
Acyclic Type-of-Relationship Problems on the Internet:
An Experimental Analysis∗

Benjamin Hummel
Fakultät für Informatik

Technische Universität München

Sven Kosub
Fakultät für Informatik

Technische Universität München

ABSTRACT
An experimental study of the feasibility and accuracy of the
acyclicity approach introduced in [14] for the inference of
business relationships among autonomous systems (ASes)
is provided. We investigate the maximum acyclic type-of-
relationship problem: on a given set of AS paths, find a
maximum-cardinality subset which allows an acyclic and
valley-free orientation. Inapproximability and NP-hardness
results for this problem are presented and a heuristic is de-
signed. The heuristic is experimentally compared to most
of the state-of-the-art algorithms on a reliable data set. It
turns out that the proposed heuristic produces the least
number of misclassified customer-to-provider relationships
among the tested algorithms. Moreover, it is flexible in han-
dling pre-knowledge in the sense that already a small amount
of correct relationships is enough to produce a high-quality
relationship classification. Furthermore, the reliable data set
is used to validate the acyclicity assumptions. The findings
demonstrate that acyclicity notions should be an integral
part of models of AS relationships.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Network
Protocols, Network Operations; F.2.2 [Nonnumerical Al-
gorithms and Problems]: Computations on discrete
structures

General Terms
Measurement, Algorithms

Keywords
Inter-domain Routing, AS Relationships, Algorithms

∗All data sets and Java implementations of the
algorithms used herein are available online at
http://www14.in.tum.de/software/BGP/hummel-kosub-
07.html.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’07, October 24-26, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-908-1/07/0010 ...$5.00.

1. INTRODUCTION
Interrelationship analysis of autonomous systems (ASes, for
short) has recently attracted much attention in both theoret-
ical and practical research on Internet inter-domain routing
with BGP (see, e.g., [8, 19, 18, 7, 4, 14, 6]). This interest
is motivated by insights how routing stability and quality in
the Internet is influenced not only by physical connections
between ASes but heavily by their business relationships.
As business contracts are subject to privacy, computational
tools and techniques are required to infer close-to-reality re-
lationship classifications from publicly available resources
such as WHOIS databases, the Internet Routing Registry
[15], or BGP beacons (e.g., [17, 21]).

A useful approach is the interpretation of observable BGP
routes. Techniques based on this approach usually work as
follows: collect a set of AS paths from BGP routers, obtain
an AS-level connectivity graph (the AS graph) by merging
all AS paths, and label the AS graph with business rela-
tions such that all—actually, as many as possible—collected
AS paths are valley-free. Valley-freeness is a characteristic
property of AS paths based on economic rationality, which
in a simplified version says that, in the direction of traffic,
a customer-to-provider link should never follow a provider-
to-customer link. The implementations range from purely
combinatorial (e.g., [4, 14]) to purely heuristical one’s (e.g.,
[8, 19, 23]). Though there has been some criticism of unreal-
istic classifications [7], the empirical findings are encouraging
for further developments.

In [14], acyclicity has been added to valley-freeness as an-
other structural condition of AS graph labelings. The ra-
tionale for acyclicity is that it is unlikely the case that an
AS A is a provider of an AS B, AS B is a provider of an
AS C, and AS C is a provider of AS A. It has turned out
that finding labelings which are both valley-free on the path
set and acyclic in the AS graph is easy, even if we want
to respect explicit pre-knowledge (following the partialness-
to-entireness methodology [23]). However, this theoretical
feasibility and plausibility of the acyclicity approach to AS
relationship inference has not been supported with empirical
evidence in [14].

In this paper we contribute to the experimental analysis
of acyclic type-of-relationship problems in three ways.

• First, we operationalize acyclicity. In [14], algorithms
have been presented to test whether all paths of a given
path set allow acyclic and valley-free orientations. In
practice, collected path sets are expected to fail this
test. Thus, these algorithms are of theoretical interest
only. We consider the problem to find acyclic orienta-

tions which maximize the number of valley-free paths.
We provide lower bounds on the approximability of
this problem (which implies the NP-hardness as well)
and we design a fast heuristic for finding acyclic orien-
tations which are valley-free on a large part of a given
path set.

• Second, we validate the acyclicity assumptions from
[14]. In doing so, one issue is obtaining a reliable
data set. We report on several techniques employed.
The graph we receive from the reliable data set when
only using customer-to-provider relationship is acylic.
Including peer-to-peer relationships is more problem-
atic. It seems that we do not yet have the right un-
derstanding how peer-to-peer relationships affect the
graph-theoretical structure of BGP routes and the AS
graph.

• Third, we compare the inference quality of our heuris-
tic to a set of standard algorithms from the literature.
On the reliable data set, our heuristic produces the
lowest number of misclassified customer-to-provider
edges among all algorithms tested (in numbers: ap-
proximately 0.3% of all edges in the set are misclassi-
fied). We further test how the inference quality of the
algorithms depend on initial pre-knowledge. Here, it is
observed that for our approach the relative number of
misclassified customer-to-provider edges is nearly inde-
pendent of the amount of pre-knowledge. That is, al-
ready a small amount of correct relationships is enough
to infer a high-quality classification among the ASes.

All in all, the findings of this paper indicate that the
method proposed is a feasible and flexible heuristic with ex-
cellent inference quality (at least with respect to customer-
to-provider relationships) and that acyclicity should be an
integral part of any further accuracy improvements.

2. RELATED WORK
Several algorithms have been proposed to infer relation-
ship types from AS paths. The first attempt was made in
[8] where the valley-free path model was introduced and a
heuristic was designed based on statistical properties of a
given path set. This approach was pushed further in [19,
23] to combine valley-free path labelings obtained from dif-
ferent observation points and from sources other than AS
paths. In [4] (and some precursor papers), a combinatorial
approach is developped based on expressing valley-freeness
of paths in terms of the 2SAT problem. A combination of the
2SAT-based formulation of valley-freeness and the statistical
properties of path sets in terms of mathematical program-
ming has been proposed in [7, 6]. The acyclicity approach
to interrelationship analysis is from [14]. Computational
techniques not based on AS path interpretation have been
proposed and discussed in, e.g., [18, 23, 5, 6].

3. PRELIMINARIES
We briefly describe a simple, abstract model of inter-domain
routing in the Internet using BGP (see, e.g., [22, 16, 9, 8]).

3.1 The Selective Export Rule
The elementary entities in our Internet world are IP
adresses, i.e., bit strings of prescribed length. An au-
tonomous system (AS) is a connected group of one or more

AS v exports to provider customer peer sibling

own routes Yes Yes Yes Yes
customer routes Yes Yes Yes Yes
provider routes No Yes No Yes
peer routes No Yes No Yes

Figure 1: The Selective Export Rule.

IP prefixes (i.e., blocks of contiguous IP adresses) run by one
or more network operators which has a single and clearly
defined routing policy [10]. An AS aims at providing global
reachability for its IP adresses. To achieve this goal, ASes
having common physical connections exchange routing in-
formation as governed by their own local routing policies.
BGP is the de facto standard protocol to manage data traf-
fic between ASes for inter-domain routing as well as for route
propagation.

Reachability in the Internet depends on (physical) con-
nectivity and the contractual relationships between ASes.
The most fundamental binary business relationships are
customer-to-provider (where the provider sells routes to the
customer), peer-to-peer (where the involved ASes provide
special routes to their customers but no transit for each
other), and sibling-to-sibling (where both ASes belong to the
same administrative domain). Evidently, sibling-to-sibling
relations are transitive. More peculiar relationships appear
in the real world (see, e.g., [8]). We restrict ourselves to the
three mentioned types of relationships.

More specifically, let V be a set of AS numbers. The undi-
rected graph G = (V, E) where E corresponds to physical
connections between ASes is called a connectivity graph at
the AS level or simply AS graph. For any AS v ∈ V denote
the set of all siblings of v (including v itself) as Sibl(v), and
R(v) the set of all currently active AS paths in the BGP
routing table of v, i.e., all AS paths that have been an-
nounced from neighboring ASes at a certain time and never
been withdrawn. Assumed that there are no misconfigu-
rations of BGP, all AS paths in R(v) are loopless and not
including v. Here, we say that an AS path is loopless when-
ever between two sibling ASes on the path, no non-sibling
AS is passed. Based on the neighborhood classification, we
further divide R(v) into four categories. A loopless AS path
(u1, . . . , ur) ∈ R(v) is

a customer route of v ⇐⇒def

leftmost ui /∈ Sibl(v) is a customer of v,
a provider route of v ⇐⇒def

leftmost ui /∈ Sibl(v) is a provider of v,
a peer route of v ⇐⇒def

leftmost ui /∈ Sibl(v) is a peering partner of v,
an own route of v ⇐⇒def

for all 1 ≤ i ≤ r, ui ∈ Sibl(v).

Now, typically (at least, recommendably), ASes set up their
export policies according to the Selective Export Rule [1,
12, 8] as described in Figure 1. In our simplified model, the
receiving AS gets from an AS those routes destined for it
and prolongated with the number of the sending AS as the
new leftmost AS number in the path.

3.2 The Valley-Free Path Model
Valley-freeness is a graph-theoretical consequence of the Se-
lective Export Rule. Let G = (V, E) be an undirected (sim-
ple) graph. We assume that (u, v) ∈ E ⇔ (v, u) ∈ E. An

orientation ϕ of G is a mapping from E to T where T de-
notes the set of possible edge-types, which are taken from:

→ indicating a customer-to-provider relationship
← indicating a provider-to-customer relationship
−− indicating a peer-to-peer relationship
↔ indicating a sibling-to-sibling relationship

Throughout this paper, we only consider orientations ϕ that
are consistent with respect to →. That is, for all (u, v) ∈
E, ϕ(u, v) =← ⇔ ϕ(v, u) =→. Thus, if we allow → as
a possible edge type, then we immediately allow ← as a
possible edge type as well. Instead of ϕ(u, v) =→ for an
edge (u, v) ∈ E we also write u→ v.

We extend ϕ from edges to walks. Let (v0, v1, . . . , vm) be
any walk in a graph G. Then ϕ(v0, v1, . . . , vm) is defined
to be ϕ(v0, v1)ϕ(v1, v2) . . . ϕ(vm−1, vm), i.e., in our setting a
word in {←,→,−−,↔}∗. We typically use regular expres-
sions to describe walk types given an orientation. An im-
portant property of orientations is valley-freeness, which is
stated here in terms of regular patterns of paths.

Definition 1 ([8]). Let G be a graph and let ϕ(G) be
an orientation of G. A loopless path (v0, . . . , vm) is said to
be valley-free in ϕ(G) if and only if ϕ(v0, . . . , vm) belongs to

{→,↔}∗{←,↔}∗ ∪ {→,↔}∗ −−{←,↔}∗.

The valley-freeness of paths abstracts the condition that
ASes never route data from one of their providers to another
of their providers because instead of earning money, they
would have to pay twice for these data streams.

Theorem 2 ([8]). Let G = (V, E) be an AS graph and
let P be a set of AS paths of all BGP routing tables, i.e.,
P ⊆

⋃
v∈V R(v). If all ASes export their routes according to

the Selective Export Rule, then there is an orientation of P
such that all paths in P are valley-free.

3.3 The Acyclicity Assumptions
Following [14], we summarize reasonable acyclicity struc-
tures within a connectivity graph, i.e., patterns of oriented
cycles which are forbidden to be contained in the graph. An
oriented cycle (in its simplest form) can be interpreted as
someone being its own provider and customer. The follow-
ing definition of an oriented cycle has been proposed in [14].

Definition 3 ([14]). Let G be any graph, and let ϕ(G)
be an orientation of G. Let C be any minimal cycle of G,
i.e., a cycle that does not contain a vertex twice. C is said
to be an oriented cycle of ϕ(G) if and only if ϕ(C) lies in

{−−,↔}∗ → {→,−−,↔}∗ ∪
{−−,↔}∗ ← {←,−−,↔}∗ ∪ ↔∗ −− ↔∗ .

To exemplify the definition, Figure 2 shows the 16 non-
isomorphic triads of the 64 possible orientations of a com-
plete graph on three vertices. Half of them are oriented
cycles according to Definition 3 and half of them are not.
Note that in the case that ϕ does not exhaust the full type
set {→,−−,↔}, the patterns of oriented cycles simplify. For
instance, if the type set is {→}, then we obtain that a min-
imal cycle C is an oriented cycle if and only if ϕ(C) belongs
to →∗ or ←∗ which is the usual understanding of a cycle.
We call an orientation acyclic if it contains no oriented cy-
cles. Testing whether an orientation is acyclic can be done
fastly by standard techniques (see, e.g., [3, 14]).

A

C B

A

C B

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

A

BC

Figure 2: Non-isomorphic triads. All triads in the upper row
are forbidden and all triads in the lower row are allowed.

4. THE MAXIMUM ACYCLIC TYPE-OF-
RELATIONSHIP PROBLEM

An algorithm for finding an acyclic and valley-free orien-
tation of an AS graph for a given path set is presented in
[14]. We modify this algorithm to find an acyclic orienta-
tion which is valley-free for a large part of the AS paths (even
when there is no valley-free orientation including all paths)
followed by some improvements. Formally, we consider the
following optimization problem (see [2] for notation):

Problem: Maximum Acyclic ToR
Input: AS path set P and induced AS Graph
Solution: A subset P ′ ⊆ P allowing an acyclic

and valley-free orientation
Measure: The cardinality ‖P ′‖ of the subset P ′

We mention some theoretical results showing that this
problem is computationally difficult. All proofs can be found
in the full version [11] of the paper.

Theorem 4. Unless P = NP, there is no polynomial-
time approximation scheme for Maximum Acyclic ToR.

The decision version of Maximum Acyclic ToR consists
of all instances (P, k) such that P is a (multi)set of AS paths
containing a subset P ′ ⊆ P which has at least k paths and
which allows an acylic and valley-free orientation.

Corollary 5. The decision version of Maximum
Acyclic ToR is NP-complete.

On the positive side, we do not know any non-trivial
bound on the approximation quality of Maximum Acyclic
ToR. However, if we restrict path lengths, then we obtain
a constant approximation ratio.

Theorem 6. Maximum Acyclic ToR limited to paths
of length at most k ∈ N+ can be approximated within a factor

of 2k

(k+1)!
of the optimum in polynomial time.

Unfortunately, these fractions decrease very quickly as
path length increases, e.g., for path length 2 the fraction
is 2

3
≈ 66.7%, for length 3 it is 1

3
≈ 33.3%, for length 4 it is

2
15
≈ 13.3%, and for length 5 it is already 2

45
≈ 4.4%.

4.1 The Basic Heuristic
The algorithm from [14] for testing whether a path set allows
acyclic and valley-free orientations is based on the observa-
tion that a leaf AS (i.e., one that itself has no customers)
cannot be in the middle of any AS path. We describe it com-
bined with the extension for discarding an interfering path,
but before digging into the details we fix some notation.

Algorithm 1 Heuristic “AHeu”

1: Input: AS path set P , AS graph G = (V, E) for P
2: Output: set N of discarded paths, an acyclic orientation of

G with → edges (valley-free for all paths in P \N)

3: count(v) := number of paths for which v is an inner node
4: F := {v ∈ V | count(v) = 0}, R = ∅, N = ∅, done := false
5: while ¬ done do
6: while F 6= ∅ do
7: remove vertex u from F
8: foreach v ∈ V \R with {u, v} ∈ E do
9: orient {u, v} as customer-to-provider
10: foreach p ∈ P with u and v as neighbors do
11: if v is inner node of p relative to R then
12: count(v) := count(v)− 1
13: if count(v) = 0 then F := F ∪ {v}
14: R := R ∪ {u}
15: if R = V then done := true
16: else
17: v := argminu∈V \R count(u)

18: foreach path p ∈ P with v ∈ p do
19: if v is an inner node of p relative to R then
20: N := N ∪ {p}
21: foreach inner node u of p relative to R do
22: count(u) := count(u)− 1
23: if count(u) = 0 then F := F ∪ {u}
24: return N

During its execution the algorithm removes ASes which
have been finished. To avoid having to change all the paths,
we manage a set R of removed nodes. Given such a set, a
node v in a path p is called inner node of p relative to R if
it is surrounded in p by nodes u and w with u, w /∈ R. A
node not in R that is not an inner node for all paths of the
paths set is called free.

In the algorithm (details in Algorithm 1) we count for each
node v in count(v) the number of paths for which v is an
inner node. The set F of free nodes is then easily initialized
by all nodes with count = 0. The main loop (lines 5–23) can
be separated into two phases. The first phase (lines 6–14) is
taken from the algorithm in [14]. While there is a free node
u in F we interpret it as a leaf AS and thus orient the edges
to its neighbors (not yet in R) as customer-to-provider. As it
is removed afterwards (i.e., put into R) we adjust the count
variables accordingly to find nodes which are now freed. If
we can remove all ASes this way (R = V) we know that
the orientation is valley-free and acyclic, as the nodes have
been removed in topologically sorted order (each node had
indegree 0 when it was removed).

If the first phase ran out of free nodes before all ASes
could be removed, we need to create additional free nodes
by discarding paths (starting from line 15). As we want to
discard as little paths as possible, we select a node v which is
an inner node for the minimal number of paths (as indicated
by count(v)). By removing all those paths, v becomes a free
node and we continue with the first phase.

We want to point out that the algorithm can easily be
modified to work for a weighted path set, where the goal con-
sists of minimizing the overall weight of the dropped paths.

4.2 Handling Pre-knowledge
If we already have partial information on the AS relation-
ships we would like to incorporate this knowledge thereby
improving the results of the algorithm. In [14] the influ-
ence of pre-knowledge on the complexity of testing whether

an acyclic and valley-free orientation consistent with the
pre-knowledge exists is discussed and an extension for the
acyclic inference algorithm for handling known customer-to-
provider edges is presented. As our heuristic is a modifica-
tion of the algorithm given there, we can easily transfer this
extension.

The idea is to introduce for each known customer-to-pro-
vider edge u → v a new path (u, v,⊥), where ⊥ is an ar-
tificial AS with count(⊥) = ∞. So the only way to make
v a free node is to remove u which includes the introduc-
tion of an edge u → v as desired. Of course these new AS
paths need not be constructed explicitly, but can be handled
implicitly by modifying the heuristic above.

As the heuristic is allowed to drop paths hindering a con-
sistent orientation, interpreting known edges as paths also
allows dropping these edges in case of a conflict. Often how-
ever the pre-knowledge is trusted more than the set of AS
paths. For this case we can increase the weight of these (vir-
tual) paths introduced in this step. In our implementation
all AS paths are weighted with 1 and all paths originating
from known edges are assigned the same weight W . Thus a
customer-to-provider edge may only be discarded, if we can
“save” at least W AS paths instead. For the results shown
later, W was set to 10.

4.3 Re-adding
After finding an AS path set which can be oriented valley-
free, the DPP* heuristic from [4] enters a second phase where
paths which had to be dropped before are re-added to the
path set if possible. Two approaches for this are considered
there. One is a voting process, the other one is for each
single path to add it to the path set and only keep it if a
valley-free orientation is still possible.

As the re-adding stage reduces the number of invalid paths
we adapted this method for our heuristic. Unfortunately
the simple and fast voting strategy does not work for our
case as it does not necessarily preserve the global acyclicity.
The alternative approach of adding paths one by one and
retesting orientability works but is quite expensive if the
number of dropped paths is high (as already observed by
[4]). Therefore we adjusted re-adding as follows.

The first run of the heuristic returns a set N of discarded
paths, from which we can determine the set of orientable
paths P . We decide on the number k > 1 of additional runs
we are willing to spend and partition N arbitrarily into k
sets N1, . . . , Nk. For each such set Ni we then run the heuris-
tic above for the path set P ∪Ni and again receive a set of
discarded paths N ′. If ‖N ′‖ < ‖Ni‖ we could reduce the
number of dropped paths and use P := (P ∪Ni) \N ′ from
now on, otherwise we stick with the original P . As we treat
edges from the pre-knowledge as AS paths as described be-
fore, this strategy works for re-adding those discarded edges
as well. Results for the algorithm with re-adding are later
shown for k = 10.

5. OBTAINING REAL-WORLD DATA
To run the inference algorithms we need valid AS paths used
in the Internet. Additionally we are interested in at least
partial information on the business relationships between
autonomous systems, to both verify our inference results as
well as using them as previous knowledge for the inference
algorithms. As there is no single exhaustive source listing
those relationships we have to use other publicly available

information and try to extract them from it. We only give
a short overview on the sources of the data (which was col-
lected on 3/31/2006) here. More details are given in [11].

The AS paths were obtained from the routing tables avail-
able through route collectors [17, 21] and from public route
servers [13]. From this set we removed erroneous paths and
applied a normalization which discarded duplicate paths and
path being subpaths of other AS paths, finally leaving us
with a set of 2,002,680 paths of average length 3.43, con-
taining 21,862 ASes and inducing 56,922 AS pairs.

Our set of known AS relationships results from applying
methods similar to those described in [5, 18] to the WHOIS
databases [15]. Additionally we used the approach from [23]
on the BGP communities attribute ([20]) stored in the AS
paths of our input set. Based on how often an edge orienta-
tion was found using the different methods we divided the
edge set into two sets. The more reliable one, containing
2,739 customer-to-provider and 2,000 peer-to-peer edges, is
used for the experiments in this paper. Results on the sec-
ond set, which we expect to contain between 5 to 30 percent
of incorrect data, are given in [11].

6. VALIDATING ACYCLICITY
Using the data from the previous section we intend to com-
pare our acyclicity model to the real Internet. The graph we
receive when only using customer-to-provider relationships
actually is acyclic. However including peer-to-peer edges
into these graphs creates cycles in both cases. To get an
impression of how much acyclicity is violated we tested ev-
ery triangle in the graphs. Out of 2,826 triangles 253 (9%)
induce a directed cycle.

We take these results as an indication that indeed the
overall structure of AS relationships is acyclic but our model
of acyclicity is still imprecise when it comes to peer-to-peer
relationships. This is probably mostly due to assuming the
relation “roughly of the same size” to be transitive when
interpreting peer-to-peer edges.

7. EXPERIMENTAL FINDINGS
In addition to our approach we implemented other algo-
rithms for Maximum Acyclic ToRfor comparison, namely
Gao’s Heuristic [8], an approximation algorithm (APX) from
[4] and the DPP* Heuristik based on a reduction to 2SAT
(also [4]). We augmented these algorithms, which do no sup-
port the handling of preknowledge themselves, with a simple
preprocessing routine which fixes all edges which can be in-
ferred from the preknowledge and apllies the algorithm on
the reduced AS-Graph. This preprocessing step and also an
outline of these algorithms is given in [11].

To compare our acyclic inference heuristic (to which we
refer as AHeu) to existing algorithms we executed all of them
on the path set from Section 5 and compared the resulting
edge classification to the edge set described there. We are
interested in both the number of paths which are not ori-
ented correctly (i.e., are not valley-free) and the number of
customer-to-provider edges that were not inferred. As none
of the algorithms is capable of identifying peer-to-peer re-
lationships we do not compare the inferred results to our
known peer-to-peer edges. An exception is Gao’s algorithm
as it introduces sibling-to-sibling edges which we do not want
to include in the inferred results, thus paths containing a
sibling-to-sibling edge are counted as invalid as well.

Algorithm Invalid paths Misclassified c-to-p
for reliable edge set

Gao 27.366% 1.387%
(249 not valley-free) (4 as p-to-c)
(54,7811 with s-to-s) (34 as s-to-s)

APX 4.483% 5.330%
(89,775 not valley-free) (146 as p-to-c)

DPP* 0.519% 0.913%
(10,391 not valley-free) (25 as p-to-c)

AHeu 0.483% 0.292%
(9,666 not valley-free) (8 as p-to-c)

AHeu 0.413% 0.329%
(re-add) (8,278 not valley-free) (9 as p-to-c)

Figure 3: Results for inferring only customer-to-provider re-
lationships

 0

 10

 20

 30

 40

 50

 60

 0 0.2 0.4 0.6 0.8 1

N
um

be
r o

f m
is

cl
as

si
fie

d
C

2P
 e

dg
es

Relative amount of pre-knowledge

Gao
APX

DPP*
AHeu (W=10)

Figure 4: Number of edges misclassified

The detailed results of our experiments are shown in Fig-
ure 3. As seen our heuristic has the lowest number of invalid
paths as well as the least number of errors when compared to
the reference data. Additionally it is exemplified how using
the re-adding strategy we can lower the number of invalid
paths even more but at the cost of reliability of the resulting
edge classifications.

Another aspect we are interested in is the behavior of these
algorithms when having initial pre-knowledge of some of the
edges. Therefore we repeated the experiment described be-
fore but provided the algorithms with a certain fraction of
the edges used for comparison later. As the choice of edges
provided to the algorithm has some influence on its results
we averaged all results over 5 random samples of the edge
set. Additionally the same samples were used for all of the
algorithms. Our heuristic is the only one explicitly support-
ing pre-knowledge, so we used a simple preprocessing algo-
rithm described in [11] to augment the remaining algorithms
accordingly. This should be kept in mind when comparing
the results as thus our heuristic is the only one capable of
“trading” edge errors (i.e., violated pre-knowledge) for vio-
lated paths. It is interesting to note that already a small
portion of pre-knowledge fixes a large portion of the edges1.

1No matter if we used 5% or 100% of the known edges as
pre-knowledge, about 42,000 edges of the AS graph were
fixed after preprocessing. On the other hand about 20,000
AS path had to be dropped in this phase (details in [11]).

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 0.2 0.4 0.6 0.8 1

N
um

be
r o

f i
nv

al
id

 p
at

hs

Relative amount of pre-knowledge

Gao
APX

DPP*
AHeu (W=10)

Figure 5: Number of invalid paths

As stated before we are interested both in the number of
misclassified edges and the number of invalid paths. These
numbers are given in Figures 4 resp. 5 using the edge set both
as pre-knowledge and for comparison. According to these
plots the performance of our heuristic is hardly influenced
by the amount of pre-knowledge available which we take as
an indication for the high quality of the inferred results. We
provide analogous plots for the full data set in [11]. They
show the same trend with the difference of a higher number
of overall errors due to the inexact data in this set. This
illustrates nicely how AHeu keeps giving good results even
in the presence of partially invalid pre-knowledge while the
other algorithms (partly due to the inflexible preprocessing
step) have to trust this knowledge at the cost of a huge
number of invalid paths.

8. CONCLUSION
We studied the acyclicity approach to AS relationship infer-
ence introduced in [14] from an experimental point of view.
On the one side, we presented both theoretical and prac-
tical evidence that this approach is feasible and, in large
parts, accurate. The described, heuristic algorithm AHeu
turned out to be easily implementable, fast, and flexible with
respect to incorporating initial pre-knowledge, and outper-
formed the state-of-the-art algorithms proposed in the liter-
ature. Moreover, the acyclicity of all customer-to-provider
relationships within the reliable data set could be confirmed.
These findings suggest to integrate acyclicity notions in de-
tailed models of AS relationships.

On the other side, we have learned that acyclicity with re-
spect to peer-to-peer relationships is not yet fully captured.
The underlying assumption that the roughly-the-same-size
relation is transitive seems too much a simplification. We
consider finding a more accurate problem formulation in-
volving acyclicity and peer-to-peer relationships as the main
open issue of this paper.

Acknowledgments
We thank Wolfgang Mühlbauer for helpful discussions.

9. REFERENCES
[1] C. Alaettinoğlu. Scalable router configuration for the

Internet. In ICCCN’96. IEEE, 1996.

[2] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann,
A. Marchetti-Spaccamela, M. Protasi. Complexity and
Approximation: Combinatorial Optimization Problems and
Their Approximability Properties. Springer, 1999.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein.
Introduction to Algorithms. 2nd edition. The MIT Press,
2001.

[4] G. Di Battista, T. Erlebach, A. Hall, M. Patrignani,
M. Pizzonia, T. Schank. Computing the types of the
relationships between autonomous systems. IEEE/ACM
Transactions on Networking, 15(2):267–280, 2007.

[5] G. Di Battista, T. Refice, M. Rimondini. How to extract
BGP peering information from the Internet Routing
Registry. In MineNet’2006, pp. 317–322. ACM, 2006.

[6] X. A. Dimitriopoulos, D. V. Krioukov, M. Fomenkov,
B. Huffaker, Y. Hyun, K. C. Claffy, G. F. Riley. AS
relationships: Inference and validation. ACM SIGCOMM
Computer Communication Review, 37(1):31–40, 2007.

[7] X. A. Dimitriopoulos, D. V. Krioukov, B. Huffaker, K. C.
Claffy, G. F. Riley. Inferring AS relationships: Dead end or
lively beginning? In WEA’05, LNCS #3503, pp. 113–125.
Springer, 2005.

[8] L. Gao. On inferring autonomous system relationships in
the Internet. IEEE/ACM Transactions on Networking,
9(6):733–745, 2001.

[9] T. G. Griffin, G. T. Wilfong. An analysis of BGP
convergence properties. ACM SIGCOMM Computer
Communication Review, 29(4):277–288, 1999.

[10] J. Hawkinson, T. Bates. Guidelines for creation, selection,
and registration of an autonomous system (AS). RFC 1930,
The Internet Society, 1996.

[11] B. Hummel, S. Kosub. Acyclic type-of-relationship
problems on the Internet: An experimental analysis.
Technical Report TUM-I0709, Fakultät für Informatik, TU
München, February 2007.

[12] G. Huston. Interconnection, peering and settlements—Part
II. The Internet Protocol Journal, 2(2):2–23, 1999.

[13] T. Kernen. traceroute.org web site.
http://www.traceroute.org.

[14] S. Kosub, M. G. Maaß, H. Täubig. Acyclic
type-of-relationship problems on the Internet. In CAAN’06,
LNCS #4235, pp. 98–111. Springer, 2006.

[15] Merit Network Inc. Internet Routing Registry.
http://www.irr.net.

[16] Y. Rekhter, T. Li. A Border Gateway Protocol 4 (BGP-4).
RFC 1771, The Internet Society, 1995.

[17] RIPE NCC. Routing Information Service (RIS).
http://www.ripe.net/ris/.

[18] G. Siganos, M. Faloutsos. Analyzing BGP policies:
Methodology and tool. In INFOCOM’04, pp. 1640–1651.
IEEE, 2004.

[19] L. Subramanian, S. Agarwal, J. Rexford, R. H. Katz.
Characterizing the Internet hierarchy from multiple vantage
points. In INFOCOM’02, pp. 618–627. IEEE, 2002.

[20] P. Traina, R. Chandra, T. Li. BGP community attribute.
RFC 1997, The Internet Society, 1996.

[21] University of Oregon. Route Views project page.
http://www.routeviews.org.

[22] I. van Beijnum. BGP. O’Reilly, 2002.
[23] J. Xia, L. Gao. On the evaluation of AS relationship

inferences. In Globecom’04, vol. 3, pp. 1373–1377. IEEE,
2004.

