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ABSTRACT
Incessant scanning of hosts by attackers looking for vulnerable
servers has become a fact of Internet life. In this paper we present
an initial study of the scanning activity observed at one site over the
past 12.5 years. We study the onset of scanning in the late 1990s
and its evolution in terms of characteristics such as the number of
scanners, targets and probing patterns. While our study is prelimi-
nary in many ways, it provides the first longitudinal examination of
a now ubiquitous Internet phenomenon.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General; C.2.3
[Computer-Communication Networks]: Network Operations;
C.2.6 [Computer-Communication Networks]: Internetworking

General Terms
Measurement,Security

Keywords
Scanning,Longitudinal,Malicious Activity

1. INTRODUCTION
Many forms of Internet activity have proven highly challenging

to characterize due to the network’s great diversity. Because sound
characterization often requires a very broad perspective in order to
capture the full range of variation manifested, such measurement
studies face deep methodological challenges for how to (i) acquire
sufficient breadth of measurement perspectives, and (ii) bring co-
herence to the analysis of disparate data. Yet without such studies,
we lack basic insights into the global network’s behavior and evo-
lution.

With regard to Internet attack activity, several remarkable stud-
ies have managed to attain global perspectives via a range of tech-
niques. Moore’s “network telescope” provides broad visibility into
distant network phenomena such as flooding attacks and worm in-
fections by leveraging the presence in such activity of randomly
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selected IP addresses [8, 9, 7]. Bailey and colleagues present a
system based on a wide range of distributed “black hole” network
blocks coupled with probe responders [2], for which they show that
the distributed perspective can be vital for capturing the range of
variations that scanning activity manifests [3].

Following a different approach, Yegneswaran and colleagues
studied a collection of network scanning logs from the global
“DShield” repository [12, 1]. The data spanned a month-long pe-
riod from 2001 (including the Code Red 2 outbreak) and a 3-month
period from 2002, totaling 207 million scans sent to 1.4 million des-
tination addresses. The study examines scanning prevalence, rates,
types, and address clustering, offering a unique global perspective.

In this paper we also examine the phenomenon of scanning, but
from a perspective global in time rather than space. That is, the
data upon which we base our study begins in 1994—during which
the measured site experienced virtually no scanning activity—
through 2006, long past the point at which scanning became a ubiq-
uitous phenomenon [10]. While only from a single site, the breadth
of the data is extensive: the subset (1/30th) we use for this paper
spans 628 million scans sent by 2.4 million distinct IP addresses.

We emphasize that this paper reflects preliminary work, with
many important questions (e.g., alignment of our findings with
those framed in [12]) deferred for a more extensive study we are
pursuing. However, we find that even our initial “scratching the
surface” of the data reveals a number of interesting results.

2. DATA
The data presented in this paper comes from 12.5 years of logs of

network traffic continuously collected at the border of the Lawrence
Berkeley National Laboratory (LBNL) in Berkeley, CA, USA.
LBNL’s address space consists of two /16 networks and a small
number of /24 network blocks (the exact number varied over the
span of the monitoring). Data collection began on June 1 1994,
and we base our preliminary study on logs up through December
23 2006,1 or 4,581 days. The dataset consists of one-line ASCII
summaries of each incoming connection observed; see § 3.1 for
specifics.

For 1994-5, the connection summaries were generated using a
script that processes tcpdump output. In 1996, we switched to the
newly written Bro intrusion detection system [11], which can pro-
duce connection summaries in the same format.

In total, the dataset includes 23.4 billion connection summaries.
For our analysis, we split each day in the dataset into its own file.
Grappling with data of such size poses many logistical issues. For
example, some of our early analysis scripts failed because they used
more than 3 GB of memory when crunching a single day’s worth of
1Data collection continues to this day. Our initial end date was
arbitrary and chosen for logistical convenience.



summaries. While we re-engineered our analysis to use less mem-
ory (by taking multiple passes across the data, and by sorting the
data on external IP address to allow some forms of analysis to pro-
ceed without maintaining state for multiple addresses), this serves
to illustrate the problems involved in analyzing the data. In fact,
the biggest problem with crunching the data is simply the amount
of time required. Just to count the lines in each file with wc takes
over 4 hours.2 Obviously, more elaborate analysis and keeping state
about the traffic slow this process down much further.

To cope with this massive size, we restrict the initial exploration
of the data to analysis of every 30

th day. This subset of the data
consists of 153 days of traffic, encompassing 794 million connec-
tion summaries (3.4% of the total number of connections in the
dataset).

We note that all analysis in this paper is conducted over 24 hour
periods. That is, a scanner identified on one day is not assumed
to be a scanner on the next day in the dataset (unless of course we
independently identify it on this second day). Given that the days
in the dataset are 30 days apart in real time, this should not skew
our results very much. In future work we intend to analyze the full
set of data, at which point we will need to re-visit the issue of when
to “age out” a scanner.

While we know that glitches in the monitoring apparatus have
occurred—and thus the dataset does not include every connection
attempt made in the last 12.5 years—there have been no prolonged
outages of the monitoring infrastructure. We used the timestamps
in the connection summaries to check for “short” days, finding
6 days within our dataset to be more than 30 sec “short” of a full
24-hour period. In looking back through both ancillary informa-
tion and logs from surrounding days, we find that while some of
these days are quite “short” (the most egregious log being roughly
6 hours long), the outages represent Bro crashes and hardware
problems not correlated with scanning. Therefore, we do not be-
lieve these short days bias the assessment. In addition, we looked
for gaps within each day’s log. We found three days where the logs
exhibit 14–16 minute gaps, and confirmed that these reflect Bro
crashes. Prior to the gap we do not see scanning activity, but we do
in the logs generated immediately after Bro restarted. Therefore, it
is possible that a form of scanning affected the measurement infras-
tructure, slightly biasing the measurements. We do note, however,
that 16 minutes is about 1% of a day, and therefore the amount
of bias is likely small (especially since all of these instances come
from 2004-6, when scanning was incessant, as shown in § 4). We
found two additional outages of 21 and 24 minutes. These again re-
flect Bro problems. However, we see nothing surrounding the gaps
to indicate that significant scanning was taking place during these
time periods.

3. WHAT IS A SCANNER?
Crucial to our entire study is a careful definition of when to con-

sider a remote host a “scanner”. We break this question into two
parts. We first consider how to classify individual connections
(§ 3.1). We then use the classifications of all the connection at-
tempts from a particular remote host to classify the remote host
(§ 3.2).

3.1 Connection Classification
Our dataset consists of “connection summaries” for each incom-

ing connection. It is important to note that while the logs include
all TCP traffic (which heavily dominates LBNL’s traffic mix), the

2This also includes uncompression time for the largest one-third
the daily logs, which we store gzip-compressed.

presence of UDP traffic is limited to only those protocols analyzed
by the Bro system, which varied over the course of its development.
In addition, the logs we used do not include any ICMP traffic.

These summaries contain (1) the time a connection started (re-
ported to µsec precision), (2) the duration of the connection (also
reported with µsec precision), (3) the source and destination IP
addresses, (4) the number of bytes transferred in each direction,
(5) the application protocol as inferred from usage of well-known
ports, and (6) a “final state” entry. This state provides a succinct
summary of the connection. The “SF” state indicates that the mon-
itor observed both the three-way SYN handshake to initiate a con-
nection and the FIN handshake to tear it down (i.e., the connection
progressed in the nominal way we think of successful connections
working). The “REJ” state, on the other hand, indicates that the ini-
tial SYN (from a remote peer) elicited a RST packet from the target
host, indicating a rejected connection attempt. The connections in
our dataset span roughly 20 state values.3 We classify every state
but one (“SH”; see below) as either “good” for successful connec-
tions, “bad” for connection attempts that do not lead to established
connections, or “unknown” for states that do not indicate clearly
good or bad connections.

The “SH” state indicates that the remote peer sent a SYN fol-
lowed by a FIN—however, the monitor never recorded a SYN-
ACK from the local peer. At first glance, this would seem to in-
dicate a scanner that is trying to make connection attempts look
as real as possible in the hopes of not triggering an alarm. How-
ever, such connections can also indicate a vantage point problem
whereby the monitor is not observing outgoing traffic from some
hosts. While in general the monitor placement at LBNL can ob-
serve both incoming and outgoing traffic, there were periods of
time where the traffic for some LBNL hosts would partially bypass
the monitor. From a measurement perspective this is clearly un-
desirable. However, when conducting the sort of exhaustive long-
term monitoring required to produce the dataset used in this paper,
these sorts of quirks are inevitable. In this case, the quirk gives rise
to traffic summaries that do not clearly show the traffic as good or
bad.

To cope with this ambiguous “SH” state, we introduce a heuristic
based on the service fanout of the remote host, i.e., the number of
(localIP, port) tuples the remote host at least attempted to access.
When restricted to “SH” connections, if this fanout exceeds 10 then
we deem all the “SH” connections from the given remote host as
“bad”. Otherwise, we classify them as “unknown”.

After processing the “SH” connections, we are left with “good”,
“bad” and “unknown” connections. In over two-thirds of the days
in our dataset, we classify fewer than 1% of the connections as
“unknown”, though on 5 days we observed an unknown connec-
tion prevalence of ≥ 5%, with the maximum being 16%. Manual
examination shows that while a variety of unknown states manifest
in these days, the predominant unknown state is “SH” connections
from remote hosts that do not exhibit the fanout required for us
to reclassify the connections as “bad”. While these connections
could in fact be from scanners trying to evade detection, (i) the low
fanout suggests a monitor placement issue, since fanout for legiti-
mate remote hosts is typically low (see § 3.2), and (ii) the unknown
connections are generally small enough in number as to not signif-
icantly skew our overall results.

3.2 Host Classification
Using the above classifications of each connection in our dataset,

3Bro currently produces 13 different states. However, over the
years additional codes have been used as understanding of how to
best summarize status information evolved.



we can now turn to analyzing a remote host’s aggregate behavior
to determine whether to classify it as a scanner or not. Our general
approach is based on the notion that connection attempts that do
not result in established connections represent possible scans. Of
course, there are benign reasons why such attempts occur (service
temporarily unavailable, misconfigurations, user errors), and also
the probes from scanners will sometimes succeed in establishing
connections. Thus, simply observing a single failed connection at-
tempt should not mark a remote host as a scanner. Accordingly, we
need a heuristic for analyzing a remote host’s overall activity and
making a judgment.

Scanners, by definition, poke around in search of services. We
can quantify the notion of “poking around” in terms of a remote
host’s service fanout, i.e., the number of (localIP, port) pairs a re-
mote host attempts to access, as discussed in the last section. How-
ever, fanout by itself does not necessarily indicate scanning by an
attacker. It could instead reflect legitimate access that happens to
involve a number of different local hosts or services.4

One potential means for distinguishing between these two possi-
bilities builds upon the likelihood that hostile scanners will tend
to fail in their connection attempts more often than legitimate
hosts, because the scanners lack knowledge of where servers re-
side. While previous work on detecting scanners in real-time exists
(e.g., using various thresholds [6] or Sequential Hypothesis Testing
[4]), for our preliminary exploration we want to start from a more
relaxed definition of “scanner”. We do so for two reasons: (i) such
that we have an opportunity to observe patterns that might differ
from those detected by operationally oriented schemes that place a
premium on reacting quickly in real-time, and (ii) to allow for the
possibility of ambiguity in terms of not making a decision one way
or the other regarding whether a host is a scanner. To this end, we
first note the fairly sharp distinction between fanout as exhibited by
remote hosts that only make good connections (“good hosts”) ver-
sus for remote hosts that only make bad connections (“bad hosts”).
(While these hosts are not themselves hard to classify, our goal is
to arrive at a well-supported rule for classifying remote hosts that
make both good and bad connections to local services.)

We note that only 3% of good hosts have a service fanout ex-
ceeding 3, while 24% of bad hosts do. Clearly, good hosts gener-
ally target a small number of local services while bad hosts tend
to attempt to hit a larger number of services. Next, assessing the
“mixed” hosts, i.e., remote hosts that make both good and bad con-
nections, we find that often either the good service fanout or the
bad service fanout outweighs the other by a large margin (match-
ing the similar finding reported in [4], though this time seen over
a much longer period of time). We therefore formulate a rule to
classify “mixed hosts” as “good” or “bad” based on the ratio of
the host’s fanout for good connections to its fanout for bad connec-
tions. If either type of connection outweighs the other by a factor
of T , then we classify the host using the more predominant type of
connection. Otherwise, we leave the host unclassified.

Figure 1 shows distributions for various values of T of the per-
centage of mixed hosts that remain unclassified per day using the
scheme outlined above. We first note that the scheme classifies over
90% of the mixed hosts regardless of threshold we used—verifying
our initial belief that remote hosts make predominantly good or bad
connections. In addition, the plot shows that T values of 1.01–1.5

4In addition, a lack of fanout does not necessarily mean a host is not
a scanner. It might instead be scanning the Internet very broadly,
such that in our dataset we only see one or two connection attempts.
In principle, we might be able to assess the degree to which this
occurs by cross-analyzing our dataset with a global database such
as that provided by DShield [1] (at least for data from recent years).
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Figure 1: Unclassified mixed hosts after comparing good and
bad service fanout as a function of the threshold.

perform nearly identically, indicating that there is a set of remote
hosts with balanced good and bad service fanout that are not easily
classified using this scheme.

Based on the above analysis, we define a scanner as a remote
host that has bad service fanout of at least 4 and has bad service
fanout of at least 2 times the good service fanout.

This heuristic leaves a small number of unclassified hosts
(<10%); however, classifying these hosts seems difficult, at best,
since they access good and bad services in roughly equal numbers.
Further, to bias the results a scanner would have to engineer their
scanning to interleave accesses to well known services with probes
meant to figure out something about the local hosts. Such a tech-
nique has only recently been explored in the literature [5].

4. AGGREGATE VIEW
Using the above methodology for classifying remote hosts as

scanners or benign, Figure 2 shows the total number of incom-
ing connections (solid black) and the subsets from benign sources
(solid gray) and scanners (dotted). The black dots indicate data
from a weekend, and clarify why the data exhibits frequent oscil-
lations: the dips nearly always occur on a weekend, when network
traffic is naturally lower. The plot shows that scanning started to in-
crease in earnest in 1998, and exhibits significant variability from
month to month. In addition, 2001 emerges as marking a funda-
mental shift from most connections being legitimate to most being
part of scanning activity, coincident with the Code Red and Nimda
worm outbreaks.

Figure 3 shows the number of legitimate remote hosts and scan-
ners attempting to establish connections each day. (We start the
y-axis at 1,000 for readability, which clips the scanner host count
all the way through 2000, during which it remained much smaller
than the good host count.) As noted above, in terms of connection
count scanning “took off” in 1998. However, in terms of number of
hosts, activity only ramped up in 2001,5 with the onset of the major
worm outbreaks. From this point forward we observe thousands
of scanners probing every day, and we might well consider this to
reflect the onset of Internet “background radiation” [10], due to the
diffuse-yet-incessant nature of scanning ever since.

The plot also shows a second, even stronger spike in early 2004,
coinciding with a number of energetic scanning attacks (MyDoom,
5The scanner count exceeded 30/day only once prior to Oct. 1999.
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Figure 3: Host-level summary of incoming traffic.

Sasser, Welchia, Bobax, Gaobot). We note that during both spikes,
we observe significant increases in the counts of non-scanners, too.
This likely indicates that we are not correctly identifying all scan-
ners. In particular, in § 3.2 we noted that 76% of hosts with no
legitimate connections had fanouts ≤ 3—and hence were not la-
beled as “scanners”. Thus, the rise in non-scanners in the Figure
almost surely reflects scanners that happened to only probe LBNL’s
address space a small number of times.

An interesting effect is that scanning—both as a fraction of the
connection attempts and as a fraction of remote hosts—has de-
creased since mid-2004. For our preliminary study, we can at this
point only speculate as to likely causes. First, the peak was likely
caused by very aggressive scanning worms/bots in the 2003–2004
timeframe, which inflated the scanning growth rate. Second, scan-
ners have become increasingly refined in their techniques (cf. the
discussion in § 5 of scanning rates), both for greater efficiency and
to operate with a lower profile. We note that the last data point
shows over two-thirds of the connection attempts in Dec. 2006 were
scans, but these come from just over 1% of the remote hosts that
contacted LBNL that day. Clearly, this is an area of considerable
interest for our future work.

Finally, we note that in both Figure 2 and Figure 3 the non-

scanning activity exhibits consistent growth of 45%/year (number
of connections) and 36%/year (number of hosts), other than the
aberrant elevated period during 2003–2004. This highlights both
the sustained exponential growth of different dimensions of net-
work traffic, and how scanning can occur at a level that significantly
perturbs these otherwise-steady trends.
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Figure 4: Services scanned as a function of time.

We next turn to what services the scans target. Figure 4 shows
the services most commonly probed (greatest number of days for
which they accounted for ≥ 5% of all scans), with the areas of
the circles proportional to the absolute number of scans for the
given service on the given day. Some services see low-rate inces-
sant scanning (e.g., SMTP), while others flare up and later die off,
such as HTTP scanning in Aug. 2001 (Code Red) or the seismic
onset of DCE/RPC in Aug. 2003 (Blaster), as well as SMB and
NetBIOS due to other worms and bots exploiting Windows ser-
vices, as noted above. For some services, we see a gradual retreat,
such as for 9898/tcp, presumably reflecting on-going disinfection
activities. The 9898/tcp scans are also interesting because they are
parasitic: they reflect an attacker searching for backdoors left be-
hind by previous malware (the Sasser worm). Finally, we note that
there are occasions with heavy “other” scanning. Some of this re-
flects a specific constellation of scanning associated with a single
worm or exploit tool, but others appear quite diverse, highlighting
that a simple list of top services scanned will often not fully capture
the breadth of activity.

5. SCANNER-LEVEL VIEW
We finish our brief study with a look at the behavior of individ-

ual scanners. Figure 5 shows the median and maximum number
of probes sent per scanner during each day. For nearly all of the
measurement period, the median number is well under 100, and
since the onset of background radiation in 2001, the median rate
has held steadily right around 10 scans/day. At the upper end, how-
ever, we see that energetic individual scanners arose directly during
the 1998 onset of significant scanning activity. After that point we
repeatedly observe scanners sending tens of thousands of probes,
and the number that these “heavy hitters” sent has further risen
over time. Also, from 1998–2001 we see somewhat of a plateau
of the maximum number of scans at around 64K. We conjecture
(informed by the fanout we discuss next) that this plateau comes
from scanners probing a particular port on every address within
one of LBNL’s /16 networks. The increase after 2001 may reflect
scanners that now probe both /16s, and/or an increase in scanners
targeting multiple ports.
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We next look at the reach of scanners in terms of how many lo-
cal hosts and services they probe. Figure 6 shows host and port
fanout over time. Consistently, fanout in terms of hosts is signifi-
cantly higher than for ports, indicating that scanners are mainly in-
terested in broad scans across many hosts rather than deep scanning
of particular hosts ([12] notes the same effect). In addition, with the
onset of significant scanning in 1998, it is not rare to observe a sin-
gle scanner sweep one of LBNL’s /16 networks (64K addresses),
with this becoming a daily occurrence in early 2001 (not due to the
worms of that year, which arrived later).

Furthermore, starting in 2004 we begin to observe single hosts
scanning both of LBNL’s /16 networks (128K addresses). For in-
stance, the scanner probing the most LBNL hosts in one day over
the course of our entire dataset represents a sequential probe for
SQL servers on Nov. 12, 2004. The source scanned one of LBNL’s
entire /16 networks at 3:45AM, in just over 18 seconds, and the
second one at 9:11AM. Assuming the sequential scanner probes a
/16 every 18 seconds, this suggests that in the interim between the
two visits to LBNL it could probe about 1,078 other /16s. In fact,
there are 1,008 /16s between LBNL’s two /16s, strongly indicating
that this scanner was simply scanning a large swath of the network
sequentially. This anecdote points to an important area of future re-
search, namely assessing the patterns of scanning. Finally, we note
that while in general scanners concentrate on a small number of
ports, probes of over 10K ports are not uncommon in recent years.

Figure 7 shows the probing rate of scanners over time, for scan-
ners that sent at least 100 probes. We observe a median scanning
rate under one scan/sec across nearly the entire dataset. With the
onset of background radiation in 2001, we also consistently see at
least one scanner per day that sends 100 probes spread over the en-
tire day (for a rate of 0.001 scans/second). Regarding the top rates,
we note two sharp increases, in late 1998 and in early 2004, which
we attribute to scanning software becoming more efficient, i.e., by
using non-blocking calls, raw I/O, and multiple processes/threads.
It is striking that prior to 1998, we never observe a scanner prob-
ing faster than 1/sec (presumably limited by a simple scanning loop
that uses the OS’s standard connect facility); and that after that
point, maximum scanning rates sustained annual growth of around
170%/year. As a final note, the maximum scanning rate we observe
is 88K scans/second. However, this rate comes from 137 scans over
1.5 msec. One of the many areas for future work is to assess the
sustained scanning rates of large scanners.
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each day in the dataset.
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6. SUMMARY
In this paper we have taken a first, brief look at the history of

scanning over the last 12.5 years as observed at LBNL. While other
studies have shown greater breadth in gathering data from multi-
ple vantage points, and greater depth in the analysis of particular
scanners, we are not aware of any prior work that explores the
phenomenon over such an extended period of time. To be sure,
there are many more questions than we have answered in this pa-
per, which we intend to explore in future work. Some of the future
data analysis we intend to pursue involves assessing (i) scanning
patterns, (ii) distributed scanning whereby various hosts each scan
a portion of the address/port space, (iii) correlations between scan-
ning rates and general increases in the number of well-connected
hosts and the speed of their connections and (iv) the sources of
scanning by AS number or geographic region. These are merely
examples and not an exhaustive list, as a goal in writing this initial
paper is to solicit feedback on additional key questions to address.
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