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ABSTRACT 

In this paper we consider the problem of determining traffic matrices 

for end-to-end demands in an IP/MPLS network that supports 

multiple quality of service (QoS) classes. More precisely, we want to 
determine the set of traffic matrices Ti for each QoS class i separately. 

Ti contains average bandwidth levels for QoS class i for every pair of 

routers within the network. We propose a new method for obtaining 
QoS class specific traffic matrices that combines estimation and 

measurement methods:  We take advantage of the fact that the total 

traffic matrix can be measured precisely in MPLS networks using 
either the LDP or RSVP-TE protocol. These measurements can then 

be used in a mathematical model to improve estimation methods – 

known as network tomography – that estimate QoS class specific 
traffic matrices from QoS class specific link utilizations. In addition 

to the mathematical model, we present results of the proposed 

method from its application in Deutsche Telekom’s global IP/MPLS 
backbone network and we show that the estimation accuracy (mean 

relative error) is improved by a factor of 2.5 compared to results from 

network tomogravity. We investigate the structure of the estimated 
traffic matrices for the different QoS classes and motivate in this 

paper why QoS class specific traffic matrices will be essential for 

efficient network planning and network engineering in the future. 

Categories and Subject Descriptors 

C.4 [Performance of Systems]: Measurement techniques, Modeling 

techniques. C.2.3 [Computer-Communication Networks]: Network 

Operations.  

General Terms: Algorithms, Measurement. 

Keywords: Traffic Matrices, MPLS, LDP, QoS. 

1. INTRODUCTION 

Traffic matrices – or origin-destination (o-d) matrices – contain end 

to end traffic demands between each pair of nodes in a given IP 
network. In this paper we are interested in 15 minutes average traffic 

demands between routers. For an ISP, there are multiple reasons why 

the availability of good quality traffic matrices is essential: Important 
tasks for an ISP that require traffic matrices include network planning 

and traffic engineering. They are needed to perform simulations of 

failure scenarios and network extension scenarios as well as for (IGP) 
routing optimization. For some tasks – especially in network 

planning – traffic matrices are needed on the level of PoPs but they 
can generally be obtained by aggregating router level traffic matrices. 

Already the task of traffic matrix generation is difficult for the total 

traffic within a network and may require estimation methods or 

complex measurement infrastructures. But as true multi-service 
networks become reality and traffic classes with different service 

requirements exist, the need for traffic matrices per class-of-service 

(CoS) is getting stronger: In order to plan and operate a multi-service 
IP/MPLS  network economically, an ISP needs to incorporate QoS 

class specific traffic matrices into its planning and engineering tasks. 
Possible scenarios include: 

• Different service level agreements for the QoS classes 

require a different bandwidth dimensioning. For each QoS 
class the actual traffic must never exceed the bandwidth 

guaranteed to that class by the scheduler. Only the best 

effort class can be allowed to use up to the physical link 
bandwidth without violating given service level 

agreements. 

• The use of links with low delay (e.g. direct links from 
Europe to Asia – not via America) only for traffic from 

certain QoS classes. 

• Failure simulations in order to validate certain QoS 

concepts (e.g. to make sure that non-best-effort traffic 

remains below a certain link utilization threshold)    
While applications with high QoS requirements such as IPTV or 

VoIP are growing to a significant contribution to the overall traffic 

demand, a service provider needs to incorporate QoS class specific 
traffic data into its planning and engineering processes.   

In this paper we consider only unicast traffic matrices. Multicast 

traffic will generally be divided into different QoS classes, too, and 
has to be measured separately. For distribution platforms with fixed 

traffic sources and sinks (e.g. IPTV within the backbone network) 

this may be possible from the knowledge of the source traffic and the 
multicast tree. 
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For (unicast) traffic matrices, a variety of methods have already been 
investigated, both for traffic matrix estimation and for traffic matrix 

measurement. One method that is widely deployed for traffic matrix 

measurement based on IP flow level measurements is Cisco’s 
Netflow [1]. But the implementation is rather complex and issues that 

arise in practice include:  

• Netflow availability and performance depend on the line 
card types in use – in a service provider’s network there is 

usually a large number of different hardware types in use. 
Thus only a partial measurement might be possible. 

• IP flow measurements generally use packet sampling, so 

there is a tradeoff to make between the measurement 
accuracy (low sampling rates) and performance (high 

sampling rates). Some router types are not even able to 

provide anything than very high sampling rates. 

• Large effort for aggregation of the flows that are exported 

by the routers. 
Well-established estimations methods for traffic matrices are gravity 

estimation [10], where a traffic demand from s to t is set proportional 

to the total outgoing traffic of s and the total incoming traffic of t or 
network tomography, where end-to-end demands are estimated from 

link utilizations – see [12]. The combination of those two estimation 

methods is commonly referred to as network tomogravity – see [13] 
for a survey and comparison of different estimation methods. It is 

obvious that those estimation methods can also be used to estimate 

QoS class specific traffic matrices if the necessary input data (mostly 
link utilizations) are available per QoS class. 

In networks that use multi-protocol label switching - MPLS [2] – to 

forward packets there are additional methods to measure the total 
traffic matrix. If RSVP-TE [3] is used, a full mesh of tunnels can be 

deployed and counters for those tunnels exist to measure the traffic 

matrix. If LDP [4] is used to distribute the label information in a 
network, LDP statistics of the routers can be used to compute traffic 

matrices on a router level – see [5], [6]. The LDP method results in a 

very high measurement accuracy (for example, there is no sampling 
involved) while the measurement complexity is very low: The 

measurement is based on aggregated forwarding equivalence classes 

(FEC) that are introduced in MPLS/LDP and is not based on the IP 
flow level. However, the LDP method can only be used for the 

network’s total traffic matrix and not per QoS class. For Deutsche 

Telekom’s IP/MPLS backbone network the LDP method is currently 
used to compute total traffic matrices to support IGP metric 

optimization (see [9] for a theoretical survey or [8] for a discussion 

on the practical implementation) and network planning. 

Dependent on the existing measurement infrastructure, the network 

topology or the deployed protocols, it may be easier to obtain traffic 

matrices for the total traffic within the network than QoS class 
specific traffic matrices. This is why we propose a model for QoS 

class specific traffic matrices that combines estimation methods with 

total traffic matrix measurements.   

This paper is organized as follows: Section 2 describes the 

mathematical model used to estimate QoS class specific traffic 

matrices and section 3 gives numerical results from the application of 
this model to a part of Deutsche Telekom’s global IP/MPLS 

backbone network.   

2. QOS TRAFFIC MATRIX MODEL 

2.1 Notations for Tomogravity Model 

If our network has n nodes and m links we denote by x the vector of 

link utilization and t the vector representation of the traffic matrix, 

i.e. jit ⋅  (i,j=1,…,n) contains the traffic from node i to node j. From 

the network topology and the IGP metrics in use, we can construct 

the network’s routing matrix A. The entry ]1,0[, ∈⋅ jika  (i,j=1,…,n; 

k=1,…,m) of A contains the part of the demand jit ⋅  on link k. The 

routing matrix A results from a shortest-path calculation with respect 

to the given IGP metrics – if the network makes no use of equal cost 

path splitting (ECMP) }1,0{, ∈⋅ jika  holds. The relation between 

traffic matrix, link utilizations and routing matrix is then described by 

the following equation: 

 

(R)   A t = x. 

 

The tomography estimation of the traffic matrix t* can be constructed 

by solving the following system of equations for a given routing 

matrix A, a given vector of measured link utilizations x and a given 

initial estimate Et  for the traffic matrix: 
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The solution of (TG) is given by        

)(
~*

EE tAxAtt ⋅−⋅+=  

where 

TUSVA ⋅⋅= −1~
 

denotes the Moore-Penrose-Inverse (also pseudo inverse) of the 

routing matrix A and is constructed with a singular value 

decomposition (SVD) of A: 

TVSUA ⋅⋅=  

We use the SVD routines contained in LAPACK [14] for this 
purpose – iterative methods for large scale SVD computations are 

also available – see [15].    

If a gravity estimation is used as an initial estimate tE, (TG) is referred 
to as tomogravity method. The solution of (TG) can be interpreted as 

a (orthogonal) projection of the initial solution tE onto the subspace 

of all traffic matrices that satisfy the link utilization restrictions (R), 

i.e. we calculate that admissible traffic matrix that is closest to tE. For 

tomogravity estimation methods a gravity estimate is chosen for tE – 

one possibility to improve the gravity estimate is the use of a 
generalized gravity model as given in [12] which takes into account 

the knowledge of where peering traffic enters the network. The 
assumption that there is no transit peering traffic in the network then 

restricts the number of possible traffic demand combinations and 

thereby improves the estimate. 

One method to improve the numerical stability of the solution of the 
system (TG) is to remove parallel links from the network topology. 

Service providers often use parallel links in their networks to increase 

capacity before they move to a technology with higher capacity (e.g. 
two or three 2.5Gbit/s links before installing on 10Gbit/s link). Those 

parallel links have the same IGP metric so that they are utilized 
equally when using ECMP. In practice, the traffic is not shared 

entirely equal depending on which hashing algorithm the routers use 

for load sharing – that means that there are differences in the 

corresponding components of the utilization vector x.  On the other 

hand the routing matrix A introduces theoretical load sharing 

properties and equation (R) cannot be fulfilled exactly. We therefore 



 

combine parallel links to one link with the sum of the parallel links 
capacities and their average utilization. 

2.2 Integrated Model with QoS class traffic 

In this section we extend (TG) to a system that can be used to 

estimate traffic matrices per QoS class. Unlike in the previous section 

we now assume that the full traffic matrix 
*t  is given. In Deutsche 

Telekom’s IP/MPLS backbone network we use the LDP method to 

obtain 
*t  - other methods as discussed in the introduction (RSVP-

TE tunnel counters or Netflow measurements) could also be used. 

If we intend to apply (TG) for different QoS classes, QoS class 

specific link utilizations are a prerequisite. But there may not be QoS 
class specific link utilizations available for all links in the network: 

For example in case of Cisco routers QoS-class specific link 

utilizations require the use of the Modular QoS CLI (MQC) whose 
availability depends on the IOS software release and the hardware 

(line card types) in use. For a QoS-class traffic matrix estimation 

method that can be implemented in practice it is reasonable to assume 

• QoS-class link utilizations are available for a subset of all 

links and 

• End-to-End loads are available for the sum of all QoS 

classes 

If there are q QoS classes in the network and we denote by 
)(lt  and 

)(ˆ lx  the traffic matrix and the link utilization vector for the QoS 

class l (l =1,…,q), and by Â  the routing matrix reduced to subset of 

links whose QoS-class specific link utilizations are available, the 
following set of equation holds analog to (R): 
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Using the model (RQ) we can now apply the same estimation method 

as in section II.A analog to (TG) to solve (RQ): 
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The initial estimate for the QoS class specific traffic matrix EQt  is 

constructed from the total traffic demand between the nodes that is 

divided proportionally to QoS class specific link utilizations, more 
precisely: 
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The estimation accuracy of (TGQ) will depend highly on the size of 

the subset of links that have QoS specific link utilizations available. 

Also it should be noted that (TGQ) can result in traffic matrix 

estimations with negative entries since (TGQ) has no condition for 

Qt  being nonnegative. We apply a simple iteration scheme to assure 

positive solutions whose convergence is discussed in the following 

section. 

Compared to an application of the tomogravity method (TG) for each 

QoS class separately (TGQ) introduces further restrictions: the sum 
of the QoS class specific traffic demands must equal the total traffic 

for the respective traffic relation. These additional restrictions should 

improve the estimation quality of the method. Section 3 investigates 
the improvement of the estimation quality for a concrete example 

with realistic data.     

Model (RQ) applies the same routing for all QoS classes but it can be 

easily extended to QoS specific routing schemes if we replace Â  by 

QoS specific routing matrices 
)(ˆ l

A   (l = 1,…,q). 

3. NUMERICAL RESULTS 

The QoS-tomography model (TGQ) is applied to an example network 

with 26 nodes and 190 edges (Figure 2). We assume four QoS 
classes: voice, low loss, low delay, and best effort. 

In the following section, we discuss two problems: estimation 

convergence and estimation accuracy. The third example shows 
estimation results based on QoS link utilization measurements from 

our backbone network. The numerical results focus on the differences 

in the demand structures of the QoS class specific traffic matrices. 
Therefore traffic matrices for one given (15-minute) time interval are 

compared. 

Another difference that is not covered within this paper is the 
difference in the time dependent variance of the traffic volume: 

Different QoS classes will have different daily peak hours. As an 

example Figure 1 shows this difference in the daily link utilization 
chart for one backbone link. The time dependent behavior of traffic 

matrices is particularly important for the choice of the traffic matrix 

that is actually used for traffic engineering or network planning: For 
non-best-effort traffic classes the traffic profile might follow business 

hours and a traffic matrix from a different time interval has to be used 

for network planning or traffic engineering purposes.  

 

 

Figure 1: Daily profiles for different QoS classes for one 

backbone link (normalized diagrams) 

 



 

 

Figure 2: Example network topology. 

3.1 Estimation convergence 

Dependent on the initial estimate vector EQt , problem (TGQ) may 

result in negative values for individual traffic matrix entries. In this 

case we apply an iterative procedure where the negative elements per 
origin-destination (o-d) relation are set to 0 and the negative volume 

is added to the values of the positive entries. After this modification, 

the sum over the QoS classes per o-d relation is unchanged and all 
entries of the traffic matrix are non negative. This result is used as a 

new start vector EQt  for the next iteration with equation (TGQ). The 

diagram in Figure 3 shows that the iteration scheme converges: The 

percentage of the negative traffic matrix volume is reduced from 2 % 

to 0.02 % after only 20 iterations. 
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Figure 3: Estimation convergence 

3.2 Estimation accuracy 

For analyzing the estimation accuracy we assume given traffic matrix 

values for all QoS classes. This given vector of traffic matrices is 

denoted by 
*
Qt . We use a random number generator to set the values 

in the range between 0 and 100000. In a simulation, the traffic of the 

four QoS classes is routed according to the IGP metrics of our 
backbone network. From the routed traffic we can then calculate the 

link utilizations 
)(ˆ l

k
x  for each link k and QoS class l. The traffic 

matrix 
*

t  of the total traffic is calculated from the sum over the 

given QoS traffic matrices. Finally, Qt  is estimated from 
*t  and Qx  

as a solution of (TGQ) and we calculate the relative error E as 

measure for the estimation accuracy. 
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If we take into consideration all elements of the traffic matrices, the 
mean relative error is dominated by the small elements. As the 

contribution of these elements to the overall traffic volume is very 

small, we focus on the mean relative error Eα of those elements that 

are larger than the (1-α) quantile of the traffic matrix element 

distribution function.  

Figure 4 we compare Eα from the (TGQ) method (normal lines) with 

results from a tomography model with a start vector from the gravity 

model (TG model: dashed lines, same color). The tomography model 
(TG) is applied to each QoS class separately.  The results show that 

the mean relative error is reduced by a factor of 2.5 compared to 

results from the (TG) estimation. Nevertheless, a mean relative error 
in the range between 30 % and 100 % indicate that further 

improvements are needed. 
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Figure 4: Estimation accuracy. 

 

One application of QoS class specific traffic matrices is QoS 

dependent routing - especially if the structure of the QoS traffic 

matrices differs from class to class. The estimation result is useful 
only, if the structures are identified accurately by the estimation 

method. The following accuracy test analyzes this problem. We 

assume two different QoS classes. Class 1 traffic originates at nodes 
1 to 12, class 2 traffic originates at nodes 13 to 26. Each source sends 

100000 traffic units to each other node of our network. Nodes 1 to 12 

and nodes 13 to 26 respectively are not in a close topological region. 
The nodes are sorted by name alphabetically and numbered from 1 to 

26. The estimation result for the QoS class specific traffic matrices is 
shown in Figure 5 and Figure 6. The matrix elements are colored as 



 

follows: green: less than 1000 traffic units, yellow: between 1000 and 
50000 traffic units, red: more than 50000 traffic units. Therefore, a 

perfect match is achieved, if the first 12 rows of the QoS 1 matrix are 

red and the others are green and vice versa for QoS2. The structures 
of the QoS traffic matrices are accurately identified in the estimation.  

The mean relative error E is 14.6 % for QoS class 1 and 11.2 % for 

class 2. If we calculate the Eα, only the positive elements of the 
traffic matrices are considered. In that case, the mean relative error 

Eα is 6.3 % for class 1 and 5.3 % for class 2. 
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Figure 5: Estimation of QoS 1 traffic. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26  

Figure 6: Estimation of QoS 2 traffic. 

3.3 Estimation results with real network data 

In the following section the QoS class specific traffic matrix 
estimation (TGQ) is applied to data from our backbone network. The 

total traffic matrix is calculated by means of the LDP method. In the 

considered network topology only 12 of the 26 backbone routers 
could measure the link utilization statistics per QoS class. Therefore, 

we expect more accurate results when all the routers are upgraded to 

an OS version that allows measurements per QoS class. First we 
show the relation of the amount of traffic between the four QoS 

classes (Figure 7). Obviously, the total traffic volume is dominated 
by the best effort traffic (QoS4) and the structure of the QoS4 matrix 

agrees with the structure of the total traffic matrix (Figure 8). The 

structures of the QoS1, QoS2 and QoS3 traffic matrices are different 
to the structure of the total traffic matrix. This is mainly caused by 

specific application architectures (e.g. position of voice gateway 

routers), or locations of specific customers with relatively high QoS 
demands. From the QoS1 traffic matrix in Figure 9 (voice traffic), we 

can see that a lot of traffic is destined to node 1 and node 2, the 

location of voice gateways. Main sources are the nodes 7 to node 14. 
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Figure 7: Distribution over QoS classes. 
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Figure 8: Overall traffic matrix. 
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Figure 9: QoS 1 traffic matrix. 

 

  

4. CONCLUSION 

We have presented a new model and numerical results from a 

real world network for QoS class specific traffic matrices. We 

demonstrated that this method can significantly improve the 

estimation quality. The numerical results show the differences 

in the demand structure for different QoS classes. Thereby we 

motivate why the availability of good quality QoS class 

specific traffic matrices is important for efficient network 

planning and traffic engineering. 

The absolute size of the estimation errors is still quite high for 

the intended use of the QoS class specific traffic matrices. On 

the other hand a good estimation of the demand structure of 

the traffic matrices could already be achieved and the need for 

QoS class specific traffic matrices will only grow with the 

traffic growth in non-best-effort traffic classes. Figure 7 shows 

that there is still some time to improve the estimation quality. 

Future improvements of our method include the usage of state-

of-the-art methods from numerical linear algebra (e.g. sparse 

matrix SVD). This would allow us to investigate larger 

network topologies. Furthermore, we aim to incorporate a 

larger number of QoS class specific link utilizations – not only 

from links within the backbone network but also from ingress 

links into the network - to improve the estimation quality. 
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