campus network, respectively. Cherkasova et al. [12] char-
acterized the locality, evolution, and life span of accesses
in enterprise media workloads. Yu et al. [31] studied the
user behavior of large scale video-on-demand systems. Pad-
hye et al. [23] and Costa et al. [15] characterized the client
interactivity in educational and entertainment media sites,
while Guo et al. [18] analyzed the delay of jump accesses
for video playing on the Internet. Live streaming media
workloads have also been studied in recent years. Veloso
et al. [27] characterized a live streaming media workload in
three increasingly granular levels, named clients, sessions,
and transfers. Sripanidkulchai et al. [26] analyzed a live
streaming workload in a large content delivery network.

However, these on-demand and live streaming media mea-
surements mainly concentrated on the characterization of
media content, access pattern, and user activities, etc. So
far, few studies have focused on the mechanism, quality, and
resource utilization of streaming media delivery on the In-
ternet. Chung et al. [14] and Nichols et al. [22] conducted
an experimental study in a lab environment on the respon-
siveness of RealNetworks and Windows streaming media, re-
spectively. Wang et al. [28] proposed a model to study the

TCP-based streaming. In contrast to these studies, we ana-
lyzed the delivery quality and resource utilization of stream-
ing techniques based on a large scale Internet streaming me-
dia workload.

9. CONCLUSION
In this study, we have collected a 12-day streaming me-

dia workload from a large ISP, including both live and on-
demand streaming for both audio and video media. We
have characterized the streaming traffic requested by dif-
ferent user communities (home users and business users),
served by different hosting services (third-party hosting and
self-hosting). We have further analyzed several commonly
used techniques in modern streaming media services, in-
cluding protocol rollover, Fast Streaming, MBR, and rate
adaptation. Our analysis shows that with these techniques,
current streaming services tend to over-utilize the CPU and
bandwidth resources to provide better services to end users,
which may not be a desirable and effective way to im-
prove the quality of streaming media delivery. A coordina-
tion mechanism that combines the advantages of both Fast
Streaming and rate adaptation techniques is proposed to ef-
fectively utilize the server and Internet resources for building
a high quality streaming service. Our trace-driven simula-
tion study demonstrates its effectiveness.

Acknowledgments
We thank the appreciations and constructive comments
from the anonymous referees. William Bynum and Matti
Hiltunen made helpful suggestions on an early draft of this
paper. This work is partially supported by the National
Science Foundation under grants CNS-0405909 and CNS-
0509054/0509061.

10. REFERENCES
[1] Buffer settings in Windows media player.

http://support.microsoft.com/?scid=kb;en-
us;q257535.

[2] Fast Streaming with Windows Media 9 Series.
http://www.microsoft.com/.

[3] HTTP streaming protocol. http://sdp.ppona.com.

[4] Microsoft Windows media - Intelligent Streaming.
http://www.microsoft.com/.

[5] MMS streaming protocol. http://sdp.ppona.com.

[6] Real data transport (RDT).
http://protocol.helixcommunity.org/.

[7] RealProducer 10 user guide. http://www.real.com/.

[8] Windows media load simulator.
http://www.microsoft.com/.

[9] YouTube - broadcast yourself.
http://www.youtube.com/.

[10] J. M. Almeida, J. Krueger, D. L. Eager, and M. K.
Vernon. Analysis of educational media server
workloads. In Proc. of ACM NOSSDAV, June 2001.

[11] S. Chen, B. Shen, S. Wee, and X. Zhang. Designs of
high quality streaming proxy systems. In Proc. of
IEEE INFOCOM, Mar. 2004.

[12] L. Cherkasova and M. Gupta. Characterizing locality,
evolution, and life span of accesses in enterprise media
server workloads. In Proc. of ACM NOSSDAV, May
2002.

[13] M. Chesire, A. Wolman, G. Voelker, and H. Levy.
Measurement and analysis of a streaming media
workload. In Proc. of USITS, Mar. 2001.

[14] J. Chung, M. Claypool, and Y. Zhu. Measurement of
the congestion responsiveness of RealPlayer streaming
video over UDP. In Proc. of the Packet Video
Workshop, Apr. 2003.

[15] C. Costa, I. Cunha, A. Borges, C. Ramos, M. Rocha,
J. Almeida, and B. Ribeiro-Neto. Analyzing client
interactivity in streaming media. In Proc. of WWW,
May 2004.

[16] C. Cranor, T. Johnson, and O. Spatscheck. Gigascope:
a stream database for network applications. In Proc.
of ACM SIGMOD, June 2003.

[17] L. Guo, S. Chen, Z. Xiao, and X. Zhang. Analysis of
multimedia workloads with implications for Internet
streaming. In Proc. of WWW, May 2005.

[18] L. Guo, S. Chen, Z. Xiao, and X. Zhang. DISC:
Dynamic interleaved segment caching for interactive
streaming. In Proc. of IEEE ICDCS, June 2005.

[19] M. Handley and V. Jacobsen. SDP: Session
description protocol. RFC 2327, Apr. 1998.

[20] M. Li, M. Claypool, R. Kinicki, and J. Nichols.
Characteristics of streaming media stored on the Web.
Nov. 2005.

[21] A. Mena and J. Heidemann. An empirical study of
Real audio traffic. In Proc. of IEEE INFOCOM, Mar.
2000.

[22] J. Nichols, M. Claypool, R. Kinicki, and M. Li.
Measurements of the congestion responsiveness of
Windows streaming media. In Proc. of ACM
NOSSDAV, June 2004.

[23] J. Padhye and J. Kurose. An empirical study of client
interactions with a continuous media courseware
server. In Proc. of ACM NOSSDAV, July 1998.

[24] H. Schulzrinne, S. Casner, R. Frederick, and
V. Jacobson. RTP: A transport protocol for real-time
applications. RFC 1889, Jan. 1996.

[25] H. Schulzrinne, A. Rao, and R. Lanphier. Real time
streaming protocol (RTSP). RFC 2326, Apr. 1998.

[26] K. Sripanidkulchai, B. Maggs, and H. Zhang. An
analysis of live streaming workloads on the Internet.
In Proc. of ACM SIGCOMM IMC, Oct. 2004.

[27] E. Veloso, V. Almeida, W. Meira, A. Bestravos, and
S. Jin. A hierarchical characterization of a live
streaming media workload. IEEE/ACM Transactions
on Networking, Sept. 2004.

[28] B. Wang, J. Kurose, P. Shenoy, and D. Towsley.
Multimedia streaming via TCP: An analytic
performance study. In Proc. of ACM Multimedia, Oct.
2004.

[29] Y. Wang, M. Claypool, and Z. Zuo. An empirical
study of RealVideo performance across the Internet.
In Proc. of the ACM SIGCOMM IMW, Nov. 2001.

[30] K. Wu, P. S. Yu, and J. Wolf. Segment-based proxy
caching of multimedia streams. In Proc. of WWW,
May 2001.

[31] H. Yu, D. Zheng, B. Y. Zhao, and W. Zheng.
Understanding user behavior in large scale video-on
-demand systems. In Proc. of EuroSys, Apr. 2006.

