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ABSTRACT

Capturing network traffic with commodity hardware has be-
come a feasible task: Advances in hardware as well as soft-
ware have boosted off-the-shelf hardware to performance lev-
els that some years ago were the domain of expensive special-
purpose hardware. However, the capturing hardware still
needs to be driven by a well-performing software stack in
order to minimise or avoid packet loss. Improving the cap-
turing stack of Linux and FreeBSD has been an extensively
covered research topic in the past years. Although the ma-
jority of the proposed enhancements have been backed by
evaluations, these have mostly been conducted on different
hardware platforms and software versions, which renders a
comparative assessment of the various approaches difficult,
if not impossible.

This paper summarises and evaluates the performance
of current packet capturing solutions based on commodity
hardware. We identify bottlenecks and pitfalls within the
capturing stack of FreeBSD and Linux, and give explana-
tions for the observed effects. Based on our experiments, we
provide guidelines for users on how to configure their captur-
ing systems for optimal performance and we also give hints
on debugging bad performance. Furthermore, we propose
improvements to the operating system’s capturing processes
that reduce packet loss, and evaluate their impact on cap-
turing performance.

Categories and Subject Descriptors
C.2.3 [Network Operation]: Network Monitoring

General Terms

Measurement, Performance

1. INTRODUCTION

Packet capture is an essential part of most network mon-
itoring and analysing systems. A few years ago, using spe-
cialised hardware—e.g., network monitoring cards manufac-
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tured by Endace [1]—was mandatory for capturing Gigabit
or Multi-gigabit network traffic, if little or no packet loss was
a requirement. With recent development progresses in bus
systems, multi-core CPUs and commodity network cards,
nowadays off-the-shelf hardware can be used to capture net-
work traffic at near wire-speed with little or no packet loss
in 1 GE networks, too [2, 3]. People are even building mon-
itoring devices based on commodity hardware that can be
used to capture traffic in 10 GE networks [4, 5]

However, this is not an easy task, since it requires careful
configuration and optimization of the hardware and software
components involved—even the best hardware will suffer
packet loss if its driving software stack is not able to handle
the huge amount of network packets. Several subsystems
including the network card driver, the capturing stack of
the operating system and the monitoring application are in-
volved in packet processing. If only one of these subsystems
faces performance problems, packet loss will occur, and the
whole process of packet capturing will yield bad results.

Previous work analysed [2, 4, 6] and improved [5, 7, 8]
packet capturing solutions. Comparing these work is quite
difficult because the evaluations have been performed on dif-
ferent hardware platforms and with different software ver-
sions. In addition, operating systems like Linux and FreeBSD
are subject to constant changes and improvements. Compar-
isons that have been performed years ago therefore might
today not be valid any longer. In fact, when we started our
capturing experiments, we were not able to reproduce the re-
sults presented in several papers. When we dug deeper into
the operating systems’ capturing processes, we found that
some of our results can be explained by improved drivers
and general operating systems improvements. Other differ-
ences can be explained by the type of traffic we analysed
and by the way our capturing software works on the appli-
cation layer. While it is not a problem to find comparisons
that state the superiority of a specific capturing solution,
we had difficulties to find statements on why one solution is
superior to another solution. Information about this topic is
scattered throughout different papers and web pages. Worse
yet, some information proved to be highly inconsistent, espe-
cially when from Web sources outside academia. We there-
fore encountered many difficulties when debugging the per-
formance problems we ran into.

This paper tries to fill the gap that we needed to step
over when we set up our packet capturing environment with
Linux and FreeBSD. We evaluate and compare different cap-
turing solutions for both operating systems, and try to sum-
marise the pitfalls that can lead to bad capturing perfor-



mance. The paper aims at future developers and users of
capture systems and serves as a resource helping them not
to repeat the pitfalls we and other researchers have encoun-
tered.

A special focus of this paper is on explaining our find-
ings. We try to identify the major factors that influence
the performance of a capturing solution, providing users of
packet capture systems with guidelines on where to search
for performance problems in their systems. Our paper also
targets developers of capturing and monitoring solutions:
We identify potential bottlenecks that can lead to perfor-
mance bottlenecks and thus packet loss. Finally, we propose
a modification that can be applied to popular capturing so-
lutions. It improves capturing performance in a number of
situations.

The remainder of this paper is organised as follows: Sec-
tion 2 introduces the capturing mechanisms in Linux and
FreeBSD that are in use when performing network moni-
toring, and presents related improvements and evaluations
of packet capturing systems. Section 3 presents the test
setup that we used for our evaluation in Section 4. Our cap-
turing analysis covers scheduling issues in Section 4.1 and
focuses on the application and operating system layer with
low application load in Section 4.2. Subsequently, we anal-
yse application scenarios that pose higher load on the system
in Section 4.3, where we furthermore present our modifica-
tions to the capturing processes and evaluate their influence
on capturing performance. In Section 4.4, we move down-
wards within the capturing stack and discuss driver issues.
Our experiments result in recommendations for developers
and users of capturing solutions, which are presented in Sec-
tion 5. Finally, Section 6 concludes the paper with a sum-
mary of our findings.

2. BACKGROUND AND RELATED WORK

Various mechanisms are involved in the process of network
packet capturing. The performance of a capturing process
thus depends on each of them to some extent. On the one
hand, there is the hardware that needs to capture and copy
all packets from the network to memory before the analysis
can start. On the other hand, there is the driver, the oper-
ating system and monitoring applications that need to care-
fully handle the available hardware in order to achieve the
best possible packet capturing performance. In the follow-
ing, we will introduce popular capturing solutions on Linux
and FreeBSD in 2.1. Afterwards, we will summarise com-
parisons and evaluations that have been performed on the
different solutions in Section 2.2.

2.1 Solutions on Linux and FreeBSD

Advances made in hardware development in recent years
such as high speed bus systems, multi-core systems or net-
work cards with multiple independent reception (RX) queues
offer performance that has only been offered by special pur-
pose hardware some years ago. Meanwhile, operating sys-
tems and hardware drivers have come to take advantage of
these new technologies, thus allowing higher capturing rates.

Hardware:

The importance of carefully selecting suitable capturing hard-
ware is well-known, as research showed that different hard-
ware platforms can lead to different capturing performance.

Capturing application
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Hardware Network Card

Figure 1: Subsystems involved in the capturing pro-
cess

Schneider et al. [4] compared capturing hardware based on
Intel Xeon and AMD Opteron CPUs with otherwise sim-
ilar components. Assessing an AMD and an Intel plat-
form of comparable computing power, they found the AMD
platform to yield better capturing results. AMD’s superior
memory management and bus contention handling mecha-
nism was identified to be the most reasonable explanation.
Since then, Intel has introduced Quick Path Interconnect [9]
in its recent processor families, which has improved the per-
formance of the Intel platform; however, we are not able to
compare new AMD and Intel platforms at this time due to
lack of hardware. In any case, users of packet capturing solu-
tions should carefully choose the CPU platform, and should
conduct performance tests before buying a particular hard-
ware platform.

Apart from the CPU, another important hardware aspect
is the speed of the bus system and the used memory. Current
PCI-E buses and current memory banks allow high-speed
transfer of packets from the capturing network card into the
memory and the analysing CPUs. These hardware advances
thus have shifted the bottlenecks, which were previously lo-
cated at the hardware layer, into the software stacks.

Software stack:

There are several software subsystems involved in packet
capture, as shown in Figure 1. Passing data between and
within the involved subsystems can be a very important per-
formance bottleneck that can impair capturing performance
and thus lead to packet loss during capturing. We will dis-
cuss and analyse this topic in Section 4.3.

A packet’s journey through the capturing system begins
at the network interface card (NIC). Modern cards copy the
packets into the operating systems kernel memory using Di-
rect Memory Access (DMA), which reduces the work the
driver and thus the CPU has to perform in order to transfer
the data into memory. The driver is responsible for allocat-
ing and assigning memory pages to the card that can be used
for DMA transfer. After the card has copied the captured
packets into memory, the driver has to be informed about
the new packets through an hardware interrupt. Raising
an interrupt for each incoming packet will result in packet
loss, as the system gets busy handling the interrupts (also
known as an interrupt storm). This well-known issue has
lead to the development of techniques like interrupt mod-
eration or device polling, which have been proposed several
years ago [7, 10, 11]. However, even today hardware inter-
rupts can be a problem because some drivers are not able to
use the hardware features or do not use polling—actually,



when we used the igb driver in FreeBSD 8.0, which was re-
leased in late 2009, we experienced bad performance due to
interrupt storms. Hence, bad capturing performance can be
explained by bad drivers; therefore, users should check the
number of generated interrupts if high packet loss rates are
observed.!

The driver’s hardware interrupt handler is called imme-
diately upon the reception of an interrupt, which interrupts
the normal operation of the system. An interrupt handler is
supposed to fulfill its tasks as fast as possible. It therefore
usually doesn’t pass on the captured packets to the operating
systems capturing stack by himself, because this operation
would take to long. Instead, the packet handling is deferred
by the interrupt handler. In order to do this, a kernel thread
is scheduled to perform the packet handling in a later point
in time. The system scheduler chooses a kernel thread to
perform the further processing of the captured packets ac-
cording to the system scheduling rules. Packet processing
is deferred until there is a free thread that can continue the
packet handling.

As soon as the chosen kernel thread is running, it passes
the received packets into the network stack of the operat-
ing system. From there on, packets need to be passed to
the monitoring application that wants to perform some kind
of analysis. The standard Linux capturing path leads to a
subsystem called PF_PACKET; the corresponding system in
FreeBSD is called BPF (Berkeley Packet Filter). Improve-
ments for both subsystems have been proposed.

Software improvements:

The most prominent replacement for PF_PACKET on Linux
is called PF_RING and was introduced in 2004 by Luca
Deri [8]. Deri found that the standard Linux networking
stack at that time introduced some bottlenecks, which lead
to packet loss during packet capture. His capturing infras-
tructure was developed to remove these bottlenecks. He
showed to achieve a higher capturing rate with PF_RING
when small packets are to be captured. PF_RING ships
with several modified drivers. These are modified to di-
rectly copy packets into PF_RING and therefore completely
circumvent the standard Linux networking stack. This mod-
ification further boosts the performance for network cards
with a modified driver.

Figure 2 shows the difference between the two capturing
systems. One important feature of PF_RING is the way it
exchanges packets between user space and kernel: Monitor-
ing applications usually access a library like libpcap [12] to
retrieve captured packets from the kernel. Libpcap is an ab-
straction from the operating systems’ capturing mechanisms
and allows to run a capturing application on several oper-
ating systems without porting it to the special capturing
architecture. Back in 2004, the then current libpcap version
0.9.8 used a copy operation to pass packets from the kernel
to the user space on Linux. An unofficial patch against that
libpcap version from Phil Woods existed, which replaced the
copy operation by a shared memory area that was used to
exchange packets between kernel and application [13]. This
modification will be called MMAP throughout the rest of
the paper. PF_RING uses a similar structure to exchange
packets by default. Libpcap version 1.0.0, which was re-

'FreeBSD will report interrupt storms via kernel messages.
Linux exposes the number of interrupts via the proc file
system in /proc/interrupts.
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Figure 2: PF_RING and PF_PACKET under Linux

leased in late 2008, is the first version that ships built-in
shared memory (SHM) exchange support; hence the patch
from Phil Woods is not longer necessary. We will analyse
the performance of these different solutions in Section 4.2.

All capturing mechanisms on Linux have something in
common: They handle individual packets, meaning that
each operation between user space and kernel is performed
on a per-packet basis. FreeBSD packet handling differs in
this point by exchanging buffers containing potentially sev-
eral packets, as shown in Figure 3.

Both BPF as well as its improvement Zero-Copy BPF
(ZCBPF) use buffers that contain multiple packets for stor-
ing and exchanging packets between kernel and monitor-
ing application. BPF and ZCBPF use two buffers: The
first, called HOLD buffer, is used by the application to read
packets, usually via libpcap. The other buffer, the STORE
buffer, is used by the kernel to store new incoming pack-
ets. If the application (i.e., via libpcap) has emptied the
HOLD buffer, the buffers are switched, and the STORE
buffer is copied into user space. BPF uses a copy opera-
tion to switch the buffers whereas ZCBPF has both buffers
memory-mapped between the application and the kernel.
Zero-Copy BPF is expected to perform better than BPF as it
removes the copy operation between kernel and application.
However, as there are fewer copy operations in FreeBSD
than in non-shared-memory packet exchange on Linux, the
benefits between ZCBPF and normal BPF in FreeBSD are
expected to be smaller than in Linux with shared memory
support.

TNAPI is very recent development by Luca Deri [5]. It im-
proves standard Linux network card drivers and can be used
in conjunction with PF_RING. Usually, Linux drivers assign
new memory pages to network cards for DMA after the card
copied new packets to old memory pages. The driver allo-
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cates new pages and assign them to the card for DMA. Deri
changed this behaviour in two ways: Non-TNAPI drivers re-
ceive an interrupt for received packets and schedule a kernel
thread to perform the packet processing. The processing is
performed by a kernel thread that is not busy doing other
work and is chosen according to the scheduling rules of the
operating system. Deri’s driver creates a separate kernel
thread that is only used to perform this processing. Hence,
there is always a free kernel thread that can continue, and
packet processing can almost immediately start.

The second major change is the memory handling within
the driver: As soon as the thread is notified about a new
packet arrival, the new packet is copied from the DMA mem-
ory area into the PF_RING ring buffer. Usually, network
drivers would allocate new memory for DMA transfer for
new packets. Deri’s drivers tell the card to reuse the old
memory page, thus eliminating the necessity of allocating
and assigning new memory.

Furthermore, his drivers may take advantage of multiple
RX queues and multi-core systems. This is done by creating
a kernel thread for each RX queue of the card. Each kernel
thread is bound to a specific CPU core in the case of multi-
core systems. The RX queues are made accessible to the
user space, so that users can run monitoring applications
that read from the RX queues in parallel.

A rather non-standard solution for wire-speed packet cap-
ture is ncap. Instead of using the operating system’s stan-
dard packet processing software, it uses special drivers and a
special capturing library. The library allows an application
to read packets from the network card directly [3].

2.2 Previous Comparisons

Previous work compared the different approaches to each
other. We will now summarise the previous findings and
determine which experiments we need to repeat with our
hardware platforms and new software versions. Results from
related work can also give hints on further experiments we
need to conduct in order to achieve a better understanding
of the involved processes.

Capturing traffic in 1 GE networks is seen as something
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that today’s off-the-shelf hardware is able to do, whereas it
remains a very challenging task in 10 GE networks [4]. Apart
from the ten-fold increased throughput, the difficulties also
lie in the ten-fold increased packet rate, as the number of
packets to be captured per time unit is a factor that is even
more important than the overall bandwidth. As an exam-
ple, capturing a 1 GE stream that consists entirely of large
packets, e.g., 1500 bytes, is easy; whereas capturing a 1 GE
stream consisting entirely of small packets, e.g., 64 bytes,
is a very difficult task [8, 4]. This is due to the fact that
each packet, regardless of its size, introduces a significant
handling overhead.

Driver issues that arise with a high number of packets
have been studied very well [7, 10, 11]. Problems concern-
ing interrupt storms are well understood and most network
cards and drivers support mechanisms to avoid them. Such
mechanisms include polling or interrupt moderation.

In 2007, Schneider et al. compared FreeBSD and Linux on
Intel and AMD platforms [4]. They determined that device
polling on Linux reduces the CPU cycles within the ker-
nel and therefore helps to improve capturing performance.
On FreeBSD however, device polling actually reduced the
performance of the capturing and furthermore reduced the
stability of the system. Hence, they recommend using the
interrupt moderation facilities of the cards instead of polling
on FreeBSD. In their comparison, FreeBSD using BPF and
no device polling had a better capturing performance than
Linux with PF_PACKET and device polling. This trend
is enforced if multiple capturing processes are simultane-
ously deployed; in this case, the performance of Linux drops
dramatically due to the additional load. Schneider et al.
find that capturing 1 GE in their setup is possible with the
standard facilities because they capture traffic that contains
packets originated from a realistic size distribution. How-
ever, they do not capture the maximum possible packet rate,
which is about 1.488 million packets per second with 64 bytes
packets [5]. Another important aspect about the workload of
Schneider et al. is that during each measurement, they send
only one million packets (repeating each measurement for 7
times). This is a very low number of packets, considering
that using 64 byte packets, it is possible to send 1.488 mil-
lion packets within one second. Some of the effects we could
observe are only visible if more packets are captured. Based
on their measurement results, they recommend a huge buffer
size in the kernel buffers, e.g., for the HOLD and STORE
buffers in FreeBSD, to achieve good capturing performance.
We can see a clear correlation between their recommenda-
tion and the number of packets they send per measurement
and will come back to this in Section 4.2.

Deri validated his PF_RING capturing system against the
standard Linux capturing PF_PACKET in 2004 [8]. He
finds PF_RING to really improve the capturing of small (64
bytes) and medium (512 bytes) packets compared to the cap-
turing with PF_PACKET and libpcap-mmap. His findings
were reproduced by Cascallana and Lizarrondo in 2006 [6]
who also found significant performance improvements with
PF_RING. In contrast to Schneider et al., neither of the
PF_RING comparisons consider more than one capturing
process.

Using TNAPI and the PF_RING extensions, Deri claims
to be able to capture 1 GE packet streams with small packet
sizes at wire-speed (1.488 million packets) [5].
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3. TEST SETUP

In this section, we describe the hardware and software
setup that we used for our evaluation. Our test setup (see
Figure 4) consists of three PCs, one for traffic generation,
the other two for capturing.

The traffic generator is equipped with several network in-
terface cards (NICs) and uses the Linux Kernel Packet Gen-
erator [14] to generate a uniform 1 GE packet stream. It
was necessary to generate the traffic using several NICs si-
multaneously because the deployed cards were not able to
send out packets at maximum speed when generating small
packets. Even this setup was only able to generate 1.27
million packets per seconds (pps) with the smallest packet
size. However, this packet rate was sufficient to show the
bottlenecks of all analysed systems. We had to deploy a sec-
ond generator for our experiments in Section 4.4, where we
actually needed wire-speed packet generation (1.488 million
pps).

In contrast to [4], we where did not produce a packet
stream with a packet size distribution that is common in
real networks. Our goal is explicitly to study the behaviour
of the capturing software stacks at high packet rates. As we
do not have 10 GE hardware for our tests available, we have
to create 64 bytes packets in order to achieve a high packet
rate for our 1 GE setup.

Each of our test runs is configured to produce a packet
stream with a fixed number of packets per seconds and runs
over a time period of 100 seconds and repeated for five times.
As our traffic generator is software based and has to han-
dle several NICs, the number of packets per second is not
completely stable and can vary to some extend. Hence, we
measure the variations in our measurements and plot them
where appropriate.

Capturing is performed with two different machines with
different hardware in order to check whether we can re-
produce any special events we may observe with different
processor, bus systems and network card, too. The first
capturing PC is operated by two Intel Xeon CPUs with
2.8 GHz each. It has several network cards including an
Intel Pro/1000 (82540EM), an Intel Pro /1000 (82546EB)
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and a Broadcom BCM5701 all connected via a PCI-X bus.
In our experiments, we only use one NIC at a time.

The second capturing PC has an AMD Athlon 64 X2
52004 CPU and is also equipped with several network cards,
including an Intel Pro/1000 (82541PI) and a nVidia Corpo-
ration CK804 onboard controller. Both cards are connected
via a slow PCI bus to the system. Furthermore, there are
two PCI-E based network cards connected to the system.
One is an Intel Pro/1000 PT (82572EI), the other is a Dual
Port Intel Pro/1000 ET(82576). It should be noted that the
AMD platform is significantly faster than the Xeon platform.

Using different network cards and different architectures,
we can check if an observed phenomenon emerges due to
a general software problem or if it is caused by a specific
hardware or driver. Both machines are built from a few years
old and therefore cheap hardware, thus our machines are
not high end systems. We decided not to use more modern
hardware for our testing because of the following reasons:

e We did not have 10 GE hardware.

e We want to identify problems in the software stack
that appear when the hardware is fully utilised. This
is quite difficult to achieve with modern hardware on
a 1 GE stream.

e Software problems that exist on old hardware which
monitors 1 GE packet streams still exist on newer hard-
ware that monitors a 10 GE packet stream.

Both machines are installed with Ubuntu Jaunty Jacka-
lope (9.04) with a vanilla Linux kernel version 2.6.32. Addi-
tionally, they have an installation of FreeBSD 8.0-RELEASE
for comparison with Linux.

We perform tests with varying load at the capturing ma-
chines’ application layer in order to simulate the CPU load
of different capturing applications during monitoring. Two
tools are used for our experiments:

First, we use tcpdump 4.0.0 [15] for capturing packets and
writing them to /dev/null. This scenario emulates a sim-
ple one-threaded capturing process with very simple com-
putations, which thus poses almost no load on the applica-
tion layer. Similar load can be expected on the capturing
thread of multi-threaded applications that have a separate
thread that performs capturing only. Examples for such
multi-threaded applications are the Time Machine [16, 17]
or the network monitor VERMONT [18].

The second application was developed by us and is called
packzip. It poses variable load onto the thread that per-
forms the capturing. Every captured packet is copied once
within the application and is then passed to 1libz [19] for
compression. The compression mode can be configured by
the user from 0 (no compression) to 9 (highest compression
level). Increasing the compression level increases CPU us-
age and thus can be used to emulate an increased CPU load
for the application processing the packets. Such packet han-
dling has been performed before in [2] and [4]. We used this
tool in order to make our results comparable to the results
presented in this related work.

4. EVALUATION

This section presents our analysis results of various packet
capture setups involving Linux and FreeBSD, including a
performance analysis of our own proposed improvements



to the Linux capturing stack. As multi-core and multi-
processor architectures are common trends, we focus in par-
ticular on this kind of architecture. On these hardware plat-
forms, scheduling issues arise when multiple processes in-
volved in packed capturing need to be distributed over sev-
eral processors or cores. We discuss this topic in Section 4.1.
Afterwards, we focus on capturing with low application load
in Section 4.2 and see if we can reproduce the effects that
have been observed in the related work. In Section 4.3,
we proceed to capturing with higher application load. We
identify bottlenecks and provide solutions that lead to im-
provements to the capturing process. Finally, in Section 4.4
we present issues and improvements at the driver level and
discuss how driver improvements can influence and improve
the capturing performance.

4.1 Scheduling and packet capturing perfor-
mance

On multi-core systems, scheduling is an important fac-
tor for packet capturing: If several threads, such as kernel
threads of the operating system and a multi-threaded cap-
turing application in user space are involved, distributing
them among the available cores in a clever way is crucial for
the performance.

Obviously, if two processes are scheduled to run on a sin-
gle core, they have to share the available CPU time. This
can lead to shortage of CPU time in one or both of the pro-
cesses, and results in packet loss if one of them cannot cope
with the network speed. Additionally, the processes then
do not run simultaneously but alternately. As Schneider et
al. [4] already found in their analysis, packet loss occurs if
the CPU processing limit is reached. If the kernel capturing
and user space analysis are performed on the same CPU,
the following effect can be observed: The kernel thread that
handles the network card dominates the user space applica-
tion because it has a higher priority. The application has
therefore only little time to process the packets; this leads
to the kernel buffers filling up. If the buffers are filled, the
kernel thread will take captured packets from the card and
will throw them away because there is no more space to
store them. Hence, the CPU gets busy capturing packets
that will be immediately thrown away instead of being busy
processing the already captured packets, which would empty
the buffers.

Conversely, if the processes are scheduled to run on two
cores, they have more available CPU power to each one of
them and furthermore can truly run in parallel, instead of
interleaving the CPU. However, sharing data between two
cores or CPUs requires memory synchronisation between
both of the threads, which can lead to severe performance
penalties.

Scheduling can be done in two ways: Processes can either
be scheduled dynamically by the operating system’s sched-
uler, or they can be statically pinned to a specific core by
the user. Manual pinning involves two necessary operations,
as described in [5, 20]:

e Interrupt affinity of the network card interrupts have
to be bound to one core.

e The application process must be bound to another
core.

We check the influence of automatic vs. manually pinned
scheduling in nearly all our experiments.
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Figure 5: Scheduling effects

Figure 5 presents a measurement with 64 byte packets
with varying numbers of packets per seconds and low appli-
cation load.

Experiments were run where the kernel and user space ap-
plication are processed on the same core (A:A), are pinned
to run on different cores (A:B), or are scheduled automat-
ically by the operating system’s scheduler. Figure 5 shows
that scheduling both processes on a single CPU results in
more captured packets compared to running both processes
on different cores, when packet rates are low. This can be
explained by the small application and kernel load at these
packet rates. Here, the penalties of cache invalidation and
synchronisation are worse than the penalties of the involved
threads being run alternately instead of parallel. With in-
creasing packet rate, the capturing performance in case A:A
drops significantly below that of A:B.

Another interesting observation can be made if automatic
scheduling is used. One would expect the scheduler to place
a process on the core where it performs best, depending on
system load and other factors. However, the scheduler is not
informed about the load on the application and is therefore
not able to make the right decision. As can be seen on the
error bars in Figure 5, the decision is not consistent over the
repetitions of our experiments in all cases, as the scheduler
tries to move the processes to different cores and sometimes
sticks with the wrong decision whereas sometimes it makes
a good decision.

Real capturing scenarios will almost always have a higher
application load than the ones we have shown so far. In
our experiments with higher application load which we will
show in Section 4.3, we can almost always see that running
the processes in A:B configuration results in better capturing
performance. Static pinning always outperformed automatic
scheduling as the schedulers on Linux and FreeBSD almost
make wrong decisions very frequently.

4.2 Comparing packet capture setups under
low application load
Applications that capture network traffic usually build on
libpcap [12] as presented in Section 2.1. FreeBSD ships
libpcap version 1.0.0 in its base system, and most Linux
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distributions use the same version today®. Not long ago,
libpcap version 0.9.8 was the commonly used version on
Linux based systems and FreeBSD. As already explained
in Section 2, libpcap-0.9.8 or libpcap-0.9.8-mmap were used
in most earlier evaluations.

In this paper, we want to use the standard libpcap-1.0.0,
which ships with a shared-memory support. As the shared-
memory extensions in libpcap 0.9.8 and 1.0.0 where devel-
oped by different people, we first want to compare both ver-
sions. The results of this comparison are plotted in Figure 6
for the AMD and Xeon platforms. We can see that libpcap-
0.9.8 performs slightly better on Xeon than libpcap 1.0.0
while 1.0.0 performs better on AMD. However, both differ-
ences are rather small, so that we decided to use the now
standard 1.0.0 version for our experiments.

Having a closer look at the figure, one can see that the
Xeon platform performs better than the AMD platform.
This is very surprising as the AMD system’s hardware per-
formance is otherwise much faster than the aged Xeon plat-
form. Things get even more weird if we include libpcap-
0.9.8 without MMAP into our comparison (not shown in
our plot): As the copy operation is way more expensive
than the MMAP, one would expect MMAP to perform bet-
ter than the copy operation. This assumption is true on
the Xeon platform. On the AMD platform however, we can
observe that libpcap-0.9.8 without MMAP performs better
than libpcap-0.9.8-mmap or libpcap-1.0.0. This points to
some unknown performance problems which prevents the
AMD system from showing its superior hardware perfor-
mance.

The next comparison is between standard Linux captur-
ing with PF_PACKET and capturing on Linux using the
PF_RING extension from Deri [8]. We therefore use Deri’s
patches to libpcap-1.0.0 which enables libpcap to read pack-
ets from PF_RING. Two important PF_RING parameters
can be configured. The first one is the size of the ring buffer,
which can be configured in number of packets that can be
stored in the ring. Our experiments with different ring sizes

2An exception is the current stable version of Debian 5.0
“Lenny”, which still contains libpcap version 0.9.8-5 at the
time this paper was written.
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reveal that in our setup, the size of the memory mapped area
is not of much influence. We conducted similar experiments
with the sizes of Berkeley Packet Filter on FreeBSD and
other buffer sizes on Linux. All these experiments showed
that increasing the buffer size beyond a certain limit does
not boost capturing performance measurably. Instead, we
found evidence that too large buffers have a negative im-
pact on capturing performance. These findings are contrary
to the findings from Schneider et al. [4], who found large
buffers to increase the capturing performance.

The biggest factor regarding the performance is our cap-
turing application—since our hardware, at least the AMD
platform, is able to transfer all packets from the network
card into memory. If the software is able to consume and
process incoming packets faster than wire-speed, the in-
kernel buffers will never fill up and there will be no packet
loss. However, if the application is not able to process the
packets as fast as they come in, increasing the buffer will
not help much—rather, it will only reduce the packet loss
by the number of elements that can be stored in the buffer,
until the buffer is filled.

Schneider et al. sent only 1,000,000 packets per measure-
ment run, whereas we produce packets with 1 GE speed
(i.e., more than 100 Megabytes per second), which usually
amounts to much more than 1,000,000 packets per second,
over a time interval of 100 seconds. Increasing kernel buffer
sizes to 20 megabytes, as recommended by Schneider et al.,
allows them to buffer a great share of their total number of
packets, but does not help much on the long term. If we
increase the buffers to the recommended size, we cannot see
any significant improvements in our experiments.

Buffer size can be crucial, though: This is the case when
the monitoring is not able to process packets at wire-speed,
e.g., it can consume up to N packets per second (pps), and
bursty Internet traffic is captured. If this traffic transports
less or equal than N pps on average but has bursts with a
higher pps rate, then having a sufficient dimensioned buffer
to store the burst packets is obviously very important.

The second important parameter is a configuration op-
tion called transparent_mode. It configures how PF_RING
handles packets:

e Transparent mode 0: Captured packets are inserted
into the ring via the standard Linux socket API.

e Transparent mode 1: The network card driver inserts
the packets directly into the ring (which requires an
adopted network driver). Packets are also inserted into
the standard Linux network stack.

e Transparent mode 2: Same as mode 1, but received
packets are not copied into the standard Linux network
stack (for capturing with PF_RING only).

It is obvious that transparent_mode 2 performs best as it is
optimised for capturing. We conducted some comparisons
using different packet sizes and packets rates and indeed
found PF_RING to perform best in this mode.

We expected PF_RING to outperform the standard Linux
capturing due to the evaluations performed in [8] and [6]
when using small packet sizes. This performance benefit
should be seen with small packets (64 bytes) and a high num-
ber of packets per second, and disappear with bigger packet
sizes. According to Deri’s evaluation, capturing small packet
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streams using PF_PACKET in Linux 2.6.1 with libpcap-
mmap only captured 14.9% of all packets while PF_RING
within the same kernel version was able to capture 75.7%
of all packets. Our comparison confirms that PF_RING in-
deed performs better than PF_PACKET, as can be seen in
Figure 7. We can also see that PF_RING is better than
PF_PACKET on both systems. Furthermore, PF_RING on
the faster AMD hardware performs better than PF_RING
on Xeon. However, the performance difference is small if one
considers the significant differences in hardware, which again
points to some performance problems which we pointed out
before. One more observation concerns the difference be-
tween PF_PACKET and PF_RING within the same plat-
form. Although there is some difference, it is not as pro-
nounced as in previous comparisons. We explain this by the
improvements that have been made in the capturing code
of PF_PACKET and within libpcap since Deri’s and Cas-
callana’s evaluations in 2004 and 2006.

We now compare the measurement results of FreeBSD
against the Linux measurements. FreeBSD has two cap-
turing mechanisms: Berkeley Packet Filter (BPF) and Zero
Copy Berkeley Packet Filter (ZCBPF) as described in Sec-
tion 2.1. At first, we compared both against each other, but

213

50
45
40
35 2 z
30
25
20

—

i

Captured packets [%]
.

ASgear] uo x|
asgearnj uo xg +
dsgearn] uo x¢ +

LEMOVd dd Wis x| |-

LEOVd dd Wis X |-

LAMOVd dd Wi X¢ [+

ONIdd dd ws x| [
ONIY dd Pim XZ |
DN dd Wim Xg -

Number of capturing processes on different operating systems

Figure 9: Capturing with multiple processes

we could not find any significant differences in any of our
tests. Schneider et al. found FreeBSD to perform amaz-
ingly good even though FreeBSD employed this packet copy
operation. This might indicate that the copy operation is in-
deed not a significant factor that influences the performance
of the FreeBSD capturing system. We are uncertain about
the true reason for Zero Copy BPF not performing better
than BPF; therefore, we do not include ZCBPF into our
further comparisons.

Our comparison with the standard BPF is shown in Fig-
ure 8 and presents the differences between PF_PACKET and
FreeBSD. We can see some differences between capturing
with PF_PACKET on Linux and capturing with BPF on
FreeBSD. FreeBSD performs slightly better on both plat-
forms, which confirms the findings of Schneider et al. [2, 4].

Differences increase if more than one capturing process in
running on the systems, as shown in Figure 9. This figure
shows the capturing performance of FreeBSD, Linux with
PF_PACKET and Linux with PF_RING capturing a packet
stream of 1270 kpps on the AMD system with one, two and
three capturing processes running simultaneously.

Capturing performance on both systems decreases due to
the higher CPU load due to the multiple capturing pro-
cesses. This is an obvious effect and has also been observed
in [4]. Linux suffers more from the additional capturing
processes compared to FreeBSD, which has also been ob-
served in related work. Amazingly, Linux with PF_RING
does not suffer much from these performance problems and
is better than FreeBSD and Linux with PF_PACKET. A
strange effect can be seen if two capturing processes are run
with PF_PACKET: Although system load increases due to
the second capturing process, the overall capturing perfor-
mances increases. This effect is only visible on the AMD
system and not on the Xeon platform and also points to the
same strange effect we have seen before and which we will
explain in Section 4.3.

If we compare our analysis results of the different cap-
turing solutions on FreeBSD and Linux with the results of
earlier evaluations, we can see that our results confirm sev-
eral prior findings: We can reproduce the results of Deri [8]
and Cascallana [6] who found PF_RING to perform better
than PF_PACKET on Linux. However, we see that the dif-
ference between both capturing solutions is not as strong
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as it used to be in 2004 and 2006 due to general improve-
ments in the standard Linux software stack. Furthermore,
we can confirm the findings of Schneider et al. [4] who found
that FreeBSD outperforms Linux (with PFE_PACKET), es-
pecially when more than one capturing process is involved.
In contrast, our own analyses reveal that PF_RING on Linux
outperforms both PF_PACKET and FreeBSD. PF_RING is
even better than FreeBSD when more than one capturing
process is deployed, which was the strength of FreeBSD in
Schneiders’ analysis [4]. We are now comparing the cap-
turing solutions with increased application load and check
whether our findings are still valid in such setups.

4.3 Comparing packet capture setups under
high application load

So far, we analysed the capturing performance with very
low load on the application by writing captured packets to
/dev/null. We now increase the application load by per-
forming more computational work for each packet by using
the tool packzip, which compresses the captured packets us-
ing 1ibz [19]. The application load can be configured by
changing the compression level libz uses. Higher compres-
sion levels result in higher application load; however, the
load does not increase linearly. This can be seen at the
packet drop rates in Figure 10.

The figure presents the results of the capturing process on
various systems when capturing a stream consisting of 512
and 256 bytes sized packets at maximum wire-speed at the
AMD platform. It can clearly be seen that a higher applica-
tion load leads to higher packet loss. This happens on both
operating system with every capturing solution presented
in Section 2.1, and is expected due to our findings and the
findings in related work. Packet loss kicks in as soon as
the available CPU processing power is not sufficient to pro-
cess all packets. We note that FreeBSD performs worse on
our AMD platform compared to Linux with PF_PACKET
with higher application load. This observation can be made
throughout all our measurements in this section.

However, if we look at a packet stream that consists of
64 byte packets, we can see an amazing effect, shown in
Figure 11. At first, we see that the overall capturing perfor-
mance is worse when no application load (compression level
0) compared to the capturing results with 256 and 512 byte
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packets. This was expected because capturing a large num-
ber of (small) packets is more difficult than small number
of (big) packets. However, if application load increases, the
capturing performance increases as well. This effect is quite
paradox and points to the same strange effect as seen in the
experiments before. It can be observed with PF_PACKET
and with PF_RING but is limited to Linux. FreeBSD is not
affected by this weird effect; instead, capturing performance
is nearly constant with increasing application load but al-
most always below Linux’ performance.

In order to better understand what is causing this bewil-
dering phenomenon, we have to take a closer look at the
capturing process in Linux. An important task within the
capturing chain is the passing of a captured packet from the
kernel to the application. This is done via a shared memory
area between the kernel and application within libpcap. The
shared memory area is associated with a socket, in order to
allow signaling between the kernel and the application, if
this is desired. We will call this memory area SHM in the
remainder of this section.

Packets are sent from kernel to user space using the fol-
lowing algorithm:

e The user application is ready to fetch a new packet.

e It checks SHM for new packets.
found, it is processed.

If a new packet is

e If no new packet is found, the system call poll() is
issued in order to wait for new packets.

e The kernel receives a packet and copies it into SHM.

e The kernel “informs” the socket about the available
packet; subsequently, pol1() returns, and the user ap-
plication will process the packet.

This algorithm is problematic because it involves many
systems calls if the application consumes packets very quickly,
which has already been found to be problematic in Deri’s
prior work [8]. A system call is a quite expensive oper-
ation as it results in a context switch, cache invalidation,
new scheduling of the process, etc. When we increase the
compression level, the time spent consuming the packets in-



creases as well, thus less system calls are performed®. Ob-
viously, reducing the number of system calls is beneficial to
the performance of the packet capture system.

There are several ways to achieve such a reduction. The
most obvious solution to this problem is to skip the call to
poll() and to perform an active wait instead. However,
this solution can pose problems to the system: If captur-
ing and analysis are scheduled to run on the same processor
(which is not recommended, as we pointed before), polling
in a user space process eats valuable CPU time, which the
capturing thread within the kernel would need. If capturing
and analysis run on different cores, there still are penalties:
The kernel and the user space application are trying to ac-
cess the same memory page, which the kernel wants to write
and the user space application wants to read. Hence, both
cores or CPUs need to synchronise their memory access,
continuously leading to cache invalidations and therefore to
bad performance. We patched libpcap to perform the active
wait and found some, but only little, improvement due to
the reasons discussed above.

Hence, we searched for ways to reduce the number of calls
to poll() that do not increase the load on the CPU. The
first one was already proposed by Deri [8]. The basic idea is
to perform a sleep operation for several nano seconds if the
SHM is found to be empty. Although the sleep operations
still implies a system call, it is way better than multiple
calls to poll(), as the kernel capturing gets some time to
copy several packets into the SHM. Deri proposed an adap-
tive sleep interval that is changed according to the incom-
ing packet rate. We implemented this modification into the
libpcap which used PF_PACKET. We found that it is not an
easy task to choose a proper sleep interval, because sleeping
too long will result in filled buffers, whereas a sleep inter-
val that is too short will result in too many system calls and
therefore does not solve the problem. Unfortunately, the op-
timal sleep interval depends on the hardware, the performed
analysis and, even worse, on the observed traffic. Hence, a
good value has to be found through the end-user by exper-
iments, which requires quite some effort. Deri’s user space
code that uses PF_RING does not implement his proposed
adaptive sleep, probably due to the same reasons. Instead,
poll() avoidance is achieved by calls to sched_yield(), which
interrupts the application and allows the scheduler to sched-
ule another process. A call to pool() is only performed if
several sched_yield() was called for several times and still no
packets arrived. Figure 11 shows that the algorithm used by
PF_RING yield better performance compared to the simple
call to poll() with PF_PACKET. However, we can also see
negative effects of calling sched_yield() often.

We therefore propose a new third solution that works
without the necessity to estimate a timeout and works bet-
ter than calling sched_yield(): We propose to change the
signalling of new incoming packets within poll1(). As of
now, PF_PACKET signals the arrival of every packet into
the user space. We recommend to only signal packet arrival
if one of the two following conditions are true:

e N packets are ready for consuming.
e A timeout of m microseconds has elapsed.

Using these conditions, the number of system calls to po11()

3We confirmed this by measuring the number of calls to
poll().
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is reduced dramatically. The timeout is only necessary if
less than N packets arrive within m, e.g. if the incoming
packet rate is low. In contrast to the sleep timeout discussed
before, choosing m properly is not necessary to achieve good
capturing performance.
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Figure 12: Capturing 64 byte packets with and with-
out modifications

We implemented all the solutions into PF_PACKET and
libpcap and compared their implications on the performance.
For the sleep solutions, we determined a good timeout value
by manual experiments. The results are summarised in Fig-
ure 12. As we can see, the reduced number of system calls
yields a large performance boost. We can see that both time-
out and our proposed modification to PF_PACKET yield
about the same performance boost. Combining both is pos-
sible, but does not result in any significant further improve-
ments. We did not have the time to include and evaluate
the same measurements with PF_RING, but we are con-
fident that PF_RING will also benefit from our proposed
modification.

4.4 Driver Improvements

In the experiments presented up to now, we were not able
to process small packets at wire-speed, even with our previ-
ous improvements. We now move further down the captur-
ing software stack and test driver improvements.

Deri proposed to use modified drivers in order to improve
the capturing performance [5]. His driver modifications fo-
cus on changing two things previously described:

e Create a dedicated thread for the packet consumption
in the driver (respectively for every RX queue of the
card).

e Reuse DMA memory pages instead of allocating new
pages for the card.

His driver modifications hence help to use the power of
multi-core CPUs by spawning a kernel thread that handles
the card. This implies that no other thread is scheduled
to perform the driver tasks and ensures that there is al-
ways a free thread to handle the packets, which is good
for the overall performance. Additionally, if interrupts are
bound to a given core, the driver thread will run on the
same core. It is unclear to us which of the modifications has
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a bigger influence on the performance. If TNAPI is used
with PF_PACKET instead of PF_RING, an additional copy
operation is performed to copy the packet from the DMA
memory area into a new memory area. The DMA area is
reused afterwards.

We tested these improvements with different solutions on
Linux but could not consider FreeBSD as there where no
modified drivers at the time this paper was written. Our
comparison is plotted in Figure 13. In contrast to our pre-
vious experiment, we deployed one more traffic generator,
which allowed us to generate traffic at real wire-speed (i.e.,
1.488 million packets). The plot shows results on the AMD
system and compares PF_PACKET against our modified
PF_PACKET and PF_RING. As can be seen, the TNAPI-
aware drivers result in improvements compared to normal
drivers. PF_PACKET capturing also benefits from TNAPI,
but the improvements are not very significant.

Using TNAPI with our modified PF_PACKET results in
good capturing results which are better than the results with
standard drivers and also better than the results with stan-
dard FreeBSD. The best performance, however, can be found
when TNAPI is combined with PF_RING, resulting in a
capturing process that is able to capture 64 byte packets at
wire-speed.

S.  RECOMMENDATIONS

This section summarises our findings and gives recommen-
dations to users as well as system developers. Our recom-
mendations for developers of monitoring applications, drivers
and operating systems are listed in subsection 5.1. Users
of capturing solutions can find advices on how to configure
their systems in subsection 5.2.

5.1 For Developers

During our evaluation and comparison, we found some
bottlenecks within the software which can be avoided with
careful programming. Developers of monitoring applica-
tions, operating systems or drivers should consider these
hints in order to increase the performance their systems pro-
vide.

Our first advice is targeted at developers of network card
drivers. We were able to determine that having a separate
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kernel thread that is only responsible for the network card
can really help to improve performance. This is especially
useful if more than multi-core or multi-CPU systems are
available. With current hardware platforms tending to be
multi-core systems and the ongoing trend of increasing the
number of cores in a system, this feature can be expected
to become even more important in the future. In addition,
reusing memory pages as DMA areas and working with stat-
ically allocated memory blocks should be preferred over us-
ing dynamically allocated pages. However, it is unclear to
us which of this two recommendations results in the greatest
performance boosts.

Signalling between different subsystems, especially if they
are driven by another thread, should always be done for
accumulated packets. This assumption is valid for all sub-
systems, ranging from the driver, over the general operat-
ing system stacks, up to the user space applications. We
therefore recommend the integration of our modifications to
PF_PACKET into Linux.

Other areas besides packet capturing may also benefit
from our modification: A generic system call that allows to
wait for one or more sockets until N elements can be read
or a timeout is seen, whichever happens first, would be a
generalised interface for our modifications to PF_PACKET.
Such system calls could be of use in other applications that
need to process data on-line as fast as the data arrives.

5.2 For Users

Configuring a capture system for optimal performance is
still challenging task. It is important to choose proper hard-
ware that is capable of capturing the amount of traffic in
high-speed networks.

The software that drives the hardware is very important
for capture as well, since it highly influences the perfor-
mance of the capturing process. Our findings conclude that
all parts of the software stack have great influence on the
performance—and that, unfortunately, a user has to check
all of them in order to debug performance problems.

Performance pitfalls can start at the network card drivers,
if interrupt handling does not work as expected, which we
found to be true with one of the drivers we used. Checking
for an unexpectedly high number of interrupts should one
of the first performance debugging steps. Here, enabling
polling on the driver could help to solve the issue. However,
we found that the POLLING option, a static compile time
options for many drivers, did not improve the performance
in our tests.

We also recommend to use PF_RING with TNAPI, as its
performance is superior to the standard capturing stack of
FreeBSD or Linux. If using TNAPI or PF_RING is not an
option, e.g., because there is no TNAPI-aware driver for the
desired network interface card, we recommend to use Linux
with our modifications to PF_PACKET.

Regardless of the capturing solution used, pinning all the
involved threads and processes to different cores is highly
recommended in most of the application cases. Using the de-
fault scheduler is only recommended when low packet rates
are to be captured with low load at the application layer.
Kernel and driver threads should also be pinned to a given
core if possible. This can be achieved by explicitly setting
the interrupt affinity of a network cards’ interrupt.

Finally, if it is not an option to apply one of our proposed
techniques for reducing the number of system calls (cf. Sec-



tions 4.3 and 5.1), the user should check if performance im-
proves if he puts a higher load on the application capturing
process. As we have seen in 4.3, a higher application can
reduce the number of calls to poll() and therefore improve
the performance. This holds especially for applications that
do not involve much CPU workload, e.g., writing a libpcap
stream to disk.

6. CONCLUSION

This paper summarised and compared different capturing
solutions on Linux and FreeBSD, including some improve-
ments proposed by researchers. We compared the standard
capturing solutions of Linux and FreeBSD to each other,
leading to a reappraisal of past work from Schneider et al [4]
with newer versions of the operating systems and capturing
software. The evaluation revealed that FreeBSD still outper-
forms standard Linux PF_PACKET under low application
load. FreeBSD is especially good when multiple capturing
processes are run.

Our comparison between standard Linux capturing with
PF_PACKET and PF_RING confirmed that performance
with PF_RING is still better when small packets are to
be captured. However, differences are not as big as they
where in 2004 or 2006, when the last evaluations were pub-
lished. Further analyses showed that PF_RING performs
better than PF_PACKET if multiple capturing processes are
run on the system, and that performance with PF_RING is
even better than FreeBSD. During our work, we found a per-
formance bottleneck within the standard Linux capturing
facility PF_PACKET and proposed a fix for this problem.
Our fix greatly improves the performance of PF_PACKET
with small packets. Using our improvements, PF_PACKET
performs nearly as good as PF_RING.

Finally, we evaluated Luca Deri’s TNAPI driver extension
for Linux and found increased performance with all Linux
capturing solutions. Best performance can be achieved if
TNAPI is combined with PF_RING.
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