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ABSTRACT

Testbeds composed of end hosts deployed across the Internet en-
able researchers to simultaneously conduct a wide variety of exper-
iments. Active measurement studies of Internet path properties that
require precisely crafted probe streams can be problematic in these
environments. The reason is that load on the host systems from
concurrently executing experiments (as is typical in PlanetLab) can
significantly alter probe stream timings. In this paper we mea-
sure and characterize how packet streams from our local PlanetLab
nodes are affected by experimental concurrency. We find that the
effects can be extreme. We then set up a simple PlanetLab deploy-
ment in a laboratory testbed to evaluate these effects in a controlled
fashion. We find that even relatively low load levels can cause seri-
ous problems in probe streams. Based on these results, we develop
a novel system called MAD that can operate as a Linux kernel mod-
ule or as a stand-alone daemon to support real-time scheduling of
probe streams. MAD coordinates probe packet emission for all ac-
tive measurement experiments on a node. We demonstrate the ca-
pabilities of MAD, showing that it performs effectively even under
very high levels of multiplexing and host system load.

Categories and Subject Descriptors: C.2.3 [Network Operations]:
Network management, Network monitoring, C.2.5 [Local and Wide-
Area Networks]: Internet (e.g., TCP/IP), C.4 [Performance of Sys-
tems]: Measurement Techniques

General Terms: Design, Experimentation, Measurement, Perfor-
mance

Keywords: Active Measurement, MAD

1. INTRODUCTION
Several key challenges for networking research were specified

in the 2001 National Research Council report entitled “Looking
Over the Fence At Networks: A Neighbor’s View of Networking
Research” [18]. Among these was to develop an understanding of
Internet structure and behavior through empirical measurement, in-
cluding the grand challenge of capturing “a day in the life of the In-
ternet”. The lack of an intrinsic and openly available measurement
capability in the Internet implies that a widely deployed infrastruc-
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ture capable of different types of measurement would be required
as a critical component for addressing these challenges.

The need for Internet testbeds capable of supporting accurate
active measurements has been apparent for quite some time, and
has resulted in deployment and operation of several different in-
frastructures over the years. A well-known early example was the
National Internet Measurement Infrastructure (NIMI), which was
composed of guest accounts on 35 end hosts located primarily in
the US and Europe [29]. The NIMI effort helped to crystallize
the challenges associated with using and operating Internet mea-
surement testbeds. Among these challenges is the need for a large
number of diverse sites (e.g., commodity versus research network-
attached, geography, last-hop bandwidth) such that a wide range
of conditions is likely to be experienced across the paths between
measurement nodes.

Perhaps the most prominent Internet testbed today, PlanetLab,
is comprised of 780 end hosts deployed at 382 different sites all
over the world [14]. PlanetLab is a canonical example of an openly
available network testbed that is designed to support many different
types of network-related experiments at the same time. The funda-
mental design requirement of simultaneous experimental support
has a very important implication. Resource scheduling in these
environments, at the individual host level or globally across the
testbed, poses a particularly difficult problem. Thus, any experi-
ment that has even modest timing or coordination requirements can
be difficult or impossible to run in shared testbed environments. An
important class of experiments that have until now been largely ex-
cluded from shared network testbeds are those that use active probe
tools to measure end-to-end path properties such as delay, loss, ca-
pacity and available bandwidth.

In this paper we address the problem of how to extend shared net-
work testbeds to enable accurate active measurement studies that
use tools with fine-grained timing requirements. We begin by as-
sessing the magnitude of the bias introduced by shared network
testbeds. We instrument the two PlanetLab nodes at our own site
with time-synchronized, hardware-based packet capture systems
and conduct a series of active measurement experiments between
those two nodes (i.e., such that there are no unknown network ef-
fects). We find that even in this simple local area environment,
very large bias in active probe streams is common. For example,
we found that there are often periods of multiple seconds in which
packet loss is measured on end hosts while there is zero packet loss
in the network. Likewise, RTT delays of over 50 milliseconds are
not uncommon when the true delay between the two hosts as mea-
sured by the hardware-based systems is on the order of about 100
microseconds.

To address this problem, we develop the multi-user active mea-
surement system (MAD) that is designed to support real-time schedul-



ing of active probe streams. The key requirements for MAD include
accurate transmission/receipt of arbitrary probe streams, support
for simultaneous experiments, low impact on the host system, ease
of use and security. We designed MAD as a service that can be ac-
cessed by applications through a simple active measurement spec-
ification language. Authorized users specify their probe process to
MAD, which then coordinates transmission of probe streams from
multiple experiments using the real-time features of newer Linux
kernels to gain access to resources at the highest priority level.
(Note that there is also a MAD receiver module and a MAD reflec-
tor module that are used for one-way and round trip measurement
tools, respectively.) An additional requirement in order to facilitate
deployment and use of MAD is that it not necessitate modifications
to the host OS. As such we implemented MAD so that it could be
run either as a stand-alone daemon or as a Linux kernel module.

We evaluate the capabilities of MAD in a laboratory testbed that
includes a local area PlanetLab deployment. This environment en-
ables us to control and measure the contention effects due to mul-
tiplexing experiments both with and without MAD. We begin by
establishing a quantitative baseline of the extent to which load gen-
erated by simultaneous experiments can bias active probe streams
and lead to inaccurate inference of path properties. We then show
that with MAD, highly accurate measurements can be made even
under extremely heavy system loads (regardless of whether MAD

runs as an in-kernel process). Next, we conduct similar experi-
ments on raw, unvirtualized operating systems without PlanetLab
and find that although the effects are less severe, MAD can still
improve measurement accuracy in a meaningful way. Finally, we
demonstrate the scalability of MAD through a series of microbench-
mark experiments and show that it is able to support a relatively
large number of simultaneous measurement experiments with ex-
tremely low impact on system resources.

In summary, the contributions of this paper are (i) characteriz-
ing the extent to which active probe-based measurement can be
skewed in PlanetLab, (ii) the design and implementation of MAD—
a real-time scheduling system for accurate active probe-based mea-
surement. We believe that MAD effectively addresses an important
deficiency in current end host-based Internet testbeds that largely
precludes, or at least casts doubt on, their use for empirical stud-
ies of path properties using active probe tools. By virtue of its
implementation, it is our hope that MAD can be widely deployed
and used. We also believe that the design of MAD can inform fu-
ture testbed development (e.g., GENI [7]) as well as infrastructures
used to measure path properties in operational environments (e.g.,

for SLA compliance monitoring [40]).
The remainder of this paper is organized as follows. In Sec-

tion 2, we discuss studies related to our own. In Section 3, we
present findings from our analysis of measurements taken from our
local PlanetLab nodes. We describe the details of MAD’s design,
implementation and use in Section 4. The results of our laboratory
evaluation of MAD are presented in Section 5, and in Section 6 we
summarize and discuss future directions for our work.

2. RELATED WORK
Host-based testbeds deployed in the Internet enable implementa-

tions of network applications, protocols, and measurement method-
ologies to be evaluated over live end-to-end paths. These testbeds
can also be useful for gauging and characterizing Internet structure
and end-to-end performance from multiple vantage points. Some
testbeds in the past have been developed for use by a single orga-
nization for a specific set of objectives, e.g., Surveyor [22], while
others have been designed from the outset to be general purpose and
shared with a wider set of researchers e.g., RON [10] and Planet-

Lab [14, 30]. There have been measurement studies conducted on
shared testbeds including RON and PlanetLab, e.g., [12, 31, 44],
and specialized systems have been developed for these testbeds
to perform or assist with various types of measurements such as
ScriptRoute [43].

PlanetLab in particular has been deployed with the goal of serv-
ing a large community of researchers, and has also spawned other
regional instantiations [1, 4]. PlanetLab uses virtualization tech-
niques to isolate users from one another [14, 36]. It virtualizes
a host system at the system call level, similar to the way BSD
Jails work [35], but a number of other approaches are possible,
e.g., [13, 33]. It is important to note that in heavily-used Internet
testbeds like PlanetLab there is a direct correlation between con-
tention for resources and the level of experimental multiplexing that
is allowed.

One study with similarities to ours presents guidelines in the
form of myths and realities for performing measurement studies
on PlanetLab [42]. One guideline of relevance is to use system
interfaces for obtaining kernel timestamps for probe packets. Our
work also uses these techniques. Another suggestion is to use the
ScriptRoute [43] system for defining and executing the probe pro-
cess. Our work bears similarity to the ScriptRoute system in that
we also design a measurement service, one component of which is
a programmatic interface for specifying the probe process. How-
ever, our work takes a fundamentally different approach by focus-
ing not only on providing a flexible measurement service, but also
on measurement accuracy. We assume that probe processes oper-
ate according to a discrete time clock, enabling optimizations to be
made over all running measurement processes. ScriptRoute makes
no such restrictions. Thus, the scheduling requirements of Script-
Route are significantly different from our system.

Our system design takes advantage of the real-time scheduling
capabilities that have been incorporated into the main Linux kernel
source [5, 6]. These capabilities are similar to some of the features
used in the related study by Pásztor and Veitch in which a real-time
version of Linux along with techniques they devise for improving
scheduling and timestamp fidelity are employed [27,28]. Our work
relates to other efforts in the network research community to im-
prove the accuracy and precision of timing-sensitive applications
using commodity systems [2, 11, 45].

Active measurement of end-to-end delay and loss characteristics
have a long history within the network measurement community.
The most well-known early study of these characteristics was re-
ported by Bolot in [16]. While methodologies for measuring these
quantities have been standardized by the IETF [8,9], improvements
to these techniques continue to be developed [38,40]. Of particular
relevance is the work by Sommers et al. that highlights the need
for real-time probe management in a multi-objective measurement
context [39]. Our work addresses a different problem: the impact
of resource sharing on active probe streams, and develops a gener-
alized mechanism to address the problem.

Using pairs of closely-spaced packets to estimate network quan-
tities also has a long and rich history. Jacobson’s work on TCP
congestion control was an early exposition of the possibility of how
a pair of closely-spaced packets can reveal bottleneck link capac-
ity [20]. Other researchers have explored specific algorithms using
this technique to perform capacity estimation, e.g., [23,24,25], and
for estimating end-to-end available bandwidth, e.g., [32, 44]. Dif-
ficulties in creating accurate packet streams that match the probe
models has been highlighted in many of these studies. For exam-
ple, Carter and Crovella grappled with issues related to probe tim-
ing fidelity in developing active probe tools to measure bottleneck
link speeds [17].



3. THE CURRENT SITUATION
We first investigate the accuracy characteristics of three types of

active measurements with stringent timing requirements using the
widely-used PlanetLab shared infrastructure.

3.1 Experiments
Normally, a user of PlanetLab does not have access to so-called

ground truth measures between an arbitrary pair of PlanetLab nodes.
Since the goal of our experiments is to evaluate the accuracy of
certain types of active measurements, this issue is of critical impor-
tance. Other researchers have used indirect means for addressing
this problem (e.g., by introducing known traffic to disturb the sys-
tem as in [44]), or by using available coarse-grained SNMP data.
These methods generally cannot give the kind of accuracy and reli-
ability required for our study.

Our approach was to use the two PlanetLab nodes over which we
have complete control of the networking infrastructure: planetlab1
and planetlab2 in the domain cs.wisc.edu. For ground
truth measures, we introduced passive network taps and a pair of
synchronized Endace 4.3GE DAG cards for capturing both inbound
and outbound probe traffic for each of the PlanetLab nodes, as de-
picted in Figure 1.

Our two PlanetLab nodes are identical Dell Precision 340’s with
1.8 GHz Pentium 4 processors and 2 GB RAM. They were running
version 4.0 of the PlanetLab software with Linux kernels derived
from version 2.6.12. We installed Intel/Pro 1000 Gigabit Ethernet
NICs on each host to accommodate our passive monitoring system.
Interrupt coalescence was disabled for our experiments. No other
changes were made to these two hosts.

Cisco 6500

monitoring
systems

DAG
tapnodes

planetlab

to Internet

1: Setup for experiments using live PlanetLab nodes.

We used three active measurement algorithms on these two hosts
to examine how system load and multiplexing can affect measure-
ment accuracy: round-trip delay probes, packet-pair probes, and
BADABING loss probes. Each of these algorithms was implemented
to use the User Datagram Protocol and to run according to a discrete
time clock. We used the SO_TIMESTAMP option of setsockopt
to obtain kernel timestamps on receipt of packets. These three mea-
surement algorithms were chosen to be representatives of standard
active measurements relying on a high degree of accuracy in both
probe stream transmission and reception. A description of each
algorithm along with its relevant parameters and accuracy require-
ments is shown in Table 1. The discrete time interval used in the
results that we report below was 5 milliseconds.

We collected data from 11 April 2007 to 2 May 2007. We ini-
tiated experiments every 4 to 6 hours, running each measurement
algorithm for 10 minutes each. We simultaneously collected CPU
utilization information using vmstat and packet header traces us-
ing the DAG systems. Since we ran each algorithm according to a
discrete time clock, we also recorded the number of times our mea-
surement process was unable to send probes at an intended time
slot (i.e., “slipped” a time slot).

While we collected measurements, there were typically 40–50
active slices on each host, resulting in hundreds of active network

connections and very little idle CPU time. Quite often, CPU uti-
lization was at 100% for each node and there were more than 1000
network connections. A survey of other PlanetLab nodes using
CoMon [26] shows that the heavy load we observed is not ab-
normal. Somewhat surprisingly, there was relatively little network
traffic produced by each of these machines. On average, there was
about 400 Kb/s inbound traffic to each host, and about 500 Kb/s
outbound from each host. (These numbers varied between less than
100 Kb/s to a little more than 1 Mb/s over periods we collected
measurements.)

3.2 Results
Figure 2 shows timeseries plots of the median, 90th, and 95th

percentile round-trip delays for two example measurement periods.
Table 2 shows median, 90th, 95th, and 99th percentile delays for a
larger subset of measurements. The results shown in the figures and
table are qualitatively representative of all results we measured.

In Figure 2 and in Table 2 we first see alarmingly high delay val-
ues for nearly all quantiles displayed. For example, we see a me-
dian RTT of 9 milliseconds in the 11 April 12:20 measurements.
This value is surprising since these two machines are colocated,
with one switch between them. Second, we observe excessive de-
lay values in the upper quantiles, sometimes larger than 100 mil-
liseconds. (In some measurement periods we measured maximum

delays on the order of 5 seconds.) Finally, we see a high degree of
variability in the measurements, in some cases even in the median
delay (e.g., in Figure 2a).

It is important to state that in all cases we measured the network
delay of the probes using the DAG cards (i.e., not including delay
introduced at the end hosts) to be on the order of 100 microseconds.
Clearly, these RTT measurements are very poor indications of the
true delay between these two PlanetLab hosts.

We now examine packet loss characteristics between the two live
PlanetLab systems. Note that in the experiments using BADABING,
we disabled the one-way delay congestion inference mechanisms in
the tool, and thus use only actual indications of packet loss. Since
BADABING sends three packets back-to-back as a probe, only one
packet must be lost in order for a probe to be marked as having
experienced loss.

Figure 3 shows timeseries of periods during which consecutive
probes experience loss. Plots are shown from two representative
measurement periods. Notice from the plots that there is a wide
range of durations over which consecutive losses are measured,
from very short periods (e.g., in Figure 3a) to very long periods
(e.g., in Figure 3b). Note also that the rate of all our measurements,
including loss, was less than the bandwidth limitation imposed on
operational PlanetLab nodes.

Table 3 shows representative results from the BADABING exper-
iments for additional measurement periods. The table shows the
frequency and duration of loss episodes reported by BADABING,
as well as a loss rate estimate based on the heuristic of [39]. We
see that there are estimated loss durations on the order of multiple
seconds, as suggested by Figure 3. We also see that the loss rate es-
timates are similar to the frequency estimates. The reason for this
effect is that the loss rate of all probe packets during loss episodes
is close to 1. That is, during loss episodes, nearly all probe packets

are lost. As suggested by results in the table, there were very few
measurement periods overall in which we measured zero loss.

As with our round-trip delay experiments, we measured the true
packet loss between the PlanetLab hosts using the DAG systems
and found in all cases that there was no packet loss (i.e., all probes
are observed on the wire just after transmission and just prior to
reception by a PlanetLab host). Thus, all loss indications that we



1: Description of the probe algorithms and their accuracy requirements used in experiments.

Probe algorithm and description Accuracy Requirements

Round-trip delay measurements consisted of 100
byte UDP probes, sent periodically at 100 millisec-
ond intervals. A process on the remote host bounced
probes back to the sender, which then recorded round-
trip delay.

For RTT measurements, timestamps should be applied in such a way as to most
accurately reflect network delays, rather than operating-system introduced delay.
Probes should be sent according to the intended process (i.e., periodic probes, or
probes sent according to a geometric process), as closely as possible in order to
limit measurement bias. Since timestamps are applied by a single host, there are
no time synchronization requirements.

Packet-pair measurements consisted of 1500 byte
UDP probes sent with an intended spacing between
packets of 120 microseconds (i.e., back-to-back, as-
suming a capacity of 100 Mb/s). A packet pair was
sent at a given time slot with independent probability
p = 0.2, resulting in a geometric process of packet pair
transmissions.

Packet pair spacings should follow the intended spacing as closely as possible
on transmission and measured spacings at a receiver should accurately reflect
the spacing of the packet pair. Inferences are typically made based on small
perturbations in spacings, e.g., on the order of tens or hundreds of microseconds,
so measurement accuracy is critical to overall algorithmic accuracy (e.g., see
[41]). Timestamps applied to packets should accurately reflect the actual spacing
of packets upon sending, and upon receipt. The intended probe process should
be accurately followed in order to limit measurement bias.

BADABING loss measurements. BADABING sends
pairs of probes at time slots i and i + 1 initiated with
independent probability p which we set to 0.3. Each
probe consisted of three packets, each of 600 bytes,
sent back-to-back (as quickly as the host system would
allow) as described in Sommers et al. [38].

A high degree of accuracy in the probe emission process is required for BAD-
ABING. Probe pairs are sent at consecutive discrete time slots, with the discrete
time interval set (by default) at 5 milliseconds. BADABING also uses measure-
ments of one-way delay to infer congestion along a path. Note that in this paper,
we turn off this inference capability of BADABING, relying only on actual packet
loss.

measured with BADABING probes were confined to the hosts them-
selves and were completely spurious from a network measurement
perspective. These results clearly pose a significant problem not
only to network inference algorithms, but to any experiments de-
ployed on shared testbeds that may be sensitive to loss (e.g., through-
put experiments of different applications or transport protocols).
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(b) 27 April, 08:20–08:29

2: Timeseries of round-trip delays for two example measurement
periods. Median, 90th, and 95th percentile delays are shown for
each 10 minute measurement period.

For the packet pair measurements, we focus on two types of er-
rors: errors in the initial spacing of a packet pair and errors in

2: Quantiles of the delay distribution measured on live PlanetLab
nodes. Results shown from a qualitatively representative selection
of experiments.

Date/Time Delay Quantiles (seconds)
50 90 95 99

11 April 12:20 0.009 0.057 0.071 0.100
12 April 06:20 0.000 0.002 0.006 0.022
14 April 06:20 0.000 0.002 0.006 0.018
14 April 18:20 0.000 0.002 0.006 0.014
16 April 18:20 0.002 0.009 0.010 0.016
18 April 06:20 0.000 0.008 0.010 0.016
18 April 18:20 0.000 0.007 0.009 0.013
23 April 06:20 0.001 0.008 0.010 0.017
23 April 12:20 0.001 0.008 0.010 0.020
26 April 08:20 0.000 0.009 0.029 0.100
26 April 16:20 0.000 0.008 0.018 0.065
26 April 20:20 0.001 0.005 0.008 0.012
27 April 08:20 0.001 0.005 0.008 0.012
30 April 08:20 0.000 0.008 0.042 0.094
30 April 12:20 0.000 0.006 0.010 0.046

timestamps. With respect to errors in initial spacings, we com-
pare the difference in spacing that a process attempts to achieve,
and the actual spacing obtained. Typically, initial packet pair spac-
ings are on the order of tens or hundreds of microseconds (e.g., the
spacing of a back-to-back pair of 1500 byte packets on Fast Ether-
net is about 120 microseconds). In software, these fine timescale
spacings are generally produced by busy-waiting between system
calls to emit packets since most commodity operating system timer
functions cannot deliver accuracy on these timescales. For times-
tamping error, we examine the differences between the timestamps
applied by a sending user process to a packet pair and the actual
spacing of the packet pair on the wire as measured using the DAG
cards. We also examine the differences between the timestamps ap-
plied to packet pairs by a receiver process, and the actual spacing
of the packet pair just prior to reception by the receiving host, also
measured using the DAG cards.

We found that errors on initial spacings are consistent with the
results from [41], namely, that while there can be variability in-
troduced in spacings due to system load and the operating system
scheduler, the mean error is close to zero when considering a few
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3: Timeseries of loss periods for two example measurement peri-
ods. Shaded blocks represent time periods during which all probes
suffered at least one packet loss (i.e., of the three packets in a
BADABING probe, at most two were successfully transmitted).

3: BADABING results for live PlanetLab nodes. Results shown
from a qualitatively representative selection of experiments.

Date/Time Badabing Results
Loss Loss Duration Loss Rate

Frequency (seconds) Estimate
14 April 18:30 0.0000 0.000 0.0000
15 April 06:30 0.0000 0.000 0.0000
15 April 18:30 0.0014 0.118 0.0014
16 April 06:30 0.1334 3.671 0.1333
16 April 18:30 0.1219 0.911 0.1217
17 April 08:30 0.0000 0.000 0.0000
17 April 18:30 0.0657 1.735 0.0656
18 April 06:30 0.0687 1.449 0.0687
18 April 18:30 0.0439 1.165 0.0438
19 April 06:30 0.0553 5.825 0.0554
19 April 18:30 0.0000 0.000 0.0000
20 April 06:30 0.0320 1.685 0.0320
20 April 18:30 0.0160 1.695 0.0159
21 April 06:30 0.0213 1.120 0.0212
21 April 18:30 0.0675 1.780 0.0674

tens of packet pairs. Similarly, we found that the timestamping
error upon sending a packet pair has close to zero mean when con-
sidering a few tens of packet pairs. Figure 4a shows a representa-
tive histogram from 1 May 2007 of timestamp errors on sending a
packet pair. These results are consistent with the notion that when
a process gets scheduled, it generally retains the processor for the
relatively short duration that it needs to busy-wait between sending
packets.

For timestamp errors on receiving packet pairs we found that dis-
tribution of errors often does not have zero mean. Figure 4b shows
a histogram of receive timestamp errors from data collected on 1
May 2007. The distribution is clearly shifted away from zero, with
a peak around 40 microseconds. Note that for these measurements,
we used system call interfaces in Linux to obtain probe packet
timestamps from the kernel, much as Spruce does [44]. Clearly,
there is a consistent expansion of packet pair spacings as they arrive
at the destination host and pass through the hardware and operating
system to the user process.
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(a) Histogram of timestamp errors for sending
packet pairs.
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(b) Histogram of timestamp errors for receiving
packet pairs.

4: Histograms of send and receive timestamp errors for packet
pair experiments on live PlanetLab hosts. Data collected on 1 May
2007 at 11:40–11:49. Results from other measurement periods are
qualitatively similar.

As a calibration check on our packet pair measurements, we used
the Spruce available bandwidth measurement tool which sends 100
pairs of packets to derive an estimate of available bandwidth [44],
also collecting DAG packet traces while we ran Spruce. Since the
detailed timings of packet pairs can be affected by specific pro-
gramming constructs, we wanted to be sure that our results were
not specific to the way in which our code was written. (In fact, our
code was developed from the BADABING code base.) We found
that the results obtained from using Spruce were consistent with
those described above.

Finally, we show results for discrete clock scheduling errors for
each probe algorithm. Table 4 shows the number of missed time
slots i.e., probe sending process woke up after it should have, for
measurement periods on the 26th of April. We can see from these
results that many times there was significant deviation from the in-
tended probe schedule. (Note that since the discrete time interval is
5 milliseconds, 1000 slips implies a 5 second cumulative difference
in the intended probe process versus what is realized.)



For each of the three measurement algorithms, we also experi-
mented using the Sirius calendar scheduling system available through
the PlanetLab web interface, which should result in higher priority
given to the slice in which the measurement tools were run and
potentially better accuracy. We did not observe any qualitative dif-
ference in the measurement results.

4: Discrete clock scheduling errors (time slot misses) for mea-
surement periods on 26 April for three measurement algorithms.
Total number of time slots in experiment is 120,000. Results are
representative of other measurement periods.

Date / Time Round-trip Delay Packet Pair BADABING

26 April 00:20 4633 5797 5411
26 April 04:20 547 6181 1208
26 April 08:20 4747 6989 2361
26 April 12:20 34 8667 8645
26 April 16:20 3866 20638 6287
26 April 20:20 6540 7991 5408

4. A MULTI-USER ACTIVE MEASUREMENT

SYSTEM
In this section we first discuss general requirements for a sys-

tem designed to enable accurate active measurement for users of a
shared testbed environment. We then describe key aspects of the
design of MAD, a multi-user active measurement daemon. Lastly,
we discuss specific issues related to the implementation of MAD.

4.1 Requirements
Results from our experiments on the live PlanetLab nodes de-

scribed in § 3 suggest that one way to improve the accuracy of
active probe streams would be to implement aspects of required
measurement functionality at lower levels in a host system. This
idea is a key aspect of the classic end-to-end arguments [34], and
motivates our requirements and design in this paper.

Our list of requirements for a system to facilitate accurate active
network measurements in a shared testbed is as follows:

1. Accuracy. First and foremost, network measurements in
shared environments should be accurate. They should reli-
ably reflect the state of the network at the time of probing,
rather than effects due to host system load. Our results us-
ing three standard active measurement techniques on two live
PlanetLab hosts in § 3 show that inaccuracies can be signifi-
cant for these probe methodologies when running in a shared
environment that is virtualized at the system call interface
level. As part of requiring accurate measurements, times-
tamps should be as accurate as possible, at least matching
accuracy of a lightly-loaded non-shared host. Not all widely
distributed shared testbeds use virtualization techniques, e.g.,
RON [10], so it is important that measurements be accurate
in both virtualized and non-virtualized environments.

2. Permit Multiple, Simultaneous Users. The measurement
system should permit simultaneous use by multiple users.
One way to meet this requirement is to leverage the notion
of multi-objective probing described in [39,40]. Specifically,
we first assume that all probe algorithms operate according
to a discrete time slot. If multiple, simultaneously operating
algorithms attempt to send a probe at the same time slot, a
single probe can be marked according to the algorithms to
which it applies. Sending a single, tagged probe can also
reduce measurement bandwidth requirements, as discussed

in [40]. Rather than considering multiple, simultaneous al-

gorithms, we can consider multiple users. Indeed, multiple
incarnations of the same algorithm, e.g., periodic probes at a
given frequency, should be able to operate at the same time
on behalf of multiple users of such a system.

3. Low Impact on Host System. The system for coordinating
measurements on a host in a shared testbed should require
only enough processor, memory, and network resources to
support accurate measurements. In addition, the system should
scale to facilitate active measurement for a reasonably large
number of simultaneous users.

4. Permit Flexibility in Specifying the Probe Process. The
network measurement community continues to produce novel
active measurement algorithms each year. Embedding a spe-
cific probe algorithm, or even a set of algorithms, in a shared
measurement system is undesirable. Apart from the restric-
tion of requiring an algorithm to operate in discrete time, the
measurement system should permit a great deal of flexibil-
ity in being able to specify the probe process, from simple
periodic probes, to more elaborate probe algorithms such as
BADABING.

5. Provide Secure Access to Users. A system for support-
ing active network measurements in a shared environment
should not permit itself to be the launch pad for denial-of-
service attacks. The system should provide, at minimum,
authentication and authorization functions to identify users
and provide appropriate access to the measurement facility.

6. Provide Limits on Probe Traffic. In addition to authenti-
cation and authorization, accounting is an important facil-
ity that the system should provide. In particular, the system
should permit probe traffic quotas to be specified. For exam-
ple, it may be desirable to impose an upper bound on traffic
introduced by a user over a given time interval between two
hosts or across the entire system.

7. Provide Interfaces for Reporting Self-Measurement. The
system should allow users and administrators a window into
its current operating state. For example, it may be possible
to expose information to users about possible inaccuracies
in measurements, such as scheduling errors in the case of
discrete-time measurements, or other problems that can be
ascertained by the measurement system itself.

8. No Modifications to the OS Kernel. Finally, if such a sys-
tem is to be widely deployed, it should not require any changes
to the host operating system. While benefits in accuracy may
be obtained by avoiding software layers, or by reimplement-
ing some existing functionality in a highly simplified manner,
such changes might represent a significant barrier to wide
adoption.

4.2 Design
We now describe the design of a system to support multi-user ac-

tive measurements, MAD. We focus on the key problem of provid-
ing a flexible probe process specification for multiple, simultaneous
users.

The basic approach we take is for users to specify the probe al-
gorithm using a restricted language. Code written in this restricted
language is executed as a callback. Constructs in the language ex-
ist to schedule future callbacks, to schedule probes to be sent at a
specific discrete time slot, and to perform basic arithmetic (integer)



operations. Our approach bears similarities to a virtual machine
execution environment and to the approaches of the Exokernel and
SPIN operating systems that allow application-specific code frag-
ments to be downloaded to a kernel execution environment [15,19].
In the latter context, the execution kernel is MAD itself, and the
application-specific code implements the key aspects of a probe al-
gorithm, e.g., a periodic probe, or geometrically distributed probe
pairs.

To specify a probe algorithm, MAD provides an assembly-like
language, MADcode. It currently contains five operations, which
can be easily translated to bytecode that is executed by MAD. Four
virtual registers, r0–r3, are available for use: two have pre-defined
uses and two are available for algorithm state maintenance or tem-
porary storage, if necessary.

Upon download of MADcode by a user, the code is executed at
the next possible time slot. Upon execution of user bytecode, reg-
ister r0 contains the current time slot number and register r1 con-
tains the current probe sequence number. Registers r2 and r3 are
available for arbitrary use. After executing user bytecode at call-
back time, registers r1–r3 are saved for the next time the byte-
code is executed. Any change to r0 is discarded. Thus, user code
can control its own sequence through register r1 (with a maximum
sequence value of 216). Note that the sequence refers to a probe,
which may itself consist of multiple packets (e.g., in the case of
packet pairs and BADABING). Individual packets of a probe have
an additional sequence number (with smaller range), currently as-
signed by MAD. Other probe process parameters, such as probe
packet size, the number of packets emitted per probe, the spacing
of those packets, and addressing information are currently specified
when a user initiates a request to start a measurement experiment.

Table 5 shows the five operations that are currently defined in
MAD. All MADcode operations are on integers—no floating point
operations are allowed. In addition, there are no branch or looping
instructions, eliminating the possibility for infinite loops or other
common programming errors. As we gain experience with imple-
menting different active measurement algorithms using MAD, we
may find it necessary to expand the set of operations in MADcode.

5: MADcode instruction set.

Operation Description
add rx, arg Add the contents of rx and

arg, placing the result in rx.
arg may be a literal (denoted
by a pound symbol before the
literal integer) or may be an-
other register.

load rx, arg Copy the value from arg into
register rx. arg may be a lit-
eral or a register.

geom rx, arg Store a geometrically dis-
tributed random deviate with
parameter p = arg/100 in rx.
arg may be a literal or a reg-
ister.

schedule_probe rx, ry Schedule a probe to be sent
at time slot rx with sequence
number ry.

schedule_callback rx Schedule a callback for time
slot rx.

MADcode to implement the three measurement algorithms shown
in Table 1 is shown in Listings 1, 2, and 3. The code for the peri-
odic probe proceeds by simply adding a fixed number of time slots
to the current slot number (lines 5 and 8), incrementing the probe

sequence number (line 10), then scheduling a probe and the next
callback. The geometrically distributed probe algorithm in List-
ing 2 is very similar to the periodic probe except that the number
of time slots between probes is obtained through a call to the geom
operation (line 5). This operation returns an integer representing
the number of time slots until the next probe emission (and call-
back) drawn from a geometric distribution. The geom operation
assumes a denominator of 100 for its parameter p. The numera-
tor is specified as the second argument to the operation. The code
for implementing the BADABING algorithm is shown in Listing 3.
BADABING emits pairs of probes at time slots i and i +1, initiated
with independent probability p at time slot i. The effect of lines 5
and 9 is to obtain the next time slot at which to initiate a probe pair.
Lines 15 and 17 increment the probe sequence and schedule the
first probe of the pair, and lines 20 and 22 do the same for the sec-
ond probe of the pair. Line 25 schedules the next time slot for this
MADcode fragment to be executed. While Listing 3 implements the
basic algorithm of BADABING (i.e., probe pairs, rather than triple
probes), implementing the improved algorithm is straightforward
using MADcode.

Listing 1: MADcode for periodic probes used in delay experiments.

1 ; on entry:

2 ; r0 (read-only): current time slot

3 ; r1 (read-write): probe sequence

4

5 load r2, #interval

6 ; assign r2 literal value #interval

7 ; (the probe period, in time slots)

8 add r2, r0

9 ; r2 := r2 + current slot number

10 add r1, #1

11 ; increment probe sequence by 1

12 schedule_callback r2

13 ; schedule callback for slot r2

14 schedule_probe r2, r1

15 ; send probe at slot r2

16 ; with sequence r1

17

18 ; on exit:

19 ; probe sequence (r1) saved to user state

20 ; r2, r3 saved to user state

Listing 2: MADcode for geometrically distributed probes used in
packet pair experiments.

1 ; on entry:

2 ; r0 (read-only): current time slot

3 ; r1 (read-write): probe sequence

4

5 geom r2, #numerator

6 ; store geometrically distributed

7 ; random number with parameter

8 ; p = #numerator/100 in r2

9 add r2, r0

10 ; r2 := r2 + current slot number

11 add r1, #1

12 ; increment probe sequence

13 schedule_callback r2

14 ; schedule callback for slot r2

15 schedule_probe r2, r1

16 ; send probe at slot r2

17 ; with sequence r1

18

19 ; on exit:

20 ; probe sequence (r1) saved to user state

21 ; r2, r3 saved to user state



Listing 3: MADcode for implementing BADABING geometrically
distributed probe pairs used in loss experiments.

1 ; on entry:

2 ; r0 (read-only): current time slot

3 ; r1 (read-write): probe sequence

4

5 geom r2, #numerator

6 ; store geometrically distributed

7 ; random number with parameter

8 ; p = #numerator/100 in r2

9 add r2, r0

10 ; r2 := r2 + current slot number

11 load r3, r2

12 ; r3 := r2

13 add r3, #1

14 ; increment r3 by 1

15 add r1, #1

16 ; increment probe sequence by 1

17 schedule_probe r2, r1

18 ; schedule probe for slot r2

19 ; with sequence r1

20 add r1, #1

21 ; increment probe sequence

22 schedule_probe r3, r1

23 ; send probe at slot r3

24 ; with sequence r1

25 schedule_callback r3

26 ; schedule callback for slot r3

27

28 ; on exit:

29 ; probe sequence (r1) saved to user state

30 ; r2, r3 saved to user state

4.3 Implementation
There are three software components to MAD: the main MAD

daemon, which receives, processes, and coordinates user requests
to send probes, a probe reflector, and a probe receiver. (We use the
term MAD to specifically refer to the probe sending daemon, unless
otherwise stated.) A user accesses MAD through a remote proce-
dure call interface. To initiate a new set of measurements, a user
specifies up to 16 32-bit words of MADcode, along with the maxi-
mum number of probes to send, the destination IP address and port,
the source address and port, the probe packet size, and the number
of packets per probe (e.g., BADABING specifies 3). If there is more
than 1 packet per probe, the user also specifies what the spacing
should be between those packets. The user must also present a
32-bit user-specific identifier, as described below. There are also
RPC facilities for aborting an existing probe process, querying the
number of probes sent for a particular user, and querying the MAD

daemon for its internal statistics and error information.
One of the key enablers for MAD to run effectively on a standard,

unmodified Linux system has been the introduction of schedul-
ing and timer-related features from the real-time operating systems
community into the mainline kernel code base. These additions
originally appeared as patches to the 2.6.13 kernel, and were even-
tually incorporated into version 2.6.16 [5,6]. One critical enhance-
ment included modifications to add a high-resolution timer sub-
system, providing timing capabilities finer than the default sched-
uler quantum (i.e., the HZ parameter, typically set to 1000 in re-
cent Linux kernels, giving a default timer granularity of 1 millisec-
ond). The nanosleep system call uses this new timer subsys-
tem, whereas the previous implementation (e.g., versions previous
to 2.6.16) performs a busy-wait.

MAD utilizes the new real-time features of recent Linux kernels,
and in addition uses the real-time scheduling capabilities of Linux
and runs at the highest possible priority level. Running as a high-
priority process implies that MAD must run very efficiently or it

may negatively impact system-wide performance. In the next sec-
tion we evaluate MAD’s impact on the host system and show that
under typical use, it has extremely low resource requirements.

We implemented MAD in two ways: as a thread running from
a kernel loadable module, and as a standalone user-mode process
requiring privileged (root) access in order to run at a high prior-
ity. Both versions of MAD use a raw socket for sending UDP probe
packets, to allow simple modification of source addresses for multi-
homed hosts, and other protocol header elements. A compile-time
parameter specifies the maximum number of users that can simul-
taneously use MAD. Another compile-time parameter specifies the
maximum number of IP destinations that MAD can support. For
each destination, MAD maintains a time-slot ordered list of probes
to send in the future.

The in-kernel implementation uses kernel-equivalent calls to use
standard the UDP/IP stack, and directly uses the high-resolution
timer subsystem. In our experiments, described in the next section,
we found that there was little qualitative performance difference be-
tween the in-kernel version, and the user-mode version. This result
is good news, since it is better from a system reliability perspective
to avoid implementation in kernel space where a programming bug
can take down the entire system.

We also implemented the probe reflector as both a user-mode
process and as an in-kernel daemon. As with the MAD daemon,
we did not observe qualitative differences in performance. The im-
plementation of the reflector is straightforward, and uses the BSD
socket interface in a standard way to receive and send probes. One
important run-time option is to rewrite the destination port or IP ad-
dress with supplied values rather than simply swap the source and
destination addresses and ports.

The implementation of the probe receiver is also straightforward.
It is implemented only as a user-mode process. It is important to
note that both probe reflector and receiver use the SO_TIMESTAMP
option of setsockopt to obtain kernel-level timestamps. Cur-
rently, the receiver simply writes received probe information to
disk. In the future, we plan to implement an RPC interface so that
a user of MAD can both initiate a set of measurements, and retrieve
the probes from the receiver host remotely.

All components of MAD are written in C, and comprise about
3,000 lines of code (including both user-mode and in-kernel ver-
sions of the MAD daemon and probe reflector). MAD will be made
available to the research community.

In order to initiate a measurement process, a user must present
a 32-bit identifier. Our intention is for this identifier to represent a
time-limited access token to MAD, similar to a Kerberos ticket. Us-
ing traditional public key encryption, a user could be authenticated
and given a token authorizing the user access to MAD for a limited
duration. The token can be encrypted using less heavyweight pri-
vate key encryption, with the key shared between the token process
and the MAD daemon. This functionality is not yet implemented.
In addition, accounting and quota facilities in MAD are not yet im-
plemented.

There are certain limitations to MAD that we plan to address in
the future. The first is that stream-based probe algorithms such
as Pathload [21] and Yaz [41] are not yet easily implemented as
MADcode. The reason is that the duration over which a stream is
sent (for these algorithms 50–100 packets) can be longer than the
discrete time interval used by MAD, e.g., 5 milliseconds. It is not
yet clear how to best enhance MAD to permit these types of algo-
rithms. Adaptive algorithms are also not yet easily implemented,
primarily because of the lack of a remote interface to the probe re-
ceiver. If a user can obtain measurements remotely from the probe
receiver, it can then use that information for requesting a new set



of measurements to MAD, thus completing the feedback loop. Ad-
ditionally, user code can only have one callback outstanding. This
limitation exists partly for safety: allowing users to add an arbitrary
number of callbacks is probably not necessary nor wise. However,
some flexibility may be necessary for implementing some probe
algorithms. Another limitation is that packet payloads cannot be
modified by MAD users. It is not yet clear how to arbitrate among
multiple users wishing to specify payload content, or whether this
would be a useful feature. Finally, all users are treated at the same
priority level in MAD. It may be useful in the future to be able to as-
sociate a priority level with a user’s credentials in order to provide
different levels of scheduling service quality.

5. EVALUATION
In this section we describe the evaluation of MAD in a controlled

laboratory setting. We describe two different laboratory setups to
examine the performance of MAD over a range of synthetic work-
loads on the measurement hosts and in both virtualized and non-
virtualized operating system configurations. In each environment,
we compare the performance of MAD with that of an unprivileged
user-level process. Finally, we report results of microbenchmark
scalability tests performed on MAD.

5.1 Controlled PlanetLab Experiments
In our first laboratory setup for evaluating MAD, we created a

PlanetLab environment using the MyPLC software available at
http://www.planet-lab.org [3]. We used version 0.4.3
of the MyPLC software. The node operating system included with
this software is based on version 2.6.17 of the Linux kernel (a newer
version than is running on current production PlanetLab hosts shown
on CoMon [26]).

For our laboratory PlanetLab nodes we used two identical work-
stations with Pentium 4 processors running at 2 GHz, each with
1 GB RAM and Intel Pro/1000 network adapters. (As in our ini-
tial experiments, interrupt coalescence was disabled.) We used a
network configuration similar to the one used for our production
PlanetLab hosts (shown in Figure 1) for collecting ground truth
packet traces with Endace DAG 4.3 GE cards.

To create synthetic load conditions on the PlanetLab nodes, we
used the Harpoon network traffic generator [37], replicated over
a number of experimental slices ranging between 0 and 100, as
shown in Table 6, resulting in five different load scenarios. For
each slice in all experiments in which at least one slice was con-
figured, we ran one Harpoon process with 5 threads for producing
self-similar TCP traffic, and one thread for producing constant bit-
rate UDP traffic. The threads are configured to produce a relatively
low average traffic volume of about 100 Kb/s. The UDP threads in
our tests are configured to produce 10 Kb/s using small (40 byte)
packets, resulting in about 24 packets per second per UDP thread.
This configuration has the (intended) effect of artificially raising
CPU utilization due to overheads related to timer maintainence.

The measurement algorithms we tested using MAD were the same
as we used in the experiments with the production PlanetLab sys-
tems, described in Table 1. For each load scenario, we first ran
each of the three measurement algorithms using MAD running as a
privileged (root) user. We then ran each of the three measurement
algorithms using an additional slice without any special privileges,
similar to the way in which the measurement algorithms were run
on the live PlanetLab hosts. Note that none of the slices configured
in our testbed had any processor or bandwidth limitation placed on
them.

We first look at results from the experiments using round-trip
delay probes. Table 7 shows quantiles of the delay distribution for

6: Configurations and characteristics of laboratory-based Planet-
Lab experiments. For each slice, one Harpoon process was started
with 5 threads for producing self-similar TCP traffic, and one
thread for producing constant bit-rate UDP traffic. The average
ratio between TCP and UDP traffic produced was 90:10.

Number of slices Traffic Volume Average CPU
(each direction) Utilization

0 0 0%
1 100 Kb/s 5%

10 1 Mb/s 60%
50 5 Mb/s 95%

100 10 Mb/s 100%

a setup using a standard PlanetLab slice for sending the probes, and
for a setup using MAD. Results for each of the five load scenarios
are shown. From the table, we first notice that in the setup using a
standard PlanetLab slice for sending probes, the only load scenario
in which there is less than 1 millisecond delay at the 99th percentile
is the one without any Harpoon processes. At a load of 50 slices
the results appear qualitatively similar to those measured on the live
PlanetLab hosts (cf. Table 2). For the scenario using 100 slices, the
workstation is extremely overloaded, resulting in excessive round-
trip delays. Most importantly in Table 7, we observe that for all
load scenarios, the round-trip delays measured using MAD are on
the order of 100 microseconds, even in the extreme scenario of 100
slices.

Results from experiments using BADABING in the laboratory-
based PlanetLab setup are shown in Table 8. The table shows re-
sults for the setup using a standard PlanetLab slice for sending the
probes, and for a setup using MAD, for each of the five load sce-
narios. From the table, we observe that in the standard PlanetLab
slice setup there is no loss measured in the 0, 1, and 10 slice con-
figuration, with a small amount of loss observed in the 50 slice
scenario, and significant loss in the 100 slice scenario. As with
our experiments using the live PlanetLab hosts, we used our DAG
measurement systems to confirm that these losses were measure-
ment errors. Finally, we see in Table 8 that for all load scenarios in
which MAD is used, there is no loss measured by the BADABING

probes.
For the packet pair experiments, we observed results that were

similar to the experiments run on the live PlanetLab systems. In
comparing the intended spacing between packets of a pair on send
versus the actual produced, we found that the mean error is close to
zero when considering a few tens of packet pairs. Similarly, the er-
ror mean between the spacing measured by the sending application
and actual the spacing of the packet pair was close to zero for a few
tens of packet pairs. This observation is true for both MAD and for a
unprivileged process running within a standard slice. We found that
as load increased, the interquartile range increased, i.e., it spread
further from the median in both the negative and positive error di-
rections. The interquartile range was consistently larger for the un-
privileged process, but not significantly so. For example, with the
highest load scenario, the 25th percentile error was about -8 mi-
croseconds for the unprivileged process and about -6 microseconds
for MAD, while the 75th percentile error was about 8 microseconds
for the unprivileged process and about 5 microseconds for MAD.
The median error was close to zero in both cases.

For errors in application-measured receive spacing versus the
spacings measured using the DAG cards, we observed a similar
pattern as in our live PlanetLab experiments, namely that of a shift
away from zero mean error toward consistently positive error (i.e.,
spacing measured at DAG was less than spacing measured in oper-

http://www.planet-lab.org


7: Quantiles of the delay distribution measured on laboratory PlanetLab nodes. Results shown for a standard PlanetLab slice (similar to the
experiments using live PlanetLab nodes) and for MAD.

Number of Standard PlanetLab slice MAD

Slices 50 90 95 99 50 90 95 99
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000
10 0.000 0.001 0.001 0.002 0.000 0.000 0.000 0.000
50 0.001 0.002 0.002 0.049 0.000 0.000 0.000 0.000

100 1.750 15.291 21.801 29.329 0.000 0.000 0.000 0.000

8: BADABING results for laboratory PlanetLab nodes. Results shown for a standard PlanetLab slice (similar to the experiments using live
PlanetLab nodes) and for MAD.

Number of Standard PlanetLab slice MAD

Slices Frequency Duration Rate Estimate Frequency Duration Rate Estimate
0 0.0000 0.000 0.0000 0.0000 0.000 0.0000
1 0.0000 0.000 0.0000 0.0000 0.000 0.0000

10 0.0000 0.000 0.0000 0.0000 0.000 0.0000
50 0.0024 0.000 0.0024 0.0000 0.000 0.0000

100 0.0447 2.447 0.0447 0.0000 0.000 0.0000

ating system and application). At the same time, the interquartile
range increased as load increased, similar to our observations in
the case of send spacing timestamp error, though the relative in-
crease was much larger. These observations hold for both MAD

and for the unprivileged process running in a standard slice. For
example, at the highest load scenario, the median error for the un-
privileged process was about 16 microseconds, while the median
error for MAD was about 10 microseconds. We measured similar
results for MAD running both as a privileged user-mode process,
and as a kernel module. These results suggest that running packet
pair experiments on highly loaded hosts may be inherently prob-
lematic. It is unclear at this point whether the same problem exists
for probe methodologies that use short streams at fixed rates, e.g.,
Pathload [21] or Yaz [41]. At the very least, these results warrant
further experimentation using a wider range of load scenarios, ex-
ploring both CPU and network-intensive workloads. Furthermore,
it may be appropriate to examine a kernel-based approach that com-
pletely bypasses the system IP/UDP layers. Unfortunately, such an
approach may require modifying the kernel.

In summary, our tests using PlanetLab in a controlled environ-
ment reveal similar measurement problems as we observed using
the live PlanetLab systems. Our tests also show that using MAD sig-
nificantly improves the situation and yields delay and loss measure-
ments that accurately reflect the true state of the network. While our
experiments show that MAD offers modest improvement for packet-
pair experiments, additional study and improvements are needed.

5.2 Non-virtualized Host Experiments
In our second laboratory setup we used standard, unvirtualized

workstations. Environments such as RON [10] form an important
class of “raw system” testbeds for which MAD is designed. It is
therefore important to evaluate the performance of MAD in a similar
setting.

We used two workstations in our setup, similar to our other ex-
periments. Each workstation ran Linux kernel version 2.6.20. We
used identical machines as in our laboratory-based PlanetLab ex-
periments. Each one had a 2.0 GHz Pentium 4, 1 GB RAM, and
Intel Pro/1000 network interfaces (with interrupt coalescence dis-
abled). We again used a setup using Endace DAG 4.3 GE cards to
gather ground truth measurements, similar to our laboratory experi-
ments using PlanetLab and in our experiments using live PlanetLab
hosts.

For these tests, we again used Harpoon to create artificial CPU
and network load on the hosts and testbed to compare the per-
formance of an unprivileged user process for sending probes with
MAD. Table 9 shows the four workload scenarios we used. As with
the experiments using the controlled laboratory setup of PlanetLab,
we configured the threads for generating constant bit-rate UDP traf-
fic in such a way as to consume a relatively large amount of pro-
cessor time.

9: Configurations and characteristics of laboratory experiments
with non-virtualized hosts.

Harpoon configuration Traffic Volume Average CPU
(each direction) Utilization

No Harpoon processes. 0 0%
10 Harpoon processes, each
with 10 threads for produc-
ing self-similar TCP traffic
and 1 thread for producing
constant bit-rate UDP traf-
fic.

2 Mb/s 2%

100 Harpoon processes,
each with 10 threads for
producing self-similar TCP
traffic, and 5 threads for
producing constant bit-rate
UDP traffic.

10 Mb/s 60%

300 Harpoon processes,
each with 10 threads for
producing self-similar TCP
traffic, and 20 threads for
producing constant bit-rate
UDP traffic.

50 Mb/s 99%

Using standard, unvirtualized hosts dramatically improves per-
formance for the unprivileged user-mode application for all three
measurement algorithms. In the case of round-trip delay, only the
99th percentile delay for the highest load scenario was above one
millisecond—at two milliseconds. All other delay quantiles were
below one millisecond. For packet loss, there was no loss mea-
sured in the lowest three load scenarios. However, in the highest
load scenario the loss frequency was 0.0053 and the mean duration
of loss episodes was 1.12 seconds.



For the experiments using MAD, the 99th percentile delay was
on the order of one hundred microseconds in all cases. There was
no loss measured by the MAD-based probes in any case.

For the packet pair experiments, the results were similar to those
in the PlanetLab-based laboratory experiments. Namely, while er-
rors in spacing of packet pairs upon sending, and errors in times-
tamping the packet pair upon send is relatively low with a zero
mean over a few tens of packet pairs, timestamp errors on receiv-
ing packet pairs grow larger with increased system load. Also, the
range in error values was similar to those in the controlled Planet-
Lab experiments. These results are true for both the unprivileged
user-mode measurement application and for MAD. These results
reinforce the hypothesis that running packet pair experiments on
highly loaded hosts may be a situation to avoid entirely. But again,
further experimentation and analysis is needed.

In summary, even with hosts that are not virtualized, measure-
ment inaccuracies can occur as system load becomes high. Our
experiments show that MAD is also effective in these environments,
eliminating spurious packet loss and yielding delay estimates that
match ground truth measurements.

5.3 Scalability of MAD

In our final laboratory experiments, we examined the scalability
of MAD when subjected to a larger number of independent users of
MAD, and over a range of discrete time interval settings. In these
experiments, we used a standard (unvirtualized) Linux host run-
ning kernel version 2.6.20. The machine configuration used was
the same in the other laboratory-based experiments, i.e., a 2 GHz
Pentium 4 with 1 GB RAM and an Intel Pro/1000 Gigabit Ethernet
interface. The duration of these experiments was two minutes.

We used up to 100 independent probe streams representing 100
users of MAD, each using a geometric probe process (Listing 2)
with a single packet per probe of 100 bytes. The probability pa-
rameter for sending a probe at a given time slot was 0.2 for each
probe stream. We also ran experiments using the BADABING code
fragment (Listing 3) with three packets per probe, sent back-to-
back. The results from those experiments were similar to the results
for the geometrically distributed probe consisting of one packet.
We also examined MAD using a range of discrete time interval set-
tings, from 10 milliseconds down to 100 microseconds. For each
experiment, we measured system and user time available from the
getrusage system call to derive a processor utilization figure for
the MAD process. We also compared this utilization figure to that
obtained using the standard top program. The results for each
measurement technique were consistent.

Table 10 shows CPU utilization results of running MAD with
100 independent probe streams over a range of discrete time inter-
vals. From the table, we see that for time intervals even as short as
500 microseconds, the overall utilization of MAD is minor, at about
0.2%. At intervals of 500 microseconds and larger, there were no
scheduler errors reported. At an interval of 100 microseconds, how-
ever, utilization rises sharply and is accompanied by scheduler er-
rors. With the default setting of 5 milliseconds (which is the same
interval used in our earlier BADABING study) and even shorter in-
tervals, MAD performs very well.

6. SUMMARY AND CONCLUSIONS
Widely deployed, shared network testbeds are critical to the net-

work research community. A particularly attractive class of experi-
ments that could be considered in these environments are those that
seek to measure end-to-end path properties such as delay and loss
using active probe tools. Unfortunately, the resource contention
overheads imposed in shared network testbeds can significantly

10: Results from MAD scalability tests.

Interval CPU Utilization Scheduler Errors
(time slot misses)

10 milliseconds 0.1% 0
5 milliseconds 0.1% 0
1 millisecond 0.2% 0

500 microseconds 0.2% 0
100 microseconds 46.2% 8920

bias measurement results from active probe tools—a compelling
yet unfortunate example of the “tragedy of the commons” effect.

In this paper we present results of a measurement study that
quantifies the bias effects on active probe-based measurements in
PlanetLab. Using hardware-based packet capture systems on our
local PlanetLab nodes, we find that measurements of packet loss
and delay from active probes can be skewed significantly.

These results motivate our development of MAD, a system for
conducting highly accurate active measurements in shared environ-
ments. MAD is realized as a simple programming language that is
made available to users via RPC’s. The language enables a variety
of active probe-base measurement streams to be scheduled in near
real-time through the use of priority scheduling mechanisms avail-
able in recent Linux kernels. MAD’S implementation as either a
kernel module or user-mode daemon enables it to be deployed with
minimal impact. Through a series of laboratory tests, we quantify
the extent to which MAD can reduce bias in active probe-based mea-
surements in both PlanetLab and in non-virtualized environments.
We show that mad can improve measurement accuracy by orders
of magnitude in PlanetLab with lesser but still valuable effects in
non-virtualized environments.

We plan to continue development of MAD in several ways. First,
we intend to complete the implementation of the security mecha-
nism that limits access of MAD to authorized users. Next, we plan
to expand MADcode to support of a broader set of active measure-
ment methods including those that are stream-based or adaptive.
Finally, we will consider how basic MAD transmitter/receiver/re-
flector functionality might be ported to other OS environments so
that highly accurate measurement capability might be more widely
deployed.
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