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ABSTRACT

Health monitoring, automated failure localization and diag-
nosis have all become critical to service providers of large
distribution networks (e.g., digital cable and fiber-to-the-
home), due to the increases in scale and complexity of their
offered services. Existing automated failure diagnosis solu-
tions typically assume complete knowledge of network topol-
ogy, which in practice is rarely available. The solution pre-
sented in this paper—Network Management and Diagno-
sis (NetworkMD)—is an automated failure diagnosis system
that can infer failure groups based on historical failure data,
and optionally geographical information. The inferred fail-
ure groups mirror missing topologies, and can be used to lo-
calize failures, diagnose root causes of problems, and detect
misconfiguration in known topologies. NetworkMD uses an
unsupervised learning algorithm based on non-negative ma-
trix factorization (NMF) to infer failure groups. Using cable
network as the primary example, we demonstrate the effec-
tiveness of NetworkMD in both simulated settings and real
environment using data collected from a commercial network
serving hundreds of thousands of customers via thousands
of intermediate network devices.
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C.2.1 [Computer-Communication Networks]: Network
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Service providers are offering bundled services to encour-
age consumers to use their high-speed data distribution net-
works. Adding these new customers and their services re-
sults in physical connectivity to support hundreds of thou-
sands of devices as well as logical (or service) connectivity
to support the evolving service offerings (e.g., Voice-over-
IP and Video-on-Demand). There are significant network
management challenges that arise from the combination of
rapid growth and increased complexity of the network, par-
ticularly those associated with failures, which at this scale
are almost certain to be present. This paper is focused on
two challenges identified by multiple service providers we
work with: missing device status information and incom-
plete topology. Cable network infrastructures are used as the
primary examples in this paper, but the findings are equally
applicable to other large-scale distribution networks, includ-
ing TP networks, utility networks, etc.

In a cable network, a single administrative area encom-
passes hundreds of thousands of end-customers (e.g., cable
modems and VoIP phones) with thousands of intermediate
distribution devices that operate on different protocol lay-
ers. Such devices include routers, Cable Modem Termina-
tion Systems (CMTSs), fiber nodes, repeaters, etc.

Consider a simplified cable network in Figure 1. A first
challenge is that the Network Operations Center (NOC) can-
not continuously monitor the status of all devices because
either: (1) some devices are passive and therefore unrespon-
sive to diagnostic packets or signals, or: (2) the cost of prob-
ing all devices is too high. An example device likely to be
unresponsive is a physical layer repeater connecting cable
modems and fiber nodes, and their statuses are rarely visi-
ble to the NOC. The computing time and resources required
to continuously probe all cable modems in an administrative
area are prohibitive, given the large size of the corresponding
customer-base. Therefore, in practice, the NOC must rely
on monitoring data limited to coarse-grained passive moni-
toring or infrequent active probes obtained from accessible
devices to diagnose failures spanning the entire network. A
second challenge is that in many cases, a complete network
topology is not available. This typically happens because
topology information is spread across disparate plant map-
ping applications, which may not be integrated with moni-
toring and management applications.? As a result, the NOC

Qur primary focus is on the “9ast mile” of the distribution
infrastructure, where the logical topology is tree-like.

?We emphasize that typically this information is available.
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Figure 1: A typical cable network topology consist-
ing of routers/switches, CMTSs, fiber nodes, re-
peaters, and cable modems, organized in a tree
structure. Here, connectivity between end modems
and fiber nodes is missing.

often needs to deal with an incomplete topology as in Fig-
ure 1, where the exact number of repeaters and their con-
nections to fiber nodes and cable modems are unknown.

A desirable approach to address these challenges is one
which automatically infers missing topologies in distribu-
tion infrastructures. To this end, we adopt the concept of
failure group (FG)—a group of end components (i.e., cable
modems) that are likely to share the same risk of failure.
The failure of an FG dictates the failures of all its compo-
nents. Failure groups are constructed by mining historical
failure patterns and are shown to be good reflection of ac-
tual topological dependencies. While typically the missing
topology cannot be fully discovered, we show how FGs are
useful in failure diagnosis.

Specifically, we use FGs to help identifying the root cause
of failures, even though failures may be caused by devices
that are neither remotely measurable by the NOC, nor vis-
ible from the topology standpoint. In Figure 1 then, we
are interested in identifying which repeater has failed based
on the observation of health information of the higher- and
lower-layer devices. Previous solutions to network failure
diagnosis depend on the availability of complete topology
(with possibly incorrect) information [15, 14, 22], which is
used to understand the dependency between network devices
(e.g., routers) and observed failures (e.g., IP link failures).
Unlike these works, our study focuses on the problem of
failure diagnosis with incomplete information about device
status and network topology. The idea is that if we can infer
FGs that directly reflect the missing part of the topology, we
can then use FGs to localize failures, diagnose root causes,
and even detect misconfigurations in the existing topology.
We demonstrate that this approach can provide meaningful
assistance to failure diagnosis in cable networks.

The rest of this paper is organized as follows. Section 2
provides a formal statement of the problem. We then intro-
duce the details of our approach in Section 3. In Section 4,
we describe the implementation of the NetworkMD algo-
rithms in a real operational environment. In Section 5, we
evaluate the effectiveness of our algorithms using both simu-
lated and real data. Related works are discussed in Section 6

It is however (1) extremely expensive to integrate into ev-
ery monitoring application, and (2) may not be updated
frequently enough to capture the actual topology as cus-
tomers constantly join and leave the network, causing invis-
ible changes.
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Figure 2: An example of the measurement process
on a simple topology. Modems marked by an “X”
indicate a failure.

and finally, Section 7 concludes the paper.

2. PROBLEM STATEMENT

The primary information source to infer failure groups is
the status of end-devices represented as a binary value, 1 if
faulty, 0 if not. In cable networks, end-devices can be cable
modems, set-top boxes, etc. As noted previously, the high
overhead of probing makes it uncommon for management
applications at the NOC to periodically check the status of
all end-devices. Therefore, we do not assume the availabil-
ity of complete status information for all devices in each
measurement epoch. Rather, active probing is invoked only
when a higher-level device (e.g., a CMTS interface) issues
an alarm that indicates the occurrence of failure event. For
instance, an alarm could be triggered if the number of live
modems registered at a CMTS interface is less than a pre-
defined minimum threshold.

The above measurement yields a failure instance matriz
X = [Xij]nxa for each parent device (e.g., CMTS interface,
node, etc), where n is the number of measurements (not nec-
essarily obtained with a fixed period), and d is the number
of end-devices probed in each measurement. For instance,
Xi; represents the status of the j-th modem during the i-th
measurement: X;; = 1 indicates that the modem is faulty;
X;; = 0 means the modem is functioning.

In practice, the failure instance matrix collected by probes
is not always accurate. This is caused by the facts that (1)
probes are unreliable, hence may not always get responses;
(2) monitored cable modems may be powered off when the
probes are sent to them (so that these modems can be per-
ceived as “faulty”). Furthermore, not all cable modem fail-
ures can be characterized by failure groups. In other words,
probes may detect isolated cable modem failures, which are
not caused by higher level device failures, hence should only
be considered as measurement noise.

To illustrate the failure instance matrix, consider the sim-
ple 3-level topology shown in Figure 2. Active probes are
launched from the root to all leaf nodes. The causes of the
failures detected by the second and third probe are the fail-
ure of repeater 1. The failures detected by the first, fourth
and fifth probes are contributed by the failure of repeater
2. Note that as perceived by the fifth probe, modem 1 is
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Figure 3: An example of decomposition of failure
instance matrix X into failure explanation matrix U
and failure group matrix V.

powered off by the user. Hence, it should be considered as
an isolated failure, i.e., noise in the data set.

There is flexibility in choosing the level of network hier-
archy at which the failure instance matrix is organized. For
example, the matrix can group cable modem measurements
at the CMTS interface level, yielding a small number of
large instance matrices. Alternatively, the matrix can group
measurements at the node level, yielding a large number of
smaller instance matrices. The choice of grouping level de-
pends on the target application, as well as the availability
of data.

Given a failure instance matrix X, our goal is to identify
the FGs and determine their failure statuses. Note that the
number of FGs, r, is typically much smaller than the number
of modems, d, due to the high-density tree topology of the
network. Ideally, without any noise and measurement er-
rors, the status of FGs and the association of cable modems
to different FGs jointly determine X. Specifically, suppose
we know a priori the compositions of all FGs and their sta-
tuses during the measurement, we can construct two binary
matrices, a failure explanation matriz, U = [U@'j]7l><7-7 and a
failure group matriz, V = [Vij]rxa. Each row of V represents
an FG: V;; = 1 iff the j-th modem is associated with the -
th FG, Vi; = 0 otherwise. As exemplified in Figure 3, each
column of U represents the status of an FG: U;; = 1 iff the
j-th FG fails during the i-th round of measurement, U;; = 0
otherwise. Thus, the product of the two binary matrices
should equal the original failure instance matrix X:

X=UxV (1)

In practice, due to the noise in the data set, X might
not exactly equal U x V. Therefore, we need to find U and
V' such that they best represent the actual causes of the
failures, despite the presence of noise.

3. APPROACH

We begin by describing the algorithm to find the failure
group and failure explanation matrices. Figure 4 provides a
high-level overview of the key steps. Section 3.1 describes
the basic algorithm, which assumes the number of failure
groups is known a priori and that the failure groups are
non-overlapping. Section 3.2 extends the algorithm to cases

C

‘ X
i Extended
Find dominate Algorithm
Cluster VEILEE
(NMF) l rlow’rhigh
u,v lterate
over
: r xry
Normalize V with highest
quality factor,
. yielding r failure
U’ v quality(r) groups
Threshold A
| Compute Merge sub-
v Quality groups
Basic Algorithm ’ I

-

Figure 4: Outline of NetworkMD algorithm

where the number of failure groups is unknown. Finally,
Section 3.3, extends the algorithm to handle more complex
topology configurations. An alternative approach based on
the k-means algorithm is given in Section 3.4 for comparison
purposes.

3.1 TheBasic Algorithm

For the basic algorithm, three assumptions are made. First,
the failure instance matrix X is complete without missing
values. Second, the target number of failure groups, r, is
known. For example, the number of repeaters in the network
is assumed to be known, but not the connections between
cable modems and these repeaters. Third, the failure groups
do not overlap, as in the case of cascaded topology. We will
extend our study on cascaded topologies in Section 3.3.

We propose an algorithm based on the Non-negative Ma-
triz Factorization (NMF) method [17]. NMF decomposes
X into two non-negative real matrices U,, ., and V, , ,, such
that the derived failure instance matriz, X' = [X;;] = U’ x
V', is a good approximation of the original failure instance
matrix X, i.e., NMF aims at minimizing the reconstruction
error function:

S=IX-XIP =Y (X - X0 @)

The error function is minimized through an iterative process.
Compared to general algorithms for minimizing functions,
such as gradient descent or the Simplex Downhill method,
the algorithm for NMF converges much faster. It requires no
“magic number” tuning, such as choosing a step size in the
Simplex Downhill method. The algorithm takes two random
non-negative matrices U’ = [Uj;]nxr and V' = [V/j]rxa as
input, and updates them in an alternating fashion. Specifi-
cally, in each iteration, we update U’ and V' as:

/ / (XV/T)Z'J’
Uy Uij (U’V’V’T)ij
Vv v U7 X)y
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The details of the iterated updating algorithm can be
found in [17], in which Lee et. al. proved that these up-
date rules converge monotonically to stationary points of
the error function, Eq. (2). Based on our experience, several
hundred iterations suffice for convergence to a local mini-
mum.

Typically, the results of NMF are real values, which are in-
consistent with the definition of [Us;] and [Vj;], as U;; and Vi
should both be binary values. To obtain a binary decompo-
sition, we must convert U’ and V’ to binary matrices. Note
the actual values in either U’ or V'’ alone are not representa-
tive since one could multiply all elements in any column of
U’ by a constant and divide all elements in the correspond-
ing row of V’ by the same constant without affecting the
validity of the decomposition. Therefore we cannot simply
normalize them individually. To ensure consistent binary
decomposition, we first normalize both matrices. This step
is formalized by the following equations:

U’
.
Uij max Uy (3)
v
g Y
Vij maxy U}, (4)

Simply put, the normalization factors are decided by the
maximum values of the column vectors in U’.

After normalization, one can consider Uj; as the confi-
dence factor that indicates whether the j-th FG failed dur-
ing the i-th probing, with 1 reflecting the highest likelihood
and 0 reflecting the least likelihood. Similarly, V;7 is the
confidence factor of how likely device j would be part of FG
i.

We then apply the following threshold-based algorithm to
obtain the final binary matrices U and V:

Ui; = 0iff Uj; < 0.5; 1 otherwise;
Vi; = 1 iff the following three conditions are met:

Ut
~

" "
Vij = m]?X Vi (

Vij > 05 (
Vij > 0.5 x max Vi
k

—~
~N
~— =

The threshold on U is self-explanatory. We impose three
conditions on the threshold of V for the following reasons.
Eq. (5) implies that a node can only be associated with one
FG, which is the one of the maximum confidence factor Vi'j';
Eq. (6) guarantees the absolute confidence factor is above
0.5; Eq. (7) indicates that a node is included in an FG only if
the node’s confidence factor is at least half of the confidence
factor from the node which is most likely to be in the failure
group.

Note that in the failure group matrix V', a node is not
necessarily assigned to an FG. That is, it is possible that
34, s.t.Vi,Vi; = 0. This is expected, especially for instance
matrices with under-representative number of failures. For
example, a node j would not belong to any FG if it never
experienced a failure or if it failed independently from other
nodes (which would have constituted the corresponding FG).
Such behavior would lead to an all-zero column in the failure

group matrix V.
We use the example shown in Figure 2 to demonstrate
how the algorithm works. First we use NMF to decompose

Node 1 Node2 Node3

FG1

-

FG2

Figure 5: Cascaded topology with sub failure groups

X into two smaller matrices U’ and V':

0 0 1 1 0 0.57

11 0 0 1.28 0 0.84 0.71 0 0
1 1 0 0 (|~] 128 0 0.31 0 173 1.73
0 0 1 1 0 0.57 ’ ’ ’

1 0 1 1 0.56 0.59

Since U’ and V' are not normalized, looking at each value
separately does not provide enough information to correctly
determine the correct binary value. For example, both Uf,;
and U{, are above 0.5, but the expected binary values should
be Usi = 0 and Us2 = 1 in the example. We apply the
normalization algorithm and obtain:

0 095
1.

U = o v [LO7T 091 0 0
0 o005 | 018 0 103 103
0.44 1.0

Applying the threshold to U” and V", we get the final
results:

-}

Il
corrRO
R R =

The above U and V exactly mirror the ’real’ topology as
depicted in Figure 2. Note that due to the noise in the
measurement (Xs; = 1 in particular), we also see some noise
in U and V. For example, the confidence factor of node-1
belonging to the second FG is Vi = 0.18. However, since
the failure observations are dominated by the failures of FGs,
such noise can be easily identified and filtered out by the
thresholds we set in Egs. (5)-(7).

3.2 TheExtended Algorithm

The basic algorithm assumes that the number of failure
groups r is given. However, this assumption may not be re-
alistic in practice. Therefore, we extend the basic algorithm
to deal with the cases where r is not specified as an input
parameter. Specifically, if we view the failure group infer-
ence problem as a clustering problem, then the problem of
no prior knowledge of r is equivalent to a clustering problem
without knowing the number of clusters. Hence, we develop
the following procedure to identify FGs in this case.

The extended algorithm consists of three steps: (1) iden-
tify a range of possible values of r; (2) starting from the
lower bound of r, apply the basic algorithm to find the fail-
ure group and failure explanation matrices and estimate its



function merge(U, V)
//U is the n-by-r failure explanation matrix;
//Ui is the ith column vector;
//V is the r-by-d failure group matrix;
//Vi is the ith row vector;
(n,r)=size(U); (r,d) = size(V);
for i=1 to r-1 {
if (U;! = 0)
for j=i+1tor {
if(U; == U;) {
//FG; and FG; always fail at the same time,
//merge them
U =Ui,. j-1,j+1,.r;
V=V 1541,
Vi=ViuVj
return merge(U’, V');
Yelseif (U; D U;) {
//FG; always fail when FG; fails
Vi=ViuVy
Yelseif (U; C U;) {
//FG; always fail when FG; fails
Vi=V;UVj;
}
}

}
return (U, V);

Figure 6: The algorithm to merge disjoint sub-
failure groups.

error using the quality metric as in Eq. (3.2); (3) gradu-
ally increase r until the results satisfy certain criteria. By
estimating the range of r first, we reduce the computation
cost of unnecessary iterations on unrealistic guesses and the
possibility of getting in local minima.

We estimate the range of r by finding the number of dom-
inant singular values of X. According to Li [18], the number
of clusters of a binary matrix X is close to the number of
dominant singular values of X. Essentially, we try to look
for a large gap between the singular values o, and o,4+1 of
X. The lower bound and the upper bound of r is derived as
follows:

Tlow = mln{74|0'7, < 100i+1}

Thigh = min{i|o; < 20541}

After obtaining the range of r, we run our algorithm on
each possibility of r from 776w t0 Thign. On each instance 7,
the quality of the result is calculated as follows:

. | X —U x V|| |V — V"
lity(r;) = A A
quality(r:) ! dn A2 rid

That is, quality(r;) is the quality metric of how good the
estimation assuming there are r; FGs. Smaller value of
quality(r;) indicates better quality. IX=UxVIl 1yeasures the
binary reconstruction error to the original failure instance
matrix per element: the larger the error, the worse the es-
timation quality; the second term % represents the
difference between the failure group matrices before and af-
ter the threshold step. The larger the difference, the more
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Figure 7: System architecture of 3i. The FGs are ex-
posed to the user as virtual devices in the Managed
Object Layer.
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uncertainty introduced by the threshold, which leads to poor
quality results. For example, vi; = 0.99 gives us much more
confidence than v{; = 0.51 if in both cases the threshold
algorithm yields vi1 = 1. A1 and A2 are the parameters
that determine how important the reconstruction error fac-
tor and threshold confidence factor weight relatively to each
other. Our empirical study shows that Ay = A2 = 1 gives
a good balance. Note that quality(r;) also depends on the
initial random matrices that used in NMF. We repeat the
algorithm multiple times and choose the instance with the
best quality score. Finally, we choose

r= argmin quality(r;),

Tlow ST <Thigh

which is the number of FGs that yields the best quality score
within its estimated range.

3.3 Dealing with Cascaded Topology

If part of the missing topology resembles a cascaded topol-
ogy, some failure groups may be subsets of other larger fail-
ure groups. For example, the topology in Figure 5 has node
1 and 2 in F'G1, and node 1, 2 and 3 in F'G2. In this case,
the algorithm we described above will split F'G2 and yield
two groups: FG1={1,2} and FG5={3}. Such cases can be
detected by examining the corresponding failure explanation
matrix U. It can been seen that whenever F'G5 fails, F'G1
will fail simultaneously. Therefore, we can merge F'G: and
FG5 into FG2 = FG1UFGY = {1,2,3} and leave FG; as is,
which mirrors the topology more accurately. The algorithm
to merge those failure groups is shown in Figure 6.

3.4 Alternative Algorithms

Looking at the problem from another perspective, we can
view the FG association as a clustering problem. Given the
n-by-d failure instance matrix X, each node has a feature
vector—the corresponding column vector in X. Each feature
vector has n dimensions. A standard clustering algorithm
can divide the nodes into several disjoint clusters based on
their features, so that nodes from the same clusters belong
to the same FG.

Hence, a good alternative is to use standard clustering
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Figure 8: Topology transformation after FG discov-
ery. The new topology contains the FGs as a layer
between the customer premise equipment (CPE)
layer and the fiber node layer.

algorithms, such as k-means [1], to derive FG association.
After getting the FG composition, other failure diagnosis
algorithms such as greedy min-set-cover [15] can be used
to further decide which FGs are faulty based on the mea-
surement result. However, one still faces the problem of
not knowing the FG number and having sub-failure groups.
The same techniques we proposed in section 3.2 and 3.3 still
apply.

One advantage of the clustering algorithm is that the
feature vector is extensible to information beyond failures.
For example, in some applications, nodes that are physi-
cally closer to each other are more likely to be in the same
FGs. If the geographic location of every node is known,
then for node i, its feature vector can be extended from
{Xh', Xoi, - ,Xni} to {Xli,Xzi, coe X, A Xi, )\'Yi}- Here
(zi,y:) is the geographic coordinate of node i. A is an ad-
justable weight parameter to indicate how important the
geographic information is in the feature vector. However, as
we shall see, these weight parameters usually take on some
empirical values and could be hard to tune in practice.

4. IMPLEMENTATION

NetworkMD is implemented as a plug-in for a monitor-
ing framework called 3i—Integrated Infrastructure Intelli-
gence [12]. As a plug-in, NetworkMD has direct access to 3i’s
normalized monitoring data stored in a MySQL database.
Upon completion, NetworkMD exposes its FGs as virtual
devices that a user can interact with in 3i.

More specifically, 3i uses a device virtualization layer,
called Managed Object Bridge (MOB). As shown in Fig-
ure 7, a MOB instance can be a CMTS, an interface, or
a cable modem, etc. While outside the scope of this paper,
the MOB layer is intended to simplify building rich user-
centric management applications. Furthermore, the MOB
layer guarantees high-scalability through efficient manage-
ment of disconnected graphs, with each device representing
a node in the graph. NetworkMD uses the MOB API to
insert its results as a virtual layer within the monitored
topology. From a user’s perspective, the FGs appear as new
devices that can bring additional insight in the failure diag-
nosis process. Figure 8 shows how the results of NetworkMD
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Figure 9: Simulated topology

are integrated with the real topology.

To ensure scalability, NetworkMD was implemented as
two pieces. The first is PHP-based, which implements the
MOB API. The second is a C-based PHP extension that
performs matrix factorization. Implementing matrix factor-
ization with compiled C code was necessary as our initial
implementation, which was fully written in PHP, was inef-
ficient in performing such periodic computation. After each
round of FG inference, NetworkMD caches the results into
a MySQL database.

5. EVALUATION

The algorithm has been validated using both simulation
and experimental data collected from a real network setting.
As mentioned before, the status information collected from
cable modems is not always accurate. We thus focus the
evaluation on both the accuracy of topology inference and
the robustness in the presence of noise.

5.1 Simulation

A simulator was constructed, comprising about 1400 lines
of MATLAB code. In the simulation, we use two represen-
tative topologies to study the performance of NetworkMD:
the balanced topology and the cascaded topology as shown in
Figure 9. In both cases, the simulation focuses on a sin-
gle “unknown” repeater layer, with all parent-nodes in the
simulated topology belonging to that layer. In our study,
we only consider a partial topology associated with a single
fiber node, because the full topology of a cable network can
be viewed as the composition of several disjoint subgraphs,
each associated with a fiber node and can be inferred inde-
pendently using our algorithm.

That said, one can imagine the leaf nodes as cable modems
and the intermediate nodes as the repeaters. The balanced
topology is a 3-level tree, where the first level contains 4
nodes, forming the four major FGs that we want to iden-
tify. The second and third level of the tree have 20 and 200
nodes respectively. The number of nodes are well balanced
across different branches. The cascaded topology, on the
other hand, is not a balanced tree. On each level, there are
50 leaf nodes, plus one special node that connects the cur-
rent and next level. These two topologies represent the two



most common scenarios in practical cable networks. Our
goal is then to identify the major FGs in the topologies, as
identified by the circles in Figure 9.

Each time epoch is characterized by one or more failure
incidents. In our simulation, we distinguish between fail-
stop and perceived failure. A fail-stop is one where the node
has experienced a software or hardware failure and can no
longer function. In contrast, a perceived failure is one where
an external monitoring application perceives that the node
as faulty. When a parent node fail-stops, its child nodes will
be perceived as faulty too. In our study, we simulate fail-
stops, but also account perceived failures as input to infer
the FGs.

We assume that nodes fail-stop independently and assign
to the nodes at each level a certain failure probability: p,
for repeaters (or parent nodes) and p., for modems (or leaf
nodes). Typically, pr < pm. This is consistent with our
observations from actual cable networks, where devices at
the higher levels are less likely to fail. Note that p,, is used to
simulate isolated cable modem failures, which are considered
as noise in the input to our algorithm. However, as will be
shown, the algorithm can still correctly identify the FGs
based, despite the existence of such noise.

Our simulator also captures the typical way active probing
is implemented in monitoring applications, where a certain
threshold (e.g., the percentage of offline modems registered
to an interface) must be reached before probes are launched
to all end-devices. We simulate this behavior by recording
the modem statuses iff the total failure ratio among all of
the modems are above this threshold. When the threshold is
exceeded, we record the failed modems as well as the failed
upstream repeatersg.

To evaluate the accuracy of the inferred FGs, we compute
two metrics:

e false positive ratio Ry: A false positive occurs when
two nodes are not in the same failure group described
by the real topology, but the algorithm places them in
the same group. R, is the number of such node pairs
divided by the number of all possible node pairs.

e false megative ratio R,: A false negative occurs when
two nodes that are in the same failure group, but the
algorithm places them in different groups. R, is the
ratio of the number of such node pairs to the number
of all possible node pairs.

We use both metrics to evaluate the effectiveness of our
algorithm, with zero being the ideal value for both met-
rics. Note that looking at only R, or R, can be misleading.
For example, an algorithm that puts every modem into an
FG would have a zero false negative ratio, but the result is
meaningless.

We start the simulation using a simple case study to demon-
strate how NetworkMD performs in a balanced topology.
We then study how different network topologies, numbers
of observed failure instances, and measurement noises af-
fect the performance of NetworkMD. We also compare the
NMF-based algorithm against the one based on the k-means
method.

5.1.1 A Case Sudy on Balanced Topology

3Tt is worth noting that repeater statuses are invisible to our
inference algorithm and are used for its validation only.
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Figure 10: Simulating FG inference on a two-level
balanced topology

We first use the balanced topology to illustrate how Net-
workMD works. We simulate a topology of 200 cable modems
in a randomly generated balanced tree topology similar to
that of Figure 9. Both level-1 and level-2 nodes are hid-
den from our algorithm. Here we show how we can identify
level-1 nodes as major FGs. The algorithm has no prior
knowledge of either the topology or the numbers of nodes
on level 1 and 2.

In this simulation, we set the modem failure probability
to pm = 0.1 (note that p, simulates noise) and set the re-
peater failure probability to p, = 0.5. When the ratio of
failed leaf nodes exceeds 25%, active probes are simulated
and the statuses of all leaf nodes are collected as a measure-
ment sample. We run the simulation until 150 such failure
instances are observed.

Figure 10(a) shows the simulated failure matrix. A black
dot in the figure indicates a failure observed on a modem
in a probing instance. Note that the failure groups associ-
ated with the 4 level-1 nodes are hardly visible, unless we
re-order the columns according to the modems’ association
with these 4 nodes (see Figure 10(c)). Using the original
failure matrix as input, our algorithm infers 4 failure groups
and computes the derived failure matrix (X’). The latter is
shown in Figure 10(b) with each FG marked with a different
color. If we reorder the columns in Figure 10(b) based on the
modems’ association to the derived FGs as in Figure 10(d),
we can see the algorithm successfully filtered out the noise
and accurately identified the dominant FGs represented by
the level-1 nodes, i.e., R, = R, = 0%. Note that despite the
existence of noise caused by random cable modem failures,
high level nodes have a bigger impact on leaf nodes if they
fail. This explains why only the 4 FGs associated with the
4 level-1 nodes are identified.
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Figure 12: Comparing the effect of sample size on a cascaded topology

5.1.2 The Effect of Sample Sze

We vary the number of observed failure instances and
study its impact on the performance of NetworkMD. In the
simulation, we set the modem failure probability to p.,, =
0.1, and the repeater failure probability to p, = 0.05. We
vary the number of observed failure instances (hence the
number of measurement samples) from 30 to 250 and repeat
each test 50 times.

Figure 11 compares the average false positive and false
negative rates, as well as their standard deviation (shown
as error bar), for the NMF and k-means algorithm, in a
balanced topology. As the figure shows, the NMF-based al-
gorithm has a lower false positive rate on average, and its
standard deviation reduces to 0 when the number of sam-
ples is more than 30. That is, in the balanced topology, the
NMF-based algorithm can always find the correct FGs given
enough failure samples. However, having more samples does
not necessarily help improve the accuracy of the k-means al-
gorithm. While its average false positive rate decreases with

the increasing number of failure samples, its standard devi-
ation remains high. Therefore, even with a sufficiently large
number of failure samples, the k-means algorithm cannot
guarantee correct identification of all FGs in the balanced
topology.

Similar to Figure 11, Figure 12 compares the false positive
and false negative rates for the two algorithms in a cascaded
topology. In this case, the average false positive and false
negative rates of the NMF-based algorithm are very close to
0, regardless of the number of failure samples, and are much
less than the rates of the k-means algorithm. Note that when
the number of failure samples is small, the results inferred by
the NMF-based algorithm in a cascaded topology is better
than that inferred in a balanced topology. This is because in
cascaded topologies those dominant repeaters are more likely
to cause failures observed by the monitoring system, and
therefore more likely to be identified. When more samples
are observed, the effect of noise decreases to a reasonable
level such that the accuracy of inference improves. When
enough samples are collected, both algorithms give better
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Figure 13: Effect of noise on a balanced topology

results in balanced topology than in cascaded topology since
regularity is beneficial for our clustering-based algorithms.

5.1.3 The Effect of Noise

As noted earlier, individual modem failures are consid-
ered noise in the measurement data. To study the im-
pact of noise, we simulate different noise levels in the bal-
anced topology. The failure probability of repeater is set to
pr=0.01. We vary the failure probability of cable modem,
Pm, from 0.01 to 0.36, and compare in Figure 13 the ra-
tios R, and R, for NetworkMD, when it is equipped with
NMF and k-means algorithms, respectively. The tests are
repeated 10 times and we again show both the average value
of R, and R, and their standard deviations. It can be seen
that when p,, <0.21, the NMF algorithm has false positive
and false negative rates close to 0. Both NMF and k-means
algorithms have higher false negative rate when the noise
level p, is higher than 0.25 (which is unlikely to be observed
in practice). However, the false positive ratio of NMF al-
gorithms is almost always less than 0.1, and has smaller
standard deviation than the k-means algorithm.

5.1.4 Smulation with Real Topology

We extract a topology from a real cable network that we
have monitored. The topology has a tree structure with
two levels, consisting of roughly 3000 leaf nodes (i.e. cable
modems) and 24 FGs (i.e. repeaters). The topology tree
is not balanced. In the simulation, we vary the number
of observed failure instances and study the impact on the
performance of NetworkMD. We set the modem (leaf node)
failure probability to pm, = 0.1, and the repeater (first-level
node) failure probability to p, = 0.05. We vary the number
of observed instances from 30 to 250 and repeat each test 50
times.

Figure 14 plots the average false positive and false nega-
tive rates when the NMF and the k-means algorithms are
used in the extracted topology. As the figure shows, NMF
algorithm always has a close-to-zero false positive rate. For
the k-means algorithm , having more samples does not nec-
essarily decrease its false positive rate. In terms of false
negative rate, it is decreasing for NMF algorithm when more
failure instances are provided as input. However, when there

are more than 250 failure instances, both the NMF and the
k-means algorithms provide satisfactory results.

5.2 Evaluationsbased on Real Datasets

We have collected a set of monitoring data from a large ca-
ble provider that serves hundreds of thousands of customers
and has a topology with thousands of intermediate network
devices. The data contains detailed status report for all
CMTSs, CMTS interfaces, and most of the underlying fiber
nodes. Every CMTS interface has a register to record how
many cable modems are physically connected to it, and how
many of them are online. We launch active probes to all
modems within a CMTS interface when an alarm is trig-
gered by the interface, indicating that more than 15% of the
modems are offline. Recall from the topology in Figure 1
that only the CMTSs, CMTS interfaces, and the underlying
fiber nodes are visible to the NOC. Therefore, even though
we can use NetworkMD to infer the missing topology be-
tween fiber nodes and cable modems, we do not have the
actual connectivity information of those repeaters to vali-
date our results. Such validation requires actual deployment
of our system and access to failure incident records.

Because of the above limitations, we use the following
methodology to validate our approach. We hide the con-
nectivity information between the fiber nodes to the CMTS,
and let NetworkMD infer the failure groups under the entire
CMTS. Conceivably, the failures from those repeaters have
less impact to the entire CMTS and should be considered
as noise in the system. Hence, the identified major FGs
should roughly match the composition of CMTS interfaces
and fiber nodes, which will lead to more modem failures if
any one of them fails.

We used the measurement data collected from a number
CMTSs to validate our method. Here, we report the re-
sults for one of them. As shown by the measurement data,
the specific CMTS has 3404 cable modems attached to it.
During our monitoring process, we captured 53 failure in-
stances (i.e., with 15% or more modems appeared offline for
at least one of its interfaces). We found that 1933 cable
modems have never been observed to be faulty or offline.
These modems are excluded from our analysis. Among the
53 failure instances, 20 of them are identical to the previous
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Figure 14: Effect of sample size on a topology extracted from a real data set

observation instances. These duplicate failure instances pro-
vide no additional information for FG identification, hence
are also not considered in our study. As a result, our failure
instance matrix X has 33 x 1471 elements.

Using X as input, we apply both NMF and k-means al-
gorithms to identify FGs, and validate the results against
the actual topology. For the k-means algorithm augmented
with geographic information, we set the parameter A to 0.05,
which is a value we set to yield the best results with this data
set. The results are summarized in Table 1. We see that the
results derived by the NMF algorithm have similar accu-
racy compared those derived by k-means algorithm with ge-
ographic information, although false negative rate is slightly
lower for the former. Note that without the geographic in-
formation, the k-means algorithm cannot converge in this
case; thus FGs cannot be identified. The non-convergence
issue is a major drawback of the k-means algorithm, espe-
cially when it is applied in high-dimensional data space. On
the other hand, the k-means algorithm with geographic in-
formation requires careful tuning of parameter \ to balance
the weight between failure observation and geographic infor-
mation, which is nontrivial in practice. Hence, we conclude
that the NMF-based algorithm is more suitable for a prac-
tical NetworkMD system.

We note that the false positive and false negative ratios
are higher than those observed in our simulation. There are
several potential reasons for that, aside from the effect of
noise in the real data set.

e [Insufficient failure instances: Many interfaces rarely
failed during the monitoring period. As a result, it is
difficult for our algorithm to discover the FGs associ-
ated with these interfaces.

e Fuailure correlation: We found that in the data set,
there were many cases in which several interfaces al-
ways failed together. Since our algorithm is solely
based on the failure pattern recognition, it would place
the cable modems attached to those interfaces into the
same failure group, which increases the false positive
rate (when compared the derived FGs to the “ground
truth”).

e Non-random failure noise: As noted earlier, the ground
truth of FG association is determined at the interface
level. However, in the reality, repeaters under inter-
faces may also fail. During our monitoring period, al-
though some interface never failed, a subset of the ca-
ble modems under certain repeater may failed together
due to the repeater’s failure. Such failure patterns will
result in higher false negative rate, because our algo-
rithm will not consider those never failed modems and
the failed ones (although they are under the same in-
terface) to be in the same failure group.

o Misconfigurations: It is possible that in the topology,
the modems are mistakenly connected to CMTS in-
terfaces. Such misconfigurations in the “ground truth”
can lead to both higher false positive rate and higher
false negative rate.

We manually examined the data set. Among the above 4
possible causes, we found the first one was the most promi-
nent cause of inaccuracy. For example, if we simply merge
the interfaces that hardly failed into one FG, the false posi-
tive ratio of NetworkMD using NMF algorithm would reduce
to below 5%. The discrepancy between the inferred FGs and
the real topology also indicates the possibility of misconfigu-
ration in our topology. We have not yet confirmed this with
the cable provider.

5.3 Modem Failure Estimation

As an application of NetworkMD, we demonstrate how
to reduce the overhead of active probing by failure estima-
tion. In the active probing phase, we allow a CMTS to send
probes to only a subset of the modems to which it connects.
Reducing the probe messages makes the whole monitoring
infrastructure more scalable. With sampled probing, we es-
timate the status of all modems by leveraging the correlation
of the modem failure pattern, or more specifically, the FG
association identified by NetworkMD.

The failure estimation involves four steps. First, Net-
workMD monitors all modems to derive the composition of
FGs. Next, after the FG association is obtained, the sys-
tem randomly select a subset of modems to probe when a



algorithm false positive rate | false negative rate
NMF 0.09 0.133
k-means with geo 0.106 0.249
k-means without geo N/A N/A

Table 1: accuracy of NetworkMD in a real cable network.

failure event is detected*. Third, we apply the greedy min-
set-cover algorithm proposed in [15] to identify which FGs
are responsible for the failures. Finally, we use the com-
bination of the failure explanation and FG composition to
estimate the statuses of the modems that are not probed.

To evaluate the effectiveness of the above failure estima-
tion procedure, we again use the data set described in sec-
tion 5.2. We first partition failure instance matrix X into
a training data set and a testing data set. The training
data set is used to derive the FG composition (as in the first
step). Then, we emulate probing 20% of the modems based
on the testing data set, and estimate the failure statuses of
the remaining 80% of the modems. We compare three cases
in this study and show the results in Figure 15. In the ora-
cle case, the actual FGs (based on the topology) are known
a prior so that the training stage is unnecessary. This is
obviously unrealistic, but can serve as a benchmark. In the
cases when the NMF and k-means algorithms are applied,
we rely on these two algorithms to infer FGs respectively,
using the training data set. For all three cases, we measure
the error in estimating the status of unobserved modems.
The estimation error is measured by the ratio of the number
of mistakenly estimated modems to the number of total un-
observed modems. As the figure shows, due to the noise in
the data set, even with an oracle of the topology, we cannot
achieve 0% estimation error rate. The estimation error of
NMF-based method is as low as 5% when more than 70%
of the failure instances are in the training data set. This is
better than the results obtained using the k-means method,
which has at least 7% estimation error no matter how much
data was used in the training phase.
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Figure 15: Study modem failure estimation by vary-
ing the training data set size

4 Although a clever modem selection algorithm can make the
estimation more effective, it is out of the scope of this paper.

6. RELATED WORK

Failure diagnosis is an important area in network manage-
ment. There is a tremendous amount of work that studies
this problem in IP, telephony, and cable networks. Com-
mercial network failure management systems such as Open-
View [10], SMARTS [7] and iGlass [11] provide frameworks
for monitoring performance and handling failures. In par-
ticular, these systems are designed to interpolate with stan-
dard network management protocols, such as SNMP [2] or
DOCSIS [13], and provide basic capabilities of rule-based
correlation analysis. One limitation of such systems is that
they can only discover failures of network devices that can
be directly monitored.

There are a number of studies that looked into the prob-
lem of unobservable metrics [22, 15, 16, 23, 21]. For exam-
ple, Steinder et. al. investigated an application of Bayesian
reasoning using belief networks to locate faults in complex
communication systems [22]. On the other hand, the SCORE
system [15] and its later work [16] use an approach based on
risk modeling. Risk modeling involves creation of a depen-
dency relationship between observable events and potential
causes. SCORE uses a greedy algorithm based on a min-
set-cover technique to localize faulty devices whose statuses
are hidden from the monitoring infrastructure. Kandula et.
al. further studied the problem of noisy measurement and
mis-configured risk group description. They proposed an
algorithm called Shrink based on Bayesian networks with
polynomial running time bound. However, all these systems
assume that the relationship between the events and the
causes are (mostly) known. In our problem setting, com-
plete topology information is not required. The proposed
solution does not assume the availability of such informa-
tion, but instead infers the missing topology through failure
group association.

Aside from the failure diagnosis and network management
area, NetworkMD also relates to topology inference and dis-
covery in the Internet [6, 3, 19, 9, 20]. These works usually
require traceroute-like in-network probing or access to BGP
routing table, neither of which is available in last-mile cable
networks. A particular class of the research problems, called
network tomography [8], describes a series of network infer-
ence and monitoring problems, such as traffic matrix estima-
tion and topology identification, without in-network probing
support. In particular, Coates et. al. investigated how to
use end-to-end latency measurement to discover the network
topology without performing traceroute [4, 5]. They pro-
posed to use “sandwich” probes to measure delay difference
and model the topology to maximize a penalized likelihood.
In their work, a special Markov Chain Monte Carlo proce-
dure was used to do maximized likelihood estimation. Un-
fortunately, these network tomography techniques cannot be
directly applied in failure diagnosis in cable networks. For
example, in [4], the end-to-end metrics are required to be
separable, meaning a path metric can be decomposed into
the metrics associated with the links comprising the path.



In cable network fault diagnosis, the metric of a path from
a CMTS to a modem is a binary status indicator. It is un-
clear how to adapt their solutions to this problem setting.
Unlike their work, the NetworkMD solution is designed to
infer missing topologies based on binary failure status data.

7. CONCLUSIONSAND FUTURE WORK

NetworkMD (Network Management and Diagnosis) is an
automated topology inference and failure diagnosis frame-
work for last-mile distribution networks. It provides an
unsupervised learning algorithm that creates failure groups
based on end-to-end failure pattern measurement. The learn-
ing algorithm is based on non-negative matrix factorization
(NMF) and further extended to deal with unknown num-
ber of FGs and cascaded topology. Besides the NMF-based
algorithm, NetworkMD can also use a standard clustering
algorithm (k-means) to infer FG association, while taking
advantage of geographic information when available. These
algorithms are not only applicable in cable network diagno-
sis, but can also be generalized to other networks with tree-
like topologies. We have conducted extensive simulations
and experiments with NetworkMD. Our evaluation shows
its effectiveness in both simulated settings and for datasets
collected from a commercial cable network.

Going forward, there are several interesting applications
that can be built using NetworkMD. One such application
is to combine the inferred FGs with geographic information
of end-points to help physically localize failures (such as a
cable cut). Another application can compare the inferred
FGs to the known topology and flag inconsistencies as po-
tential misconfigurations to the network operator. A third
application can combine better sampling techniques with the
inferred FGs to reduce the overhead of active probes, allow-
ing service providers to respond faster to failures.
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