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ABSTRACT

The increased use of botnets as an attack tool and the aware-
ness attackers have of blocking lists leads to the question of
whether we can effectively predict future bot locations. To
that end, we introduce a network quality that we term un-
cleanliness: an indicator of the propensity for hosts in a
network to be compromised by outside parties.

We hypothesize that unclean networks will demonstrate
two properties: spatial and temporal uncleanliness. Spa-
tial uncleanliness is the tendency for compromised hosts to
cluster within unclean networks. Temporal uncleanliness is
the tendency for unclean networks to contain compromised
hosts for extended periods.

We test for these properties by collating data from mul-
tiple indicators (spamming, phishing, scanning and botnet
IRC log monitoring). We demonstrate evidence for both
spatial and temporal uncleanliness. We further show ev-
idence for cross-relationship between the various datasets,
showing that botnet activity predicts spamming and scan-
ning, while phishing activity appears to be unrelated to the
other indicators.

1. INTRODUCTION

Botnets are a common attack tool due to the anonymity
and flexibility that they provide attackers. Modern bots
can be used for DDoS, spamming, network infiltration, key-
logging and other criminal acts [5, 15]. Past research, no-
tably by Mirkovic et al. [18], has shown that botnet based
attacks can be divided into distinct phases of acquisition and
use.

We expect that bot acquisition is opportunistic [2]: while
attackers may avoid certain networks [24], in the majority of
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cases, attackers have no interest or knowledge about targets
except that the target is vulnerable. With automatically
propagating attack tools, an attacker may not know about
the existence of a target until after he compromises it.

Specific variants of bots such as Gaobot can spread them-
selves using network shares, AOL Instant Messenger, and
multiple Windows vulnerabilities'. Given the sheer popula-
tion and variation in worms, and the virulence of common
attacks, it is now reasonable to expect that any publicly
accessible host on the Internet will be attacked by every
common method within a short period?.

If we assume that an attacker cannot distinguish between
the hosts within a network, then he is equally likely to at-
tack any of them. In addition, with no advance knowledge
of what a target is vulnerable to, an attacker will use all
attacks available to him. Finally, given that the population
of attackers is so large, individually attacker preferences be-
come less relevant: while one worm may opt not to use a
particular vulnerability, another dozen will. Consequently,
the probability that a machine will be compromised during
some period is not a function of that host’s attacker. We
hypothesize that the probability of compromise is instead a
property of the host’s defenders.

We characterize a network’s defensive posture by its un-
cleanliness, which is an indicator of the propensity for hosts
within that network to be compromised. Consider two in-
stitutions, A and B. Institution A maintains an aggressive
firewall policy, disables all email attachments, maintains all
files on a central server and reimages all hosts on the net-
work from a fully patched and maintained master image each
night. Institution B has no inventory of hosts on its net-
work, runs a variety of hardware and software installations
that administrators might not even be aware of, has a large
number of self-administered machines and has no firewall.
We expect that institution A would be less vulnerable to
attack, that compromised hosts would be quickly detected,

"http://www.symantec.com/enterprise/
security_response/writeup.jsp?docid=
2006-052712-1744-99&tabid=2

2A report of the expected time between attacks for spe-
cific vulnerabilities is available at http://isc.sans.org/
survivaltime.html; the interval between attacks for the av-
erage address is on the order of 20 minutes



and that those compromised hosts would be restored to an
uncompromised state quickly. Conversely, machines in in-
stitution B would be reached by a larger number of attacks,
and compromised hosts may not be noticed or repaired until
long after the compromise has taken place. Institution B’s
network is unclean.

We can observe the uncleanliness of a network by examin-
ing its result. If a host is compromised, we expect that the
attacker will use it to, among other activities, spam, scan
and DDoS other hosts. If uncleanliness is a network-specific
property, we expect that compromised hosts will cluster in
specific networks, which we can identify via the phenomena
of spatial and temporal uncleanliness. We emphasize that
uncleanliness is a network property: hosts are compromised,
networks are unclean.

We define spatial uncleanliness as the tendency for com-
promised hosts to cluster in unclean networks. Spatial un-
cleanliness implies that if we see a host engaged in hostile
activity (such as scanning), we have a good chance of find-
ing another IP address in the same network engaged in hos-
tile activity. We will test for spatial uncleanliness by ex-
amining the clustering of addresses within networks. If our
hypothesis about spatial uncleanliness is correct, then we
would expect a set of compromised addresses to be reside
in fewer equally sized networks than addresses chosen at
random from a population reflecting the structure of the
Internet.

We define temporal uncleanliness as the tendency for com-
promised hosts to repeatedly appear in the same networks
over time. Temporal uncleanliness implies that if a host is
compromised, then other hosts within that network will be
compromised in the future. We will test for temporal un-
cleanliness by examining the ability of unclean networks to
predict future host compromises. If our hypothesis about
temporal uncleanliness is correct, then networks containing
compromised hosts will predict future compromised hosts
more accurately than equally sized networks chosen at ran-
dom.

Figure 1 explains our intuition for spatial and temporal
uncleanliness. This figure shows two plots: the upper counts
the number of unique hosts scanning a large network from
January to April, 2006. The lower plot is a plot showing
how many of these scanning addresses were also present in a
botnet reported during the first week of March, 2006. This
plot contains two lines: one counts the number of unique
addresses from the bot report that were also identified scan-
ning; the second counts the number of unique addresses from
the bot report that were present in a 24-bit CIDR block
where at least one address was also scanning.

First note that these reports resulted from two different
detection methods: the bot data was collected by observ-
ing IP addresses communicating on IRC channels, while the
scanning data was collected using a behavioral scan detec-
tion method deployed on an observed network [6]. There
is a strong intersection between the two sets: at its peak,
35% of the addresses reported as belonging to the botnet
are scanning the observed network.

Second, we observe that using the /24’s comprising the
botnet identifies more scanners than the botnet addresses
alone. We demonstrate in §4 that this result is significant.

Finally, as this figure shows, abnormal scanning (and there-
fore botnet compromise) occurs over several weeks. If bots
take several weeks to be identified and removed, we expect

that an unclean network will remain unclean for some time,
and therefore we can predict future hostile activity from the
same network over the term of the lifetime of a particular
compromise.

The primary contribution of this paper is a study of the
properties of uncleanliness and whether they can be used ef-
fectively to predict future activity. To do so, we test for the
existence of spatial and temporal uncleanliness by compar-
ing the traffic from various reports of hostile activity. We
demonstrate that compromised hosts are both more densely
clustered than normal traffic and predict future unclean ac-
tivity. In addition, we show that scanning, spamming and
bots show evidence of cross relationship, such as the scan-
ning observed in Figure 1. We also show that these phe-
nomena do not predict future phishing sites, but that past
phishing sites do. We therefore demonstrate that temporal
uncleanliness holds for all four indicators. We then test the
strength of this predictive mechanism by evaluating its suit-
ability to block traffic crossing a large network. We demon-
strate that limited predictive blocking is feasible, due to the
impact of locality [17] evident in network traffic.

The remainder of this paper is structured as follows: §2
outlines relevant previous work in reputation management
and identifying hostile groups by past history. In §3, de-
scribe and classify the data sources that we use in this paper.
84 examines the spatial uncleanliness hypothesis, and §5 ex-
amines the temporal uncleanliness hypothesis. §6 examines
the impact of blocking unclean networks and §7 discusses
the results.

2. PREVIOUS WORK

Researchers initially studied botnets due to their use in
DDoS attacks. Mirkovic et al. [18] identified DDoS attacks
which used two distinct phases: acquiring hosts to use for the
DDoS and using those hosts to conduct an attack. Freiling et
al. [5] identify a variety of other attacks that botnets can
conduct efficiently. Collins et al. [2] examined attacks as
conducted by opportunistic attackers: that is, the attacker
has no interest or knowledge of the target except that the
target is exploitable. Our work uses these concepts to study
the impact of largely automated acquisition and its impact
on network defense.

Botnet demographics have been studied using Honeypots
and by actively probing bot networks [8, 9, 21]. Rajand et
al’s [21] analysis is particularly relevant due to the extended
period during which they observed network traffic, allowing
them to identify not only botnet demographics but activity.
Our work differs from these analyses by comparing multiple
observed phenomena and using this information to predict
future activity.

In operational security, blacklists are commonly used to
identify and block hosts that are already assumed to be hos-
tile. Examples of such blacklists include Spamhaus’ ZEN
list [20] and the Bleeding Snort rule set [23]. Researchers
such as Levy [16] note that spammers increasingly rely on
the use of occupied hosts to generate spam messages - these
approaches are more attractive to spammers because they
offload processing requirements from the spammer (as noted
by Laurie et al. [15]) and because they hide the attacker’s
identity [4].

In addition, researchers have studied the impact of black-
lists on spamming and other hostile activity. Jung et al. [12]
compare spamming blacklists against spam traffic to MIT
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Figure 1: Relationship between scanning and botnet population. Addresses in the botnet scan the observed
network for approximately a month before the report, while activity drops noticeably after the report.

in 2000 and 2004, finding that in 2004, 80% of spammers
were identified by blacklists. Ramachandran et al. [22],
examine blacklist abuse by botnet owners. Ramachandran
notes that botnet owners appear to place a higher premium
on addresses not present on blacklists. Since uncleanliness is
intended to predict future hostile addresses, this may impact
the costs noted by Ramachandran.

McHugh et al. [17] use locality to characterize normal net-
work behavior and differentiate attacks. Krishnamurthy et
al. [14] group IP addresses into heterogeneously sized net-
work aware clusters in order to characterize target audiences
for networks, and demonstrate that many sites have common
audiences. Jung et al. [10] use network aware clustering for
DDoS defense. These methods of blocking are predicated on
the assumption that attack traffic differs from normal traf-
fic due to a limited and clustered audience for any normal
service. Our filtering approach differs from the past history
used in these cases by developing a set of explicitly untrusted
networks.

3. SOURCE DATA

We demonstrate evidence of uncleanliness by showing that
address distributions from unclean data sets show specific
qualities. In order to do so, we must collate information
from various sources, many of which use different collection
methods. In this section, we describe a taxonomy and nota-
tion scheme for managing this data. This section is divided
as follows: §3.1 explains the taxonomy and notation for re-
ports, and §3.2 describes the individual reports.

3.1 Model

In order to estimate the uncleanliness of a network, we
must compare data from multiple sources. For example, an
attacker may initially use a bot for scanning, then for spam-
ming. We call these sources reports, each of which consists
of a set of IP addresses describing a particular phenomenon
over some period. Reports differ by the class of data re-
ported, the period covered by the report, and the method
used to generate that data.

We use four classes of unclean data for this paper:

Bots: An IP address identified as hosting some form of bot
software or communicating with a botnet command
and control host.

Phishing: An IP address identified as hosting a phishing
site to fraudulently acquire private user information.

Scanning: An IP address identified as scanning using the
methods developed by Gates et al. [7] and Jung et
al. [11].

Spamming: An IP address identified as spamming using a
behavioral spam detection technique 2.

These reports all describe phenomena associated with com-
promised hosts. Scanning and spamming are both common
botnet uses, and phishing requires setting up a fraudulent
web site.

We further divide reports as either provided or observed.
Provided reports are collected from external parties, and

3This spam detection method is currently under review.



| Unclean reports |

Tag Type Class Valid Dates

Size | Reporting method

bot Provided Bots

2006/10,/01-2006/10/14

621,861 | Bot addresses acquired through pri-
vate reports from a third party

phish Provided | Phishing | 2006/05/01-2006/11/01 53,789 | Addresses from a Phishing report
list

scan Observed | Scanning | 2006/10/01-2006/10/14 151,908 | IP addresses scanning the observed
network

spam Observed Spam | 2006/10/01-2006/10/14 397,306 | IP addresses spamming the observed
network

Reports for hypothesis testing

bot — test | Provided Bots 2006/05/10

186 | Botnet addresses acquired through
private communication

control | Observed N/A

2006/09/25-2006/10/02 | 46,899,928 | Control addresses acquired from the

observed network

Table 1: Table of tags used to analyze spatial and temporal uncleanliness.

can use different methodologies to observe the same effects.
For example, a phishing list can acquire IP addresses by
using spam traps [19] or by collecting user reports, (e.g., the
submission form at the CastleCops PIRT service [1]). For
the analyses within this paper, we use only one source per
report and assume that the source’s collection methodology
is consistent over the report period.

In contrast to provided reports, observed reports are gen-
erated from network traffic logs reporting traffic covering a
large edge network. Because we generate observed reports,
we are able to collect observed reports at any time, which
gives us greater flexibility in picking data than in the case
of provided reports.

Each report is differentiated by a tag which, for this paper,
summarizes the period and source for the report. We express
this using the notation R, where T is the tag (e.g., scan).
A list of reports is provided in Table 1; this list is used
for testing uncleanliness properties. Another list, given in
Table 2, will be used for the analysis in §6.

Because we expect uncleanliness to be a network property,
we approximate distinct networks by using identically sized
CIDR blocks. We define a CIDR masking function C ().
The CIDR masking function evaluates to the unique CIDR
block with prefix length n that contains the IP address ¢
(e.g., C16(127.1.135.14) = 127.1.0.0/16 ). For convenience,
when the CIDR masking function is applied on a report S,
the result is set-valued and returns the set of all n-bit CIDR
blocks in that set, that is:

Ca(S) = | Cn(i) (1)

ics
When determining whether or not an IP address resides
within a set of CIDR blocks, we will use a CIDR inclusion

relation, [, to indicate that an IP address is resident in one
of a set of CIDR blocks:

i C S — Inst. Cn(i) € Cu(9) (2)

With all sets and reports, we use bars to indicate cardi-
nality, i.e., |S| is the number of elements in the set S.

3.2 Reports

Table 1 is an inventory of the reports used in this paper

to test spatial and temporal uncleanliness. Recall that pro-
vided reports have been given to us by other parties and
that we generate observed reports using traffic logs from the
observed network. Because of this, the dates that we can
test for temporal uncleanliness are constrained by the times
that the provided reports cover.

The observed network is composed of over 20 million dis-
tinct IPv4 addresses and contains several servers that are
heavily used by clients across the Internet. Given the size
and activity of the observed network, we assume that IP ad-
dresses from the Internet crossing into it are a representative
sample of the Internet as a whole.

All reports have been filtered to only include addresses
that are outside of the observed network and are not other-
wise reserved (e.g., all addresses specified in RFC 1918 have
been removed from reports). This filtering step is intended
to remove selection bias from our observed reports; given our
familiarity with the observed network and its size, we may
identify more of a particular phenomenon than the provided
reports may identify.

We classify four of the reports in this list as unclean re-
ports. These are the reports we use as ground truth for
identifying the four classes described in §3.1: bots, phish-
ing, scanning and spamming. During the two week period
of October 1st—14th, 2006, we have both provided and ob-
served reports on all classes of unclean activity, consequently
we use this period to test temporal uncleanliness.

The next set of reports are used specifically to test the spa-
tial and temporal uncleanliness hypotheses. The bot — test re-
port describes a small botnet from five months before all the
other activity analyzed in this paper, bot — test is used as an
extreme case for prediction: if a five-month old report can
accurately predict current unclean activity, then a recent
report should be more effective.

The control report consists of 47 million unique IP ad-
dresses observed during the week of September 25th, 2006.
We compare the data from our other reports against ran-
domly generated subsets of control in order to determine
whether or not these reports exhibit spatial or temporal un-
cleanliness. We use the control report to more accurately re-
flect the structure of IPv4 space than we would using purely
randomly chosen IP addresses. The report consists of IP ad-
dresses observed to engage in payload-bearing TCP activity,



which reduces the risk of the address being spoofed. Fur-
thermore, as noted in §3.1, the observed network includes a
variety of servers used by hosts throughout the Internet, and
by focusing exclusively on the IP addresses of the hosts with-
out using any criteria apart from the unspoofed criterion, we
expect the resulting report to approximate a random sample
of active IP addresses on the Internet.

4. SPATIAL UNCLEANLINESS

We define spatial uncleanliness as the propensity for occu-
pied addresses (bots) to be clustered in unclean networks. In
this section, we formulate and test the spatial uncleanliness
hypothesis.

This section is divided as follows: §4.1 describes the method-

ology used to test for spatial uncleanliness. §4.2 describes
the results of our tests and shows evidence for spatial un-
cleanliness.

4.1 Model and Methodology

Recall our assumption that the likelihood of a host be-
ing compromised is a network property: if a network is
unclean, then its administrators will not identify compro-
mised machines or rapidly repair them. Consequently, we
expect that multiple hosts within an unclean network will be
compromised, and that compromised addresses will cluster
within unclean networks. In order to test this hypothesis,
we will compare the expected population of compromised
hosts within equally sized CIDR blocks.

Throughout this paper, we use homogeneously sized CIDR
blocks to model individual networks. Given that we lack
accurate information on network populations, we make a
ceteris paribus assumption that equally sized blocks should
have equivalent populations. In comparison, heterogeneous
partitioning such as network-aware clustering [14], can result
in network populations that differ in size by several orders of
magnitude. Based on DDoS filtering work done by Collins
and Reiter [3], we expect that CIDR prefix lengths above 16
bits will be too imprecise for effective filtering and detection.
Consequently, we limit our block sizes to between 16 and 32
bits.

To test for spatial uncleanliness, we begin with a mea-
surement for comparative density. If we have two sets, Si
and Sz, and |S1| = |S2|, then we say that Si is denser at
n-bits if |Cr(S1)| < |Cn(S2)|. That is, if the total number
of n-bit CIDR blocks containing S; is smaller than the set
containing Ss.

In §1, we stated that spatial uncleanliness implies that if
a host is compromised, there is a good chance another host
on the same network will be compromised. Consequently, if
we had a set of compromised host addresses, and a control
set of randomly selected addresses with equal cardinality, we
would expect that the compromised address set was at least
as dense at all CIDR prefix lengths.

We therefore summarize the spatial uncleanliness hypoth-
esis as follows: if we have a report which selects unclean traf-
fic from the Internet, Runclean, then the IP addresses within
that report will be more densely packed than a set of IP
addresses with equal cardinality randomly selected from the
control set.

To test the spatial uncleanliness hypothesis, we use the
formulation given in Equation 3. Assume two reports: Runclean
which reports on unclean traffic, and Rnormal, & control group.
If both reports are of equal cardinality, then:

Vn € [16532] |Cn(Runclean)| S |Cn(Rnormal)| (3)

Recall from above that we have limited our block sizes to
between 16 and 32 bits.

4.2 Analysis

In order to test the spatial uncleanliness hypothesis as
formulated in Equation 3, we compare the population of ad-
dresses per n-bit CIDR blocks for an unclean report against
the expected population for n-bit CIDR blocks across the
Internet as a whole.

As discussed in §3.2 we model the population of Rnormal
by randomly selecting IP addresses from Rcontrol. Kohler et
al. [13] observe that IP addresses are not evenly distributed
across IPv4 space; as a consequence, a purely random model
will result in an artificially depressed density estimate. We
test two population estimates to compensate for this. The
first, naive, estimate selects addresses evenly from across all
/8’s which are listed as populated by IANA*. The second,
empirical, estimate draws addresses Reontrol In the empiri-
cal estimate, we create 1000 randomly generated subsets of
Reontrol and group the resulting addresses.

Figure 2 plots the number of blocks observed for CIDR
block prefix lengths of 16 to 32 bits. This plot compares the
botnet density, Ruot, against both the empirical and naive
density estimates of equal size (621,861 addresses, as per
Table 1), with the intent of comparing the effectiveness of
the estimates against the population actually observed. As
this figure shows, the number of distinct blocks containing
bots is less than or equal to the number of blocks for either
the empirical or naive estimates. Of particular note is that
as the block size decreases, moving from left to right on the
graph, the number of blocks observed for both the empirical
estimate and the botnet report do not proportionately in-
creases. If addresses were evenly distributed, as is the case
with the naive estimate, then we would expect the number
of blocks observed to double with each unit increase in prefix
length.

Based on the results from Figure 2, we use empirical es-
timation throughout the rest of this paper. A note about
Figures 2 and 3: the empirically estimated populations are
plotted using boxplots, however the variation in the number
of blocks at a particular prefix length relative to the total
number of blocks is very small and consequently not visible.

Figure 3 compares control data (empirically estimated
populations) against the chosen reports for each class: spam-
ming, scanning, botnets and phishing. As with the popula-
tion plot in Figure 2, these plots represent the total number
of n-bit blocks observed for that population. Since each pop-
ulation is of equal size, the lowest line will have the highest
density. For each plot in Figure 3, the control data consists
of 1000 random subsets of Reontrol and plotting the resulting
distribution as a boxplot. Again, we note that the variation
in block counts for the empirical data is very narrow and
generally not visible in these plots.

Figure 3(i) is a plot of the comparative volume for Rpot.
As this plot shows, the population of Rpot is more densely
packed than the expected population drawn from Rcontrol-
Figure 3(ii) plots the volume of Rpnisn reported from May
to October, 2006. We use a five month sample due to the

‘http://www.iana.org/assignments/
ipv4-address-space
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smaller size of the phishing reports in comparison to the
other reports. As shown in Table 1, the six month phishing
report is approximately an order of magnitude smaller than
the other unclean reports. As with Figure 3(i), addresses in
the phishing report are more tightly packed than addresses
selected from the control report.

Figure 3(iii) plots the volume of Repam from October 1st
to 14th, 2006. Figure 3(iv) plots the volume of Rscan for the
same period. Each of these reports is more tightly packed
than the comparative control reports.

As Figures 2 and 3 show, unclean reports have an n-bit
density greater than or equal to or greater then the n-bit
density of the control reports for all values of n. Conse-
quently, this data supports the spatial uncleanliness hypoth-
esis: compromised hosts are disproportionately concentrated
in certain networks.

5. TEMPORAL UNCLEANLINESS

We now address temporal uncleanliness: the propensity
for networks to remain unclean for extended periods of time.
In order to test for temporal uncleanliness we compare the
ability of a report of unclean addresses to predict future com-
promised addresses; in particular, whether or not a report of
bot addresses can predict future bots, spamming, scanning
and phishing.

This section is divided as follows: §5.1 describes our method
for measuring the presence of temporal uncleanliness, and
§5.2 shows the results.

5.1 Model and Methodology

To observe temporal uncleanliness, we examine the pre-
dictive capacity of reports of unclean data. Consider three
reports:Revent—past, Which reports on some event in the past;
Rnormal—past; Which reports on past activity without any par-
ticular criterion, and Revent—present, Which describes the same
event’s population in the present. If Revent—past and Rnormal—past
are of equal cardinality, then Revent—past is @ better predictor
of the report Revent—present at prefix length n if:

|Cn (Reventfpast) m Cn (Reventfpresent) | >
‘ Cn (Rnormal —past) m Cn (Reventfpresent) | (4)

If temporal uncleanliness exists, then we expect that un-
clean reports will consistently be better predictors of future
unclean reports than a control report. However, we note
that due to spatial uncleanliness, an unclean report will pop-
ulate fewer equally sized blocks than an equivalent control
report. As a consequence, as block size increases, the con-
trol report will have a larger number of imprecise successes.
Therefore, there will be some prefix length below which the
unclean report will be a worse predictor.

For testing, we use the form of the temporal uncleanli-
ness hypothesis given in the equation below. Given that
Runclean—past and Rnormal—past have equal cardinality, then
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That is, there exists a prefix length where a previously
generated report of unclean activity is more predictive of
present unclean activity than a control report of equal car-
dinality. As with spatial uncleanliness, we limit our analyses
to blocks with a CIDR prefix length of at least 16 bits.

5.2 Analysis

We now test the temporal uncleanliness hypothesis formu-
lated in Equation 5. To do so, we use Rpot—test @S Runclean—past
and then compare against each of our unclean reports col-
lected during the period of October 1st-14th, 2006. Recall
that we don’t control the dates for which we receive pro-
vided reports. During this period, we have data from each
of the provided reports and could generate observed reports
for the same period. By using a five month gap in time, we
also test an extreme case: if past activity can effectively pre-
dict future activity five months in advance, then we should
be able to predict future activity over shorter periods.

Figure 4 shows the relative predictive capacity of Rpot—test
against future unclean reports; for these figures, Rpnish is a
sub report of Rphish from Table 1. This report is considerably
smaller than the others, containing 2302 addresses. This
results in a smaller degree of intersection with the randomly
generated reports from the control report.

As in §4.2, we generate the reference line by plotting a
boxplot showing the variance of 1000 randomly selected test
reports drawn from Reontrol. In contrast with Figure 3, the
small cardinality of Rpot—test €nsures that the variations ob-
served by the boxplot are visible. We consider t Rpot—test
to be a better predictor than Reontrol if the cardinality of its
intersection with the corresponding unclean report is higher
than the intersection with randomly selected addresses in
95% of the observed cases.

As Figure 4 shows, Rpot—test i a better predictor than
Reontrol for botnets, spamming and scanning at various prefix
lengths. Also of note is the impact of spatial uncleanliness:
in these three figures, Ruot—test is a better predictor for prefix
lengths of approximately 19-20 bits and longer. At shorter
prefix lengths, randomly selected addresses become better
predictors. Using the 95% threshold, Rpot—test is a stronger
predictor of future botnet activity between 20 and 25 bits,
spamming between 19 and 32 bits, and scanning between 20
and 24 bits. For prefix lengths longer than these values, the



two reports are equally predictive due to the low probability
of seeing CIDR blocks from either report intersect.

Figure 4(ii) plots the predictive capacity of Rpot—test against
Ropnish- In contrast to the other plots in Figure 4, this plot in-
dicates that Rpot—test is not a good predictor of future phish-
ing activity in comparison to randomly selected control sets.

We have two hypotheses as to why this occurs for phishing
data: Ramachandran et al. [22] describe how botnet own-
ers place a higher premium on addresses that have not yet
been identified as bots. Because phishing sites need to be
publicized, a phishing IP address becomes public knowledge,
marked on blacklists and consequently highly unattractive
for the owner of a botnet.

An alternative explanation is that, in contrast to botnets,
phishing sites are generally hosted on web servers, and a
phisher may prefer to host phishing sites in a actual dat-
acenter to ensure robustness during a flash crowd. At the
minimum, a phishing site must be publicly accessible, while
a useful bot can exist behind a NAT or a firewall. There-
fore, phishers may prefer sites that are already hosting web
servers and have the resources to handle a high traffic load.

In order to determine whether the temporal uncleanliness
hypothesis does hold for phishing, we now consider a test
that uses phishing data exclusively. Figure 5 plots the in-
tersection of Rphish—test against the same phishing set as in
Figure 4(ii). In this case, |Rphish—test| = 1386. We note that
this figure shows strong evidence for temporal uncleanliness
in phishing.

Since these results show that five month old reports can
be used to more effectively predict the population of future
reports than randomly selected IP addresses from a week be-
fore, we conclude that the temporal uncleanliness hypothesis
is supported by this data. Furthermore, in Equation 5, we
chose a range of IP blocks arbitrarily, we can now establish
a lower limit for the prefix length of 20 bits, an an upper
limit in excess of 24 bits.

We have also shown that phishing activity and botnet ac-
tivity are not related in the way that bots, scanning and
spamming are. As noted elsewhere [21, 15], scanning and
spamming are commonly implemented with botnets, so we
would expect that Rpot, Rscan and Rspam are related. How-
ever, the inability of Rpot—test t0 predict future phishing ac-
tivity suggests that a measurement for uncleanliness will
have to be multidimensional: phishing sites are still taken
over, but it may be that phishers have different criteria for
the machines they occupy than botnet owners.

6. BLOCKING TESTS

The spatial and temporal uncleanliness hypotheses to-
gether provide a method for identifying the risk that traffic
from a particular network originates from a compromised
host. We now address the issue of whether unclean networks
can be effectively blocked; that is, whether or not blocking a
set of unclean networks will adversely affect legitimate traffic
entering an active network.

To determine whether we can effectively block traffic, we
conduct a limited experiment to show the impact of block-
ing a set of unclean networks would have on incoming traffic
to a live network. The remainder of this section is struc-
tured as follows:§6.1 describes our analytical method, and
§6.2 discusses the results.

6.1 Method

To determine whether we can productively block traf-
fic from unclean networks, we examine traffic logs from a
live network and compare the intersection between incom-
ing traffic, the Rpot—test and other uncleanliness reports from
the same observation period as the incoming traffic.

We begin by collecting traffic logs of all traffic that crosses
the observed network from all TP addresses i = C24(Rbot—test)
for the observation period of October 1st—14th 2006. This
report, Reandidate, consists of all IP addresses observed in traf-
fic crossing the observed network that share a /24 in com-
mon with any of the IP addresses in Rpot—test- Lhis allows
us to test the effectiveness of filtering from the /24 to the
/32 range; we pick this range because, as seen in Figure 3,
24 bits is the minimum block size at which Rpot—test 1S an
unambiguously better predictor of future uncleanliness than
control data. We further constrain Recandidate t0 those ad-
dresses that generate at least one TCP record during this
period.

The traffic data used in this analysis consists CISCO Net-
Flow® V5 records. NetFlow records are a representation of
approximate sessions consisting of a log of all identically ad-
dressed packets within a limited time. Flow records are a
compact representation of traffic, but do not contain pay-
load.

Consequently, our analysis includes a degree of uncer-
tainty because we cannot validate what any session was en-
gaged in. To compensate for this , we differentiate addresses
by membership in one of the unclean reports and by behav-
ior observed in the flow records. We partition the addresses
in 7?«candidate into three I‘ePOI"tSI Runknowm 7zhostile and 7einnocent-
A full inventory of the reports used in this analysis is given
in Table 2.

Rhostite consists of any IP address in Recandidate that is also
present in the unclean reports (i.e., scanning, spamming,
phishing or botnet membership). The hostile set is identified
purely by intersecting these reports, and once an IP address
is identified as hostile it cannot be present in the remaining
two reports.

Runknown consists of the addresses in Rcandidate address that
are not present in one of the unclean reports, but have no
payload bearing flows. We define a flow as payload-bearing
if it is a TCP flow with at least 36 bytes of payload and at
least one ACK flag. Due to TCP options, a 3-packet SYN
scan will often have 36 bytes of payload, even though this
data is still part of the TCP handshake. Hand-examination
of the flow logs found multiple examples of 36-byte SYN-
only scans to apparently randomly selected ports on diverse
targets.

The IP addresses in Runknown are not proven to be hostile
but are highly suspicious. Due to the lack of payload in
flow data, we cannot definitively categorize members of this
report into either of the other two reports and consequently
we remove them from the false positive calculations. For this
analysis, we consider the false negative rate to be effectively
zero, as we are only considering addresses that we have opted
to block.

The population of Rinnocent consequently consists of any
IP address that does conduct payload-bearing TCP activity
and is not present in any of the unclean reports.

Our prediction scenario assumes that the network blocks
Crn(Rbot—test) for some value of n € [24,32]. The success

Shttp://www.cisco.com/go/netflow
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Figure 4: Comparative predictive capacity of Ruot—test against control data. Note that Ruct—test is a better
predictor than control data for everything except phishing.

of this defensive mechanism is based on how many hostile
and innocent addresses are blocked by the attack mechanism
(as noted above, while the unknown population is calculated
and analyzed in this exercise, it is not scored). The score for
the defensive mechanism is the relative success, measured in
true and false positives of the filter as a function of n. We
define a false positive as a member of Rinnocent blocked by
the filter, and true positive as a member of Rhostile blocked
by the filter.

6.2 Results

We now calculate the success of our blocking mechanism.
We emphasize that this is a test of a virtual blocking ca-
pacity; we did not actually block addresses, but instead ob-
served the activity engaged in by candidate addresses and
evaluated the impact if we had blocked them. To evaluate
the efficacy of our defensive mechanism, we use ROC anal-
ysis: we compare true positive rates and false positive rates
against an operating characteristic of the prefix length used
to characterize the networks in Rpot—test-

For these analysis, the true positive rate, is the percentage
of blocked IP addresses which were reported in suspicious ac-
tivity during the observation period. The false positive rate
consists of all addresses which were engaged in meaningful
activity that were not reported as hostile. Note that, as

discussed in §6.1, we define a third category for addresses
which communicate with the observed network, but do not
exchange any payload.

To calculate the true and false positive rates, we define a
membership function, m:

m(i, S) = 1 Cs2(i) C Cs2(5)
’ 0 otherwise

(6)

For any prefix length n, we calculate the population as
a function of n by summing the unique IP addresses that
appear within the Rpot—test

pop(n) =
Z m (4, Reandidate N (Rinnocent U Rhostile) )
i C (Rbot—test)
(7
As noted above, this calculation explicitly avoids the use

of Runknown- We calculate the true positive and true negative
values by calculating a similar value over the various reports:

TP(n) = >

iCCn (Rpot—test)

m(z, Rcandidate N 7zhostile) (8)
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future traffic, like the bots in Figure 4(i),(iii) and (iv).

FP(n) = >

iCCn (Rpot—test)

’ITL(’L, Rcandidate N Rinnocent) (9)

Table 3 summarizes the effectiveness of this prediction
method. As this table shows, all three populations increase
as the bit length increases. At n = 24, 90% of the incoming
addresses are correctly identified as hostile. If we assume
that unknown addresses are hostile, the true positive rate is
97%. Furthermore, the false positive rate remains relatively
low until n = 26.pa

| n | TP(TL) | FP(’I’L) | pOp(n) | Runknown |

24 287 35 322 708
25 172 22 194 344
26 81 1 82 200
27 38 1 39 105
28 18 0 18 60
29 7 0 7 29
30 1 0 1 14
31 1 0 1 7
32 1 0 1 0

Table 3: Observed true and false positive counts

Of note with this dataset are the volume of uncertain ad-
dresses (i.e., the population of Runknown). At a 24 bit prefix
length, |C24(Robot—test) N C24 (Runknown)| yields approximately
700 addresses. We first note that unknown addresses have

engaged in TCP communications, but have not exchanged
payload - consequently, blocking these addresses does not
impact traffic.

Of more concern is that all of the addresses in Runknown
engage in some form of suspicious behavior (that is, suspi-
cious apart from trying to connect with the network and
not exchanging payload). Hand examination found many
addresses trying to open communications from ephemeral
ports to ephemeral ports or engaged in slow scanning. The
latter addresses did not appear in our scanning report be-
cause the scan detection mechanism is calibrated to identify
scans that take place over an hour, while scans observed in
this dataset would often contact less than 30 addresses per
day over the observation period.

The strength of this blocking method is predicated on the
relatively sparse amount of traffic issuing from these blocks.
As Table 3 shows, 1030 IP addresses were blocked when n
was set to 24 bits. |C24(Rbot—test)] = 173, which yields a
potential set of 44,288 address that can be blocked. Conse-
quently, less than 2% of the total IP addresses available in
those /24s communicated with the observed network during
this time.

Some of the effectiveness of this method may be attributed
to the demographics of the botnet and the observed net-
work Rpot—test consists primarily of addresses outside the
English-speaking world, with 70% of the addresses coming
from Turkey. Despite its size, the observed network an edge
network; all traffic at its border is either originating from an
address within that border or going to an IP address within
that border.

We therefore conclude that our test results indicate the



| Reports used for prediction testing

Tag Type Class | Valid Dates

Size | Reporting method

unclean Provided

Special | 2006/10/01-2006/10/14 | 1,158,103 | The union of the four unclean re-

ports, note that there is overlap

candidate | Observed | N/A

2006,/10/01-2006/10/14 1030 | IP Addresses crossing the network

border and that are in the same
/247S as Runclean

hostile Observed N/A 2006,/10/01-2006/10/14 287 | Members of Rcandidate alS0 present in
Runclean
unknown | Observed N/A 2006,/10/01-2006/10/14 708 | Members of Rcandidate N0t in Runclean,
but engaged in suspicious activity
innocent | Observed | N/A | 2006/10/01-2006/10/14 35 | Members of Rcandidate 10t present in

7zhostile or Runknown

Table 2: Table of reports used for prediction test.

feasibility of blocking hostile addresses, but that this ap-
proach is best used in conjunction with other traffic analysis
mechanisms in order to determine the best practices for in-
dividual networks.

7. CONCLUSION

In this paper, we have demonstrated that it is possible to
effectively predict future hostile activity from past network
activity. To do so, we have defined a network-based qual-
ity of uncleanliness, which is an indicator of how likely a
network is to contain compromised hosts.

As an initial work in this field, we have focused on testing
basic hypotheses about uncleanliness, which we have defined
with the spatial and temporal uncleanliness hypotheses. Us-
ing reports of network activity and traffic logs of a large
network we have shown evidence of spatial and temporal
uncleanliness. We have also shown that an uncleanliness
measure may involve multiple dimensions, such as botnets
and phishing.

Finally, we have demonstrated that spatial and tempo-
ral uncleanliness, coupled with the limited audience of an
edge network, can be effectively used to block hostile traf-
fic in the future. Given the demographics issues noted in
86, uncleanliness may best be used as a risk indicator — by
showing that a network is demonstrating unclean behavior,
security personnel can evaluate whether the risk of hostile
activity from the network is worth the benefit of receiving
commerce and communication from that network under nor-
mal circumstances.

Our immediate goal following this work is to develop a
more rigorous and precise uncleanliness metric. In particu-
lar, a multidimensional uncleanliness metric to measure the
aggregate probability that an address is occupied. The ele-
ments of this metric involve the components discussed in this
work as well as other predictive indicators of vulnerability
(communication with botnet C&C nodes).

We also believe that spatial uncleanliness has useful impli-
cations for network log analysis. If we know that a host from
one network is attacking, scanning or otherwise interfering
with the traffic on an observed network, it is reasonable to
examine other traffic from that network to see if there is
coordinated hostile activity.
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