
Netalyzr: Illuminating The Edge Network

Christian Kreibich
ICSI

1947 Center Street
Berkeley, CA, 94704, USA

christian@icir.org

Nicholas Weaver
ICSI

1947 Center Street
Berkeley, CA, 94704, USA

nweaver@icsi.berkeley.edu
Boris Nechaev

HIIT & Aalto University
PO Box 19800

00076 Aalto, Finland
boris.nechaev@hiit.fi

Vern Paxson
ICSI & UC Berkeley
1947 Center Street

Berkeley, CA, 94704, USA
vern@cs.berkeley.edu

ABSTRACT
In this paper we present Netalyzr, a network measurement and de-
bugging service that evaluates the functionality provided by peo-
ple’s Internet connectivity. The design aims to prove both compre-
hensive in terms of the properties we measure and easy to employ
and understand for users with little technical background. We struc-
ture Netalyzr as a signed Java applet (which users access via their
Web browser) that communicates with a suite of measurement-
specific servers. Traffic between the two then probes for a diverse
set of network properties, including outbound port filtering, hid-
den in-network HTTP caches, DNS manipulations, NAT behavior,
path MTU issues, IPv6 support, and access-modem buffer capacity.
In addition to reporting results to the user, Netalyzr also forms the
foundation for an extensive measurement of edge-network prop-
erties. To this end, along with describing Netalyzr’s architecture
and system implementation, we present a detailed study of 130,000
measurement sessions that the service has recorded since we made
it publicly available in June 2009.

Categories and Subject Descriptors
C.4 [Performance of Systems]: MEASUREMENT TECH-
NIQUES

General Terms
Measurement, Performance, Reliability, Security

Keywords
Network troubleshooting, network performance, network measure-
ment, network neutrality

1. INTRODUCTION
For most Internet users, their network experience—perceived

service availability, connectivity constraints, responsiveness, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’10, November 1–3, 2010, Melbourne, Australia.
Copyright 2010 ACM 978-1-4503-0057-5/10/11 ...$10.00.

reliability—is largely determined by the configuration and man-
agement of their edge network, i.e., the specifics of what their Inter-
net Service Provider (ISP) gives them in terms of Internet access.
While conceptually we often think of users receiving a straight-
forward “bit pipe” service that transports traffic transparently, in
reality a myriad of factors affect the fate of their traffic.

It then comes as no surprise that this proliferation of complexity
constantly leads to troubleshooting headaches for novice users and
technical experts alike, leaving providers of web-based services un-
certain regarding what caliber of connectivity their clients possess.
Only a few tools exist to analyze even specific facets of these prob-
lems, and fewer still that people with limited technical understand-
ing of the Internet will find usable. Similarly, the lack of such tools
has resulted in the literature containing few measurement studies
that characterize in a comprehensive fashion the prevalence and na-
ture of such problems in the Internet.

In this work we seek to close this gap. We present the design,
implementation, and evaluation of Netalyzr,1 a publicly available
service that lets any Internet user obtain a detailed analysis of the
operational envelope of their Internet connectivity, serving both as
a source of information for the curious as well as an extensive trou-
bleshooting diagnostic should users find anything amiss with their
network experience. Netalyzr tests a wide array of properties of
users’ Internet access, starting at the network layer, including IP
address use and translation, IPv6 support, DNS resolver fidelity and
security, TCP/UDP service reachability, proxying and firewalling,
antivirus intervention, content-based download restrictions, content
manipulation, HTTP caching prevalence and correctness, latencies,
and access-link buffering.

We believe the breadth and depth of analysis Netalyzr provides is
unique among tools available for such measurement. In addition, as
of this writing we have recorded 130,000 runs of the system from
99,000 different public IP addresses, allowing us both to construct a
large-scale picture of many facets of Internet edge behavior as well
as to track this behavior’s technological evolution over time. The
measurements have found a wide range of behavior, on occasion
even revealing traffic manipulation unknown to the network oper-
ators themselves. More broadly, we find chronic over-buffering
of links, a significant inability to handle fragmentation, numerous
incorrectly operating HTTP caches, common NXDOMAIN wild-
carding, impediments to DNSSEC deployment, poor DNS perfor-
mance, and deliberate manipulation of DNS results.

1http://netalyzr.icsi.berkeley.edu

246

We begin by presenting Netalyzr’s architecture and implementa-
tion (§ 2) and the specifics of the different types of measurements it
conducts (§ 3). We have been operating Netalyzr publicly and con-
tinuously since June 2009, and in § 4 report on the resulting data
collection, including flash crowds, their resulting measurement bi-
ases, and our extensive calibration tests to assess the correct oper-
ation of Netalyzr’s test suite. In § 5 we present a detailed analysis
of the resulting dataset and some consequences of our findings. We
defer our main discussion of related work to § 6 in order to have
the context of the details of our measurement analysis to compare
against. § 7 discusses our plans for future tests and development.
Finally, we summarize in § 8.

2. SYSTEM DESIGN
When designing Netalyzr we had to strike a balance between a

tool with sufficient flexibility to conduct a wide range of measure-
ment tests, yet with a simple enough interface that unsophisticated
users would run it—giving us access to a much larger (and less bi-
ased towards “techies”) end-system population than possible if the
measurements required the user to install privileged software. To
this end, we decided to base our approach on using a Java applet
(≈ 5,000 lines of code) to drive the bulk of the test communication
with our servers (≈ 12,000 lines of code), since (i) Java applets
run automatically within most major web browsers, (ii) applets can
engage in raw TCP and UDP flows to arbitrary ports (though not
with altered IP headers), and, if the user approves trusting the ap-
plet, contact hosts outside the same-origin policy, (iii) Java applets
come with intrinsic security guarantees for users (e.g., no host-level
file system access allowed by default runtime policies), (iv) Java’s
fine-grained permissions model allows us to adapt gracefully if a
user declines to fully trust our applet, and (v) no alternative technol-
ogy matches this level of functionality, security, and convenience.
Figure 1 shows the conceptual Netalyzr architecture, whose com-
ponents we now discuss in turn.

Application Flow. Users initiate a test session by visiting the
Netalyzr website and clicking Start Analysis on the webpage with
the embedded Java test applet. Once loaded, the applet conducts
a large set of measurement probes, indicating test progress to the
user. When testing completes, the applet redirects to a summary
page that shows the results of the tests in detail and with explana-
tions (Figure 2). The users can later revisit a session’s results via a
permanent link associated with each session. We also save the ses-
sion state (and server-side packet traces) for subsequent analysis.

Front- and Back-end Hosts. The Netalyzr system involves
three distinct locations: (i) the user’s machine running the test ap-
plet in a browser, (ii) the front-end machine responsible for dis-
patching users and providing DNS service, and (iii) multiple back-

end machines that each hosts both a copy of the applet and a full
set of test servers. All back-end machines run identical config-
urations and Netalyzr conducts all tests in a given client’s ses-
sion using the same back-end machine. We use Amazon’s EC2
service (http://aws.amazon.com/ec2/) to facilitate scalabil-
ity, employing 20 back-end hosts during times of peak load. Given
a conservative, hard-wired maximum number of 12 parallel ses-
sions per minute, this allows Netalyzr to serve up to 240 sessions
per minute.2

Front-end Web Server. Running on the front-end machine,
this server provides the main website, including a landing/dispatch
page, documentation, FAQs, an example report, and access to re-

2We limited each node to conducting 12 sessions per minute to
prevent the UDP-based network bandwidth/buffer stress test from
interfering with other tests.

Figure 1: Netalyzr’s conceptual architecture. ❶ The user vis-
its the Netalyzr website. ❷ When starting the test, the front-
end redirects the session to a randomly selected back-end node.
❸ The browser downloads and executes the applet. ❹ The ap-
plet conducts test connections to various Netalyzr servers on
the back-end, as well as DNS requests which are eventually re-
ceived by the main Netalyzr DNS server on the front-end. ❺ We
store the test results and raw network traffic for later analysis.
❻ Netalyzr presents a summary of the test results to the user.

ports from previous sessions. The front page also includes an applet
that ensures that the user has Java installed and then directs the user
to a randomly selected back-end server to load-balance the actual
testing process. Finally, the front page rate-limits visitors to a fixed
number of measurements per minute per back-end server.

Back-end Web Servers. The back-end web servers host the ac-
tual measurement applet (so that its probe connections to the server
accord with the same-origin policy) and perform HTTP testing and
overall session management. When sending the measurement ap-
plet, the server includes a set of configuration parameters, including
a globally unique session ID.

Measurement Applet. The Java applet implements 38 types of
tests, some with a number of subtests. We describe them in detail in
Section 3. The applet conducts the test cases sequentially, but also
employs multithreading to ensure that test sessions cannot stall the
entire process, and to speed up some parallelizable tasks. As tests
complete, the applet transmits detailed test results to the back-end
server; it also sends a continuously recorded client-side transcript
of the session. Note that we sign our applet with a certificate from
a trusted authority so that browsers indicate a valid signature.

DNS Servers. These run on the front-end as well
as the back-end machines. On the front-end, it acts
as the authoritative resolver for the two subdomains em-
ployed by Netalyzr, netalyzr.icsi.berkeley.edu and
netalyzr.icir.org. (In the following, we abbreviate these
to netalyzr.edu and netalyzr.org, respectively.) On the
back-ends, the server receives DNS test queries generated directly
from the applet rather than through the user’s DNS resolver li-
brary. The server interprets queries for specific names as com-
mands, generating replies that encode values in A and CNAME
records. For example, requesting has_edns.netalyzr.edu
will return an A record reflecting whether the query message in-
dicated EDNS support. The server also accepts names with arbi-
trary interior padding to act as a cache-busting nonce, ensuring that
queries reach our server.

Echo Servers. An array of simple TCP and UDP echo servers
allow us to test service-level reachability and content modifica-

247

Figure 2: A partial screen capture of Netalyzr’s results page as
seen by the user upon completion of all tests. The full report
is 4–10 times this size, depending on whether the user expands
the different sections.

tion of traffic on various ports. The servers mostly run on well-
known ports but do not implement the associated application pro-
tocol. Rather, they use their own simple payload schema to convey
timing, sequencing, and the requester’s IP address and source port
back to the client. An additional server can direct a DNS request to
the user’s public address to check if the user’s NAT or gateway acts
as a proxy for external DNS requests.

Bandwidth Measurement Servers. To assess bandwidth, la-
tency, buffer sizing, and packet dynamics (loss, reordering, duplica-
tion), we employ dedicated UDP-based measurement servers. Like
the echo servers, these use a custom payload schema that includes
timing information, sequence numbers, instructions regarding fu-
ture sending, and aggregate counters.

Path MTU Measurement Server. To measure directional path
MTUs, we use a server that can capture and transmit raw packets,
giving us full access to and control over all packet headers.

Storage. To maintain a complete record of server-side session
activity, we record all relevant network traffic on the front- and
back-end machines, except for the relatively high-volume band-
width tests. Since Java applets do not have the ability to record
packets, we cannot record such traces on the client side.

Session Management. The back-end web servers establish and
maintain session state as test sessions progress, identifying sessions
via RFC 4122 UUIDs. We serialize completed session state to
disk on the back-end hosts and periodically archive it on the front-
end where it can still be accessed by the web browser. Thus, the
URL summarizing the results can be subsequently refetched when
desired, which enables third-party debugging where an individual
runs Netalyzr but others can interpret the results.3

3The “League of Legends” online game community regularly uses
Netalyzr in this way, as part of their Internet connection trou-
bleshooting instructions.

3. MEASUREMENTS CONDUCTED
We now describe the types of measurements Netalyzr conducts

and the particular methodology used, beginning with layer-3 mea-
surements and then progressing to higher layers, and obtaining user
feedback.

3.1 Network-layer Information
Addressing. We obtain the client’s local IP address via the Java

API, and use a set of raw TCP connections and UDP flows to our
echo servers to learn the client’s public address. From this set of
connections we can identify the presence of NAT, and if so how
it renumbers addresses and ports. If across multiple flows we ob-
serve more than one public address, then we assess whether the
address flipped from one to another—indicating the client changed
networks while the test was in progress—or alternates back and
forth. This latter implies either the use of load-balancing, or that
the NAT does not attempt to associate local systems with a sin-
gle consistent public address but simply assigns new flows out of a
public address block as convenient. (Only 1% of sessions included
an address change from any source.)

IP Fragmentation. We test for proper support of IP fragmenta-
tion (and also for MTU measurement; see below) by sending UDP
payloads to our test servers. We first check for the ability to send
and receive fragmented UDP datagrams. In the applet → server
direction, we send a 2 KB datagram which, if received, generates
a small confirmation response. Due to the prevalence of Ethernet
framing, we would expect most clients to send this packet in frag-
ments, but it will always be fragmented by the time it reaches the
server. We likewise test the server→ applet direction by our server
transmitting (in response to a small query from the client) a 2 KB
message to the client. This direction will definitely fragment, as the
back-end nodes have an interface MTU of 1500 bytes.

If either of the directional tests fails, the applet performs binary
search to find the maximum packet size that it can successfully
send/receive unfragmented.

Path MTU. A related set of tests conducts path MTU probing.
The back-end server for this test supports two modes, one for each
direction. In the applet→ server direction, the applet sends a large
UDP datagram, resulting in fragmentation. The server monitors ar-
riving packets and reports the IP datagram size of the entire origi-
nal message (if received unfragmented) or of the original message’s
initial resulting fragment. This represents a lower bound on MTU
in the applet → server direction, since the first fragment’s size is
not necessarily the full path MTU. (Such “runts” occurred in only a
handful of sessions). Additionally, the applet tests for a path MTU
hole in the applet → server direction by sending a 1499 B packet
using the default system parameters.

In the server → applet direction, the applet conducts a binary
search beginning with a request for 1500 bytes. The server re-
sponds by sending datagrams of the requested size with DF set. In
each iteration one of three cases occurs. First, if the applet receives
the DF-enabled response, its size is no more than the path MTU.
Second, if the response exceeds the path MTU, the server processes
any resulting ICMP “fragmentation required” messages and sends
to the applet the attempted message size, the offending location’s
IP address, and the next-hop MTU conveyed in the ICMP message.
Finally, if no messages arrive at the client, the applet infers that the
ICMP “fragmentation required” message was not generated or did
not reach the server, and thus a path MTU problem exists.

Latency, Bandwidth, and Buffering. We measure packet deliv-
ery performance in terms of round-trip latencies, directional band-
width limits, and buffer sizing. With these, our primary goal is not
to measure capacity itself (which numerous test sites already ad-

248

dress), but as a means to measure the sizing of bottleneck buffers,
which can significantly affect user-perceived latency. We do so
by measuring the increase in latency between quiescence and that
experienced during the bandwidth test, which in most cases will
briefly saturate the path capacity in one direction and thus fill the
buffer at the bottleneck.

Netalyzr conducts these measurements in two basic ways. First,
early in the measurement process it starts sending in the back-
ground small packets at a rate of 5 Hz. We use this test to detect
transient outages, such as those due to a poor wireless signal.

Second, it conducts an explicit latency and bandwidth test. The
test begins with a 10 Hz train of 200 small UDP packets, for which
the back-end’s responses provide the baseline mean latency used
when estimating buffer sizing effects. The test next sends a train
of small UDP packets that elicit 1000-byte replies, with exponen-
tially ramping up (over 10 seconds) the volume in slow-start fash-
ion: for each packet received, the applet sends two more. In the
second half of the interval, the applet measures the sustained rate
at which it receives packets, as well as the average latency. (It
also notes duplicated and reordered packets over the entire run.)
After waiting 5 seconds for queues to drain, it repeats with sizes
reversed, sending large packets to the server that trigger small re-
sponses. Note that most Java implementations will throttle sending
rates to ≤ 20 Mbps, imposing an upper bound on the speed we can
measure.4

IPv6 Adoption. To measure IPv6 connectivity we have to rely
on an approximation because neither our institution nor Amazon
EC2 supports IPv6. However, on JavaScript-enabled hosts the anal-
ysis page requests a small logo from ipv6.google.com, reach-
able only over IPv6. We report the outcome of this request to our
HTTP server. Since we cannot prevent this test from possibly fetch-
ing a cached image, we could overcount IPv6 connectivity if the
user’s system earlier requested the same resource (perhaps due to a
previous Netalyzr run from an IPv6-enabled network).

3.2 Service Reachability
To assess any restrictions the user’s connectivity may impose on

the types of services they can access, we attempt to connect to 25
well-known services along with a few additional ports on the back-
end. For 80/tcp and 53/udp connectivity, the applet speaks
proper HTTP and DNS, respectively. We test all other services
using our echo server protocol as described in Section 2.

In addition to detecting static blocking, these probes also al-
low us to measure the prevalence of proxying. In the absence
of a proxy, our traffic will flow unaltered and the response will
include our public IP address as expected. On the other hand,
protocol-specific proxies will often transform the echo servers’
non-protocol-compliant responses into errors, or simply abort the
connection. For HTTP and DNS, we include both compliant and
non-compliant requests, which will likewise expose proxies. Fur-
ther protocol content such as banners or headers often conveys ad-
ditional information, such as whether a proxy resides on the end
host (e.g., as part of an AV system) or in the network.

3.3 DNS Measurements
Netalyzr performs extensive measurements of DNS behavior,

since DNS performance, manipulations, and subtle errors can have
a major impact on a user’s network experience. We implement
two levels of measurement, restricted and unrestricted. The former
complies with Java’s default same-origin policy, which for most
JVMs allows the lookup of arbitrary names but only ever returns
4 This is the only significant performance limitation we faced using
Java compared with other programming languages.

the IP address of the origin server, or throws an exception if the
result is not the origin server’s address, while the latter (which runs
if the user trusts the applet) can look up arbitrary names, allowing
us to conduct much more comprehensive testing. Also, our DNS
authority server interprets requests for specific names as commands
telling it what sort of response to generate. We encode Boolean re-
sults by returning distinct IP addresses (or hostnames) to represent
true and false, with true corresponding to the origin server’s ad-
dress. For brevity in the following discussion, we abbreviate fully
qualified hostnames that we actually look up by only referring to
the part of the name relevant for a given test. The actual names
also have embedded in them the back-end node number. When we
employ a nonce value to ensure cache penetration, we refer using
“nonce” in the name.

Glue Policy. One important but subtle aspect of the DNS reso-
lution process concerns the acceptance and promotion of response
data in the Authoritative or Additional records of a response, com-
monly referred to as “glue” records. Acceptance of such records
can boost performance by avoiding future lookups, but also risks
cache poisoning attacks [5]. Assessing the acceptance of these
records is commonly referred to as “bailiwick checking,” but the
guidelines on the procedure allow latitude in how to conduct it [10].
Netalyzr leverages glue acceptance to enable tests of the DNS re-
solver itself.

We first check acceptance of arbitrary A records in the Addi-
tional section by sending lookups of special names (made distinct
with nonces) that return particular additional A records. We then
look up those additional names directly to see whether the resolver
issues new queries for the names (which would return false when
those names are queried directly) or answers them from its cache
(returning true), indicating that the resolver accepted the glue. We
check for arbitrary glue records as well as for those that indicate
nameservers. We then likewise check for caching of Authority A
records. Finally, we check whether the server will automatically
follow CNAME aliases by returning one value for the alias in an
Additional record, but a different value for any query for the alias
made directly to our server.

DNS Server Identification and Properties. We next probe
more general DNS properties, including resolver identity, IPv6 sup-
port, 0x20 support [7], respect for short TTLs, port randomization
for DNS requests, and whether the user’s NAT, if present, acts as a
DNS proxy on its external IP address.

When able to conduct unrestricted DNS measurements, we
identify the resolver’s IP address (as seen by our server)
by returning it in an A record in response to a query for
server.nonce.netalyzr.edu. This represents the address
of the final server sending the request, not necessarily the one
the client uses to generate the request. During our beta-testing
we changed the applet code to conduct this query multiple times
because we observed that some hosts will shift between DNS re-
solvers, and some DNS resolvers actually operate as clusters.

We test IPv6 AAAA support by resolving ipv6_set.nonce.
This test is slightly tricky because the resolver will often first re-
quest an A record for the name prior to requesting a AAAA record.
Thus, the back-end server remembers whether it saw a AAAA
record and returns true/false indicating if it did in response to a
follow-on query that our client makes.

Queries for the name 0x20 return true if the capitalization in a
mix-cased request retains the original mix of casing.

If the DNS resolver accepts glue records for nameservers (NS
responses in Authority or Additional), we leverage this to check
whether the resolver respects short TTLs. Responses to the name
ttl0 or ttl1 place a glue record for return_false in the

249

Authoritative section with a TTL of 0 or 1 seconds, respectively.
A subsequent fetch of return_false reveals whether the short
TTLs were respected. (We can’t simply use A records for this test
because both the browser and end host may cache these records
independently.)

We also use lookups of glue_ns.nonce to measure request
latency. If the DNS resolver accepts glue records, it then also
looks up return_false.nonce to check the latency for a cached
lookup. We repeat this process ten times and report the mean
value to the server, and also validate that return_false.nonce

was fetched from the resolver’s cache rather than generating a new
lookup.

Finally, we test DNS port randomization. For unrestricted mea-
surements, we perform queries for port.nonce, which the server
answers by encoding in an A record the source port of the UDP
datagram that delivered the request. For restricted measurements,
the applet sends several queries for dns_rand_set and then
checks the result using a follow-on query that returns true if the
ports seen by our DNS server appeared non-monotone.

EDNS, DNSSEC, and actual DNS MTU. DNS resolvers can
advertise the ability to receive large responses using EDNS [25],
though they might not actually be capable of doing so. For exam-
ple, some firewalls will not pass IP fragments, creating a de-facto
DNS MTU of 1478 bytes for Ethernet framing. Other firewall de-
vices may block all DNS replies greater than 512 bytes under the
out-of-date assumption that DNS replies cannot be larger. While
today small replies predominate, a lack of support for large replies
poses a significant concern for DNSSEC deployment.

We measure the prevalence of this limitation by issuing lookups
(i) to determine whether requests arrive indicating EDNS support,
(ii) to measure the DNS MTU (for unrestricted measurements), and
(iii) to check whether the resolver requests DNSSEC records. As
usual, the client returns the results for these via follow-on lookup
requests.

That a DNS resolver advertises (via EDNS) the ability to re-
ceive large responses does not guarantee that it can actually do
so. We test its ability by requesting names edns_medium and
edns_large, padded to 1300 and 1700 bytes, respectively. (We
pad the replies to those sizes by adding Additional CNAME records
that are removed by the user’s DNS resolver before being returned
to the client, so that this test only uses large packets on the path be-
tween our DNS authority and the DNS resolver.) Their arrival at the
client indicates the resolver can indeed receive larger DNS replies.
Later releases of the client also then employ binary search to de-
termine the actual maximum supported by the resolver (whether or
not it advertises EDNS).

NXDOMAIN Wildcarding. Some DNS operators configure
their resolvers to perform “NXDOMAIN wildcarding”, where they
rewrite hostname lookups that fail with a “no such domain” error to
instead return an A record for the IP address of a web server. The
presumption of such blanket rewriting is that the original lookup
reflected web surfing, and therefore returning the impostor address
will lead to the subsequent HTTP traffic coming to the opera-
tor’s web server, which then typically offers suggestions related
to the presumed intended name. Such rewriting—often motivated
by selling advertisements on the landing page—corrupts the web
browsers’ URL auto-complete features, and, worse, breaks proto-
col semantics for any non-HTTP application looking a hostname.

If unrestricted, the applet checks for this behavior by querying
for a series of names in our own domain namespace, and which do
not exist. We first look up www.nonce.com. If this yields an IP ad-
dress, we have detected NXDOMAIN wildcarding, and proceed to
probe the behavior in more detail, including simple transpositions

(www.yahoo.cmo), other top-level domains (www.nonce.org),
non-web domains (fubar.nonce.com), and a domain internal to
our site (nxdomain.netalyzr.edu). The applet also attempts
to contact the host returned for www.nonce.com on 80/tcp to
obtain the imposed web content, which we log.

DNS proxies, NATs, and Firewalls. Another set of DNS prob-
lems arise not due to ISP interference but misconfigured or mis-
guided NATs and firewalls. If the applet operates unrestrictedly,
it conducts the following tests to probe for these behaviors. First,
it measures DNS awareness and proxying. Our servers answer re-
quests for entropy.netalyzr.edu with a CNAME encoding
the response’s parameters, including the public address, UDP port,
DNS transaction ID, and presence of 0x20 encoding. The applet
sends such DNS requests directly to the back-end server, bypassing
the configured resolver. If it observes any change in the response
(e.g., a different transaction ID or public address), then we have
found in-path DNS proxying. The applet makes another request di-
rectly to the back-end server, now with deliberately invalid format,
to which our server generates a similarly broken reply. If blocked,
we have detected a DNS-aware middlebox that prohibits non-DNS
traffic on 53/udp.

During beta-testing we added a series of tests for the presence of
DNS proxies in NAT devices. NATs often include such a proxy,
returning via DHCP its local address to clients as the DNS re-
solver location if the NAT has not yet itself acquired an external
DNS resolver.5 Upon detecting the presence of a NAT, the ap-
plet assumes the gateway’s local address is the a.b.c.1 address in
the same /24 as the local IP address and sends it a query for
entropy.netalyzr.edu. Any reply indicates with high prob-
ability that the NAT implements a DNS proxy. In addition, we can
observe to where it forwards the request based on the client IP ad-
dress seen by our server.

During our beta-testing we became aware of the possibility that
some in-gateway DNS resolvers act as open relays for the out-

side (i.e., for queries coming from external sources), enabling
amplification attacks [19] and other mischief. We thus added a
test in which the the applet instructs the back-end measurement
server to send a UDP datagram containing a DNS request for
entropy.netalyzr.edu to the public IP address of the client
to see if it elicits a resulting response at our DNS server.

Name Lookup Test. Finally, if unrestricted the applet looks up
a list of 70+ common names, including major search engines, ad-
vertisement providers, financial institutions, email providers, and
e-commerce sites. It uploads the results to our server, which then
performs reverse lookups on the resulting IP addresses to check the
forward lookups for consistency. This testing unearthed numerous
aberrations, as discussed below.

3.4 HTTP Proxying and Caching
For analyzing HTTP behavior, the applet employs two different

methods: using Java’s high-level API, or its low-level TCP sockets

(for which we implement our own HTTP logic). The first allows
us to assess behavior imposed on the user by their browser (such
as proxy settings), while the latter reflects behavior imposed by
their access connectivity. (For the latter we take care to achieve
the same HTTP “personality” as the browser by having our server
mirror the browser’s HTTP request headers to the applet so it can
emulate them in subsequent low-level requests.) In general, the
applet coordinates measurement tasks with the server using URL-
encoded commands that instruct the server to deliver specific kinds
of content (such as cache-sensitive images), report on properties of
5Once the NAT obtains its external DHCP lease, it then forwards
all DNS requests to the remote resolver.

250

the request (e.g., specific header values), and establish and store
session state.

HTTP Proxy Detection. We detect HTTP proxy configuration
settings by monitoring request and result headers, as well as the
server-perceived client address of a test connection. Differences
when using the high-level API versus the socket API indicate the
presence of a configured proxy. We first send a low-level message
with specific headers to the web server. The server mirrors the
headers back to the applet, allowing the applet to conduct a com-
parison. Added, deleted, or modified headers flag the presence of
an in-path proxy. To improve the detectability of such proxies, we
use eccentric capitalization of header names (e.g. User-AgEnt)
and observe whether these arrive with the same casing. We observe
that some proxies regenerate headers, which will change the case
of any header generated even if the value is unchanged. A sec-
ond test relies on sending an invalid request method (as opposed
to GET or POST). This can confuse proxies and cause them to ter-
minate the connection. A final test sets the Host request header
to www.google.com instead of Netalyzr’s domain. Some prox-
ies use this header’s value to direct the outgoing connection [12],
which the applet detects by monitoring for unexpected content.

Caching policies, Content Transcoding, and File-type Block-
ing. We next test for in-network HTTP caching. For this testing,
our server provides two test images of identical size (67 KB) and di-
mensions (512·512 pixels), but each the color-inverse of the other.
Consecutive requests for the image result in alternating images re-
turned to the applet. We can thus reliably infer when the applet
receives a cached image based on the unchanged contents (or an
HTTP 304 status code, “Not Modified”). We conduct four such
request pairs, varying the cacheability of the images via various
request and response headers, and including a unique identifier in
each request URL to ensure each session starts uncached.

The applet can also identify image transcoding or blocking by
comparing the received image’s size to the expected one.

Finally, we test for content-based filtering. The applet downloads
(i) an innocuous Windows PE executable (notepad.exe), (ii) a small
MP3 file, (iii) a bencoded BitTorrent download file (for a Linux dis-
tribution’s DVD image), and (iv) the EICAR test “virus”,6 a benign
file that AV vendors recognize as malicious for testing purposes.

3.5 User Feedback
Because we cannot readily measure the physical context in

which the user runs Netalyzr, we include a small, optional ques-
tionnaire in the results page. Some 19% of the users provided feed-
back. Of those, 56% reported using a wired rather than a wireless
network; 16% reported running Netalyzr at work, 79% from home,
2% on public networks, and 2% on “other” networks.

3.6 Intentional Omissions
We considered several tests for inclusion but in the end decided

not to do so, for three main reasons.
First, some tests can result in potentially destructive or abusive

effects on network infrastructure, particularly if run frequently or
by multiple users. In this regard we decided against tests to mea-
sure the NAT’s connection table size (which could disrupt unrelated
network connections purged from the table), fingerprint NAT and
access devices by connecting to internal administration interfaces
(which might expose sensitive information), general scanning ei-
ther locally or remotely, and sustained high-bandwidth tests (for
detecting BitTorrent throttling or other differential traffic manage-
ment, for which alternative, bandwidth-intensive tests exist [9]).

6http://www.eicar.org/anti_virus_test_file.htm

Second, some tests can inflict potential long-term side-effects on
the users themselves. These could occur for technical reasons (e.g.,
we contribute towards possible upload/download volume caps) or
legal/political ones (e.g., tests that attempt to determine whether
access to certain sites suffer from censorship).

Finally, we do not store per-user HTTP tracking cookies in the
user’s browsers, since we do not aim to collect mobility profiles.
We do however employ user-invariant HTTP cookies to test for
modifications and to manage state machines in our testsuite.

4. DATA COLLECTION
We began running Netalyzr publicly in June 2009 and have kept

it available continuously. We initially offered the service as a “beta”
release (termed BETA), and for the most part did not change the op-
erational codebase until January 2010, when we rolled out a sub-
stantial set of adjustments and additional tests (RELEASE). These
comprise about 58% and 42% of the measurements, respectively.
Unless otherwise specified, discussion refers to the combination of
both datasets.

Website Operation. To date we have collected 130,436 sessions
from 99,513 public IP addresses. The peak rate of data acquisition
occurred during the June roll-out, with a maximum of 1,452 ses-
sions in one hour. This spike resulted from mention of our service
on several web sites. A similar but smaller spike occurred during
the January relaunch, resulting in a peak load of 373 sessions in
one hour.

Calibration. We emphasize the importance of capturing subtle
flaws in the data and uncovering inconsistencies that would oth-
erwise skew the analysis results or deflate the scientific value of
the data. Accordingly, we undertook extensive calibration of the
measurement results to build up confidence in the coherence and
meaningfulness of our data. A particular challenge in realizing Ne-

talyzr has been that it must operate correctly in the presence of a
wide range of failure modes. While we put extensive effort into
anticipating these problems during development, subsequent cali-
bration served as a key technique to validate our assumptions and
learn how the tests actually work on a large scale. In addition, it
proved highly beneficial to employ someone for this task who was
not involved in developing the tests (coauthor Nechaev), as doing
so avoided incorporating numerous assumptions implicitly present
in the code.

We based our calibration efforts on the BETA dataset, using it
to identify and remedy sources of errors before beginning the RE-
LEASE data collection. To do so, we assessed data-consistency in-
dividually for each of the tests mentioned in § 3. We emphasized
finding missing or ambiguous values in test results, checking value
ranges, investigating outliers, confirming that each test’s set of re-
sult variables exhibited consistency (e.g., examining that mutual
exclusiveness was honored, or that fractions added up to a correct
total), ensuring that particular variable values complied with cor-
responding preconditions (e.g., availability of raw UDP capability
reliably enabling certain DNS tests), and searching for systematic
errors in the data.

To our relief, this process did not uncover any major flaws in the
codebase or the data. The most common problems we uncovered
were ambiguity (for example, in distinguishing silent test failures
from cases when a test did not execute at all) and inaccuracies in
the process of importing the data into our session database. The
RELEASE codebase only differs from BETA in the presence of more
unambiguous and extensive result reporting (and the addition of
new tests).

251

Figure 3: Global locations of Netalyzr runs.

Identified Measurement Biases. A disadvantage of website-
driven data collection is vulnerability to sudden referral surges from
specific websites—in particular if these entail a technologically bi-
ased user population that can skew our dataset. In addition, our Java
runtime requirement could discourage non-technical users whose
systems do not have the runtime installed by default. It also pre-
cludes the use of Netalyzr on many smartphone platforms. We now
analyze the extent to which our dataset contains such bias.

The five sites referring the most users to Netalyzr are: stum-
bleupon.com (30%), lifehacker.com (11%), slashdot.org (10%),
google.com (7%), and heise.de (6%). The context of these referrals
affects the number of sessions we record for various ISPs. For ex-
ample, most users arriving from slashdot.org did so in the context
of an article on alleged misbehavior by Comcast’s DNS servers,
likely contributing to making their customers the biggest share of
our users (10.3% of our sessions originate from Comcast’s IP ad-
dress ranges). Coverage in Germany via heise.de likely drove visits
from customers of Deutsche Telekom, accounting for 2.4% of the
sessions. We show a summary of the dominant ISPs in our dataset
in Table 3 below.

The technical nature of our service introduced a “geek bias”
in our dataset, which we can partially assess by using the
User-Agent HTTP request headers of our users to infer browser
type and operating system. Here we compare against published
“typical” numbers [26, 27], which we give in parentheses. 37.4%
(90%) of our users ran Windows, 7.9% (1.0%) used Linux, and
13.8% (5.9%) used MacOS. We find Firefox over-represented with
59.9% (28.3%) of sessions, followed by 18.7% (59.2%) for Inter-
net Explorer, 16.9% (4.5%) for Safari, and 2.9% (1.7%) for Opera.
This bias also extends to the choice of DNS resolver, with 12% of
users selecting OpenDNS as their DNS provider.

While such bias is undesirable, it can be difficult to avoid in a
study that requires user participation. We can at least ameliorate
distortions from it because we can identify its presence. Its pri-
mary effect concerns our characterizations across ISPs, where we
endeavor to normalize accordingly, as discussed below. We also
note that technically savvy users may be more likely to select ISPs
with fewer connectivity deficiencies, which would mean the preva-
lence of problems we observe may reflect underestimates.

5. DATA ANALYSIS
We now turn to an assessment of the data gathered from Netalyzr

measurements to date. In our discussion we follow the presentation
of the different types of tests above, beginning with layer 3 mea-
surements and then progressing to general service reachability and
specifics regarding DNS and HTTP behavior.

64Kb/s 128Kb/s 256Kb/s 512Kb/s 1Mb/s 2Mb/s 4Mb/s 8Mb/s

64Kb/s

128Kb/s

256Kb/s

512Kb/s

1Mb/s

2Mb/s

4Mb/s

8Mb/s

16Mb/s

Upload Bandwidth

D
ow

nl
oa

d
Ba

nd
w

id
th

RO

US

NL
DE

GB

RU

LT
KE

BR

GT

UG

LBSD

IN
IR

MX

RS

ID

HR IT
ES

CA FI BG SE

HK

JPKR

CZ

TRAR

BD

IL

256Kb/s 512Kb/s 1Mb/s 2Mb/s 4Mb/s
2Mb/s

4Mb/s

8Mb/s

comcast.net

rr.com

verizon.net

t−dialin.net

sbcglobal.net

cox.net

charter.com

qwest.net

bethere.co.uk

telefonica.es

bellsouth.net

alicedsl.de

btcentralplus.com
arcor−ip.net

telecomitalia.it

shawcable.net
optonline.net

virginmedia.com
rogers.com

pacbell.net

Upload Bandwidth

D
ow

nl
oa

d
Ba

nd
w

id
th

Figure 4: Average up/downstream bandwidths for countries
with ≥ 10 sessions (top) and the 20 most prevalent ISPs (bot-
tom). Circle areas are proportional to prevalence in the dataset;
diagonals mark symmetric up/download capacity.

5.1 ISP and Geographic Diversity
We estimate the ISP and location of Netalyzr users by inspecting

reverse (PTR) lookups of their public IP address, if available; or
else the final Start-of-Authority record in the DNS when attempting
the PTR lookup. We found these results available for 96% of our
sessions.

To extract a meaningful organizational name, we started with a
database of “effective TLDs,” i.e., domains for which the parent is a
broad, undifferentiated domain such as gouv.fr [17], to identify
the relevant name preceding these TLDs. Given this approach, our
dataset consists of sessions from 6,884 organizations (see Table 3
below for the 15 most frequent) across 186 countries, as shown in
Figure 3. Activity however was dominated by users in the USA
(46.1%), the EU (31.7%, with Germany accounting for 8.8% and
Great Britain for 8.0%), and Canada (5.3%). 11 countries con-
tributed sessions from more than 1,000 addresses, 50 from more
than 100, and 101 from more than 10.

252

5.2 Network-Layer Information
Network Address Translation. Unsurprisingly, we find NATs

very prevalent among Netalyzr users (90% of all sessions). 79%
of these sessions used the 192.168/16 range, 15% used 10/8,
and 4% used 172.16/12. 2% of the address-translated sessions
employed some form of non-private address. We did not discern
any particular pattern in these sessions or their addresses; some
were quite bizarre.

Port sequencing behavior. Of 57,510 sessions examined, 30%
exhibit port renumbering, where the NAT does not preserve the
TCP source port number for connections. Of these, 8.3% appear
random (using a Wald-Wolfowitz test with sequence threshold 4),
while 90% renumber monotonically, most in a strictly incremental
fashion. However, some exhibit jumps of varying size. Identifying
the causes of these would then enable us to estimate the level of
multiplexing apparently present in the user’s access link.

IPv6. We found IPv6 support to be rare but non-negligible: 4.8%
of sessions fetched the logo from ipv6.google.com. This repre-
sents an upper bound due to possible caching effects (as well as
“geek bias”).

Fragmentation. Overall, we find that fragmentation is not as
reliable as desired [14, 23]. In the RELEASE we found 8% of the
sessions unable to send 2 KB UDP packets, and likewise 8% unable
to receive them.

We also found that 3% of the sessions which could send 2 KB
packets could not send 1500 B packets. We find that 87% of these
sessions come from Linux systems, strongly suggesting the likely
cause to be Linux’s arguably incorrect application of Path MTU
discovery to UDP traffic. Java does not appear to retransmit in the
face of ICMP feedback, instead raising an exception which Net-

alyzr reports as a failure.
From our server to the client, 79% of the sessions exhibited a

path MTU of 1500 B, followed by 1492 B (16%) which suggests
a prevalence of PPP over Ethernet (PPPoE). We also observe small
clusters at 1480 B, 1476 B, 1460 B, and 1458 B, but these are rare.
Only 2% reported an MTU less than 1450 bytes.

For sessions with an MTU < 1500 B, only 59% had a path that
successfully sent a proper “fragmentation required” ICMP message
back to our server, reinforcing that systems should avoid PMTU
for UDP, and for TCP should provide robustness in the presence of
MTU black holes [16].

Latency and Bandwidth. Figure 4 illustrates the balance of
upstream vs. downstream capacities for countries and ISPs, while
Figure 5 shows the distribution of download bandwidths for the
three most prominent ISPs in our dataset: Comcast, RoadRunner,
and Verizon. Two years after the study by Dischinger et al. [8] our
results still partially match theirs, particularly for RoadRunner.

From the most aggregated perspective, we observed an aver-
age download bandwidth of 6.7 Mbps and, for upload, 2.7 Mbps.
We find far more symmetric bandwidths for sessions that users
self-reported as at work (10 Mbps/8.1 Mbps), and reported home
connections exhibited far more asymmetry and lower bandwidth
(6.2 Mbps/1.6 Mbps). Public networks exhibited less download
bandwidth but more symmetry (3.5 Mbps/2.3 Mbps).

We saw less variation in the aggregate perspective for quiescent
latency. Sessions reported as run at work had an average latency
of 110 ms, while home networks experienced 120 ms and public
networks 180 ms of latency.

Network Uplink Buffering. A known problem [8] confirmed by
Netalyzr is the substantial over-buffering present in the network, es-
pecially in end-user access devices such as DSL or DOCSIS cable
modems. This can cause significant problems since a single full-
rate TCP flow can fill the bottleneck buffer, which, in the absence

Download Bandwidth

Pr
ob

ab
ilit

y
D

en
si

ty

64Kb/s 256Kb/s 1Mb/s 4Mb/s 16Mb/s 64Mb/s

0.
0

0.
2

0.
4

0.
6

0.
8

Comcast
RoadRunner
Verizon

Figure 5: PDF of download bandwidths for the three most
prominent ISPs in our dataset.

of advanced queue management, will induce substantial latency to
all traffic through the bottleneck.7

Netalyzr attempts to measure this by recording the amount of de-
lay induced by the high-bandwidth burst of traffic once it exceeds
the actual bandwidth obtained. We then infer the buffer capacity
as equal to the sustained sending rate multiplied by the additional
delay induced by this test. Since the test uses UDP, no back-off
comes into play to keep the buffer from completely filling, though
we note that Netalyzr cannot determine whether the buffer did in-
deed actually fill to capacity.

When plotting measured upload bandwidth vs. inferred upload
buffer capacity (Figure 6, top), several features stand out. First,
we note that because we keep the test short in order to not un-
duly load the user’s link, sometimes Netalyzr cannot completely
fill the buffer, leading to noise, which also occurs when the band-
width is quite small (so we do not have a good “quiescence” base-
line). Next, horizontal banding reflects commonly provided levels
of service and/or access network characteristics (such as 802.11b
network speeds).

Most strikingly, we observe frequent instances of very large
buffers. Vertical bands reflect common buffer sizes, which we find
fall into powers of two, particularly 128 KB or 256 KB. Even with
a fast 8 Mbps uplink, such buffers can easily induce 250 ms of ad-
ditional latency during file transfers, and for 1 Mbps uplinks, well
over 1 sec.

We can leverage the biases in our data to partially validate these
results. By examining only Comcast customers (Figure 6, bottom),
we would naturally expect only one or two buffer sizes to predom-
inate, due to more homogeneous hardware deployments—and in-
deed the plot shows dominant buffer sizes at 128 KB and 256 KB.
In this figure, another more subtle feature stands out with the small
cluster that lies along a diagonal. Its presence suggests that a small
7 A major reason for overly large buffers is the lack of device con-
figurability in the presence of a wide range of access-link band-
widths. For example, a DOCSIS cable modem designed to operate
with an uplink between 1 and 50 Mbps might have a buffer per-
fectly sized for 50 Mbps operation, yet 50 times too large for a
1 Mbps uplink.

253

Inferred Buffer Capacity

U
pl

oa
d

Ba
nd

w
id

th

1KB 4KB 16KB 64KB 256KB 1MB 4MB

16Kb/s

64Kb/s

256Kb/s

1Mb/s

4Mb/s

16Mb/s

Inferred Buffer Capacity

U
pl

oa
d

Ba
nd

w
id

th

1KB 4KB 16KB 64KB 256KB 1MB 4MB

16Kb/s

64Kb/s

256Kb/s

1Mb/s

4Mb/s

16Mb/s

Figure 6: Inferred upload packet-buffer capacity (x-axis) vs.
bandwidth (y-axis), for all sessions (top) and Comcast (bottom).

number of customers have access modems that size their buffers
directly in terms of time, rather than memory.

In both plots, the scattered values above 256 KB that lack any
particular power-of-two alignment suggest the possible existence
of other buffering processes in effect for large UDP transfers. For
example, we have observed that some of our notebook wireless
connections occasionally experience larger delays during this test
apparently because the notebook buffers packets at the wireless in-
terface (perhaps due to use of ARQ) to recover from wireless con-
gestion.

Clearly, over-buffering is endemic in access devices. Simply siz-
ing the active buffer dynamically, considering the queue full if the
head-of-line packet is more than 200 ms old, would alleviate this
problem substantially. While the task of fixing millions of such de-
vices is daunting, one could also consider implementing Remote
Active Queue Management [1] elsewhere in the network in order
to mitigate the effects of these large buffers.

Packet Replication, Reordering, Outages, and Corruption.
The bandwidth tests also provide an opportunity to observe repli-
cation or reordering. For these tests, the bottleneck point receives
1000 B packets at up to 2x the maximum rate of the bottleneck.
1% of the uplink tests exhibited packet replication, while 16% in-

INTERFERENCE (%)
SERVICE PORT BLOCKED CLOSED PROXIED

NetBIOS 139 T 50.6 1.0
SMB 445 T 49.8 0.9
RPC 135 T 45.8 1.1
SMTP 25 T 26.0 8.0 1.0
FTP 21 T 19.4 3.7 0.1
MSSQL 1434 U 11.3
SNMP 161 T 7.1 0.2
BitTorrent 6881 T 6.5 0.5
AuthSMTP 587 T 6.3 0.2 0.7
SecureIMAP 585 T 5.9 0.2
Netalyzr Echo 1947 T 5.9
SIP 5060 T 5.5 4.6
SecureSMTP 465 T 5.4 0.3 <0.1
PPTP Control 1723 T 5.1 5.1 <0.1
DNS 53 T 5.0 0.8
IMAP/SSL 993 T 4.8 0.2 <0.1
OpenVPN 1194 T 4.8 0.2
TOR 9001 T 4.7 0.2
POP3/SSL 995 T 4.7 0.3 <0.1
IMAP 143 T 4.7 6.3 0.2
POP3 110 T 3.8 6.9 6.4
SSH 22 T 3.5 0.1 <0.1
HTTPS 443 T 2.1 0.5 <0.1
HTTP 80 T 3.6 5.3

Table 1: Reachability for services examined by Netalyzr.
“Blocked” reflects failure to connect to the servers, “Closed”
are cases where an in-path proxy or firewall terminated the es-
tablished connection after the request was sent. “Proxied” in-
dicates cases where a proxy revealed its presence through its
response. Omitted values reflect zero occurrences.

cluded some reordering. For downlink tests, 2% exhibited repli-
cation and 33% included reordering. The prevalence of reorder-
ing qualitatively matches considerably older results [2]; more di-
rect comparisons are difficult because the inter-packet spacing in
our tests varies, and reordering rates fundamentally depend on this
spacing.

For the RELEASE data we also check for transient outages, de-
fined as a period losing ≥ 3 background test packets (sent at 5 Hz)
in a row. We find fairly frequent outages, with 10% of sessions
experiencing one or more such events (44% of these reflect only a
single outage event, while 29% included ≥ 5 loss events). These
bursts of packet loss are generally short, with 48% of sessions with
losses having outages ≤ 1 sec. 10% of wireless sessions exhibited
at least one outage, vs. only 5% for wired ones. (The wired/wireless
determination is here based on user feedback, per § 3.5.)

Finally, analysis of the server-side packet traces finds no in-
stances of TCP or IP checksum errors. We do see UDP checksum
errors at an overall rate of about 1.6 · 10−5, but these are heavily
dominated by bursts experienced by just a few systems. 0.12% of
UDP datagrams have checksumming disabled, likewise typically in
packet trains from individual systems, with no obvious commonal-
ity. The presence of UDP errors but not TCP might suggest use of
selective link-layer checksum schemes such as UDP Lite.

5.3 Service Reachability
Table 1 summarizes the prevalence of service reachability for

the application ports Netalyzr measures. As explained above, for
TCP services we can distinguish between blocking (no success-
ful connection), application-aware connectivity (established con-
nection terminated when our server’s reply violates the protocol),
and proxying (we directly observe altered requests/responses). For

254

UDP services we cannot in general distinguish the second case due
to the lack of explicit connection establishment.

The first four entries likely reflect ISP security policies in terms
of limiting exposure to services well-known for vulnerabilities and
not significantly used across the wide-area (first three) or to prevent
spam. That the fraction of blocking appears low suggests that many
ISPs employ other methods to thwart spam, rather than wholesale
blocking of all SMTP.8

The prevalence of blocking and termination for FTP, however,
likely arises as an artifact of NAT usage: in order to support FTP’s
separate control and data connections, many NATs implement FTP
proxies. These presumably terminate our FTP probing when ob-
serving a protocol violation in the response from our server. A
NAT’s FTP proxy causes Netalyzr to report a “blocked” response
if the proxy checks the server’s response for FTP conformance be-
fore generating a SYN/ACK to the client, while it causes a “closed”
response if it completes the TCP handshake with the client before
terminating the connection after failing to validate the server’s re-
sponse format.

Somewhat surprising is the prevalence of blocking for
1434/udp, used by the Slammer worm of 2003. Likely these
blocks reflect legacy countermeasures that have remained in place
for years even though Slammer no longer poses a significant threat.

The large fraction of terminated or proxied POP3 connections
appears due to in-host antivirus software that attempts to relay all
email requests. In particular, we can identify almost all of the prox-
ying as due to AVG antivirus because it alters the banner in the
POP3 dialog. We expect that the large number of terminated IMAP
connections has a similar explanation.

We found the prevalence of terminated SIP connections surpris-
ing. Apparently a number of NATs and Firewalls are SIP-aware and
take umbrage at our echo server’s protocol violation. We learned
that this blocking can even occur without the knowledge of the net-
work administrators—a Netalyzr run at a large university flagged
the blockage, which came as a surprise to the operators, who re-
moved the restriction once we reported it.

Finally, services over TLS (particularly HTTPS, 443/tcp) are
generally unmolested in the network, as expected given the end-
to-end security properties that TLS provides. Thus, clearly if one
wishes to construct a network service resistant to network disrup-
tion, tunneling it over HTTPS should prove effective.

5.4 DNS Measurements
Selected DNS Server Properties. We measured several DNS

server properties of interest, including glue policy, IPv6 queries,
EDNS, and MTU. Regarding the first, most resolvers behave con-
servatively, with only 21% of sessions accepting any glue records
present in the Additional field, and those only doing so for records
for subdomains of the authoritative server. (The proportion is es-
sentially the same when weighted by distinct resolvers.) Similarly,
only 25% accept A records corresponding to CNAMEs contained
in the reply. On the other hand, resolvers much more readily (61%)
accept glue records when the glue records refer to authoritative
nameservers.

We find 0x20 usage scarce amongst resolvers (2.3% of ses-
sions). However, only 4% removed capitalizations from requests,
which bodes well for 0x20’s deployability. Similarly, only a mi-
nuscule number of sessions incorrectly cached a 0-TTL record, and
none cached a 1 sec TTL record for two seconds.

We quite commonly observe requests for AAAA (IPv6) records
(13% of sessions), largely due to a common Linux default to re-

8Some ISPs publicly disclose that they use dynamic blocking [6].

quest AAAA records even if the host lacks a routable IPv6 address
rather than a resolver property, as 42% of sessions with a Linux-
related User-Agent requested AAAA records. (10% of non-Linux
systems requested AAAAs.)

The prevalence of EDNS and DNSSEC in requests is signifi-
cant but not universal, due to BIND’s default behavior of request-
ing DNSSEC data in replies even in the absence of a configured
root of trust.9 52% of sessions used EDNS-aware DNS resolvers,
with 49% DNSSEC-enabled. Most cases where we observe an ad-
vertised MTU show the BIND default of 4096 B (94%), but some
other MTUs also occur, notably 512 B (3.1%), 2048 B (1.6%) and
1280 B (0.3%).

The prevalence of DNSSEC-enabled resolvers does not mean
transition to broad use of DNSSEC will prove painless, however.
For EDNS sessions with an advertised MTU of ≥ 1800 B, 13%
failed to fetch the large EDNS-enabled reply and 1.9% for the
medium-sized one. This finding suggests a common failure where
the DNS resolver is connected through a network that either won’t
carry fragmented UDP traffic or assumes that DNS replies never ex-
ceed 1500 B (since edns_medium is unlikely to be fragmented).
Since DNSSEC replies will likely exceed 1500 B, the prevalence
of this problem suggests a potentially serious deployment issue that
will require changes to the resolver logic.

The RELEASE data includes a full validation of DNS MTU up to
4 KB. We find that despite not advertising a large MTU, almost all
sessions (95%) used a resolver capable of receiving messages over
512 B. However, a significant number of sessions (15%) exhibited
a measured DNS MTU of 1472 B (equivalent to an IP MTU of
1500 B), suggesting an inability to receive fragmented traffic. This
even occurred for 11% of sessions that explicitly advertised an ex-
plicit EDNS MTU > 1472 B. This can cause unpredictable time-
outs and failures if DNS replies (particularly the potentially large
records involved in DNSSEC) exceed the actual 1472 B MTU.

A similar problem exists in the clients themselves, but of-
ten due to a different cause. When the client directly requests
edns_large, edns_medium, and edns_small from the
server, 14.1%/4.3%/1.3% failed, respectively. This suggests two
additional difficulties: network devices assuming DNS replies do
not exceed 512 B (both edns_large and edns_medium fail)
or networks that do not handle EDNS at all (all three fail).10 We
find this high failure rate quite problematic, as sound DNSSEC val-
idation requires implementation on the end host’s stub resolver to
achieve end-to-end security, which requires that end hosts can re-
ceive large, EDNS-enabled DNS messages.

Another concern comes from the continued lack of DNS port
randomization [5]. This widely publicized vulnerability was over a
year old when we first released Netalyzr, but 5% of sessions used
monotone or fixed ports in DNS requests, However, no major ISP
showed significant problems with this test.

In terms of DNS performance, it appears that DNS resolvers may
constitute a bottleneck for many users. 9% of the sessions required
300 ms more time to look up a name within our domain versus the
base round-trip time to our server, and 4.6% required more than
600 ms. (We can attribute up to 100 ms of the increase to the fact
that our DNS server resides within our own institution, while the
back-end servers are hosted at Amazon EC2’s East Coast location.)

9 32% of sessions exhibit BIND’s default handling of glue,
CNAMEs, 0x20, EDNS, and DNSSEC.

10 The failures we observe could instead be due to heavy packet
loss. However such failures should not particularly favor one type
of query over another, yet we observe only 0.09% of sessions for
which edns_medium succeeded while edns_small failed.

255

ALL LOOKUPS (%) OPENDNS (%)
DOMAIN FAILED BLOCKED FAILED CHANGED

www.nationwide. 2.3 <0.01 1.6 0.01co.uk
ad.doubleclick.net 1.6 1.88 1.6 1.30
www.citibank.com 1.3 0.01 0.8 0.03
windowsupdate. 0.8 0.02 0.5 0.01microsoft.com
www.microsoft.com 0.8 <0.01 0.4 0.01
mail.yahoo.com 0.7 0.02 0.4 0.17
mail.google.com 0.4 0.02 0.3 0.13
www.paypal.com 0.4 0.04 0.2 0.03
www.google.com 0.3 0.01 0.2 76.45
www.meebo.com 0.4 0.03 0.2 0.87

Table 2: Reliability of DNS lookups for 10 selected names
(125,000 sessions total, 11,800 OpenDNS).

When the user’s resolver accepted glue records (52% of sessions)
we could directly measure the performance of DNS requests an-
swered from the resolver’s cache. Surprisingly, 11% of such ses-
sions required over 200 ms to look up cached items, and 3.9% re-
quired over 500 ms. Such high latency suggests a considerable
distance between the client and the resolver. For example, we
found 16% of sessions that used OpenDNS required over 200 ms
for cached answers compared to 9% for non-OpenDNS sessions.

NXDOMAIN Wildcarding. We find NXDOMAIN wildcard-
ing quite prevalent among Netalyzr users. 29% performing this
test found NXDOMAIN wildcarding for www.nonce.com. Even
excluding users of both OpenDNS (which wildcards by default)
and Comcast (which started wildcarding during the course of our
measurements), 22% show NXDOMAIN wildcarding. This wild-
carding will disrupt features such as Firefox’s address bar, which
prepends www. onto failed DNS lookups before defaulting to a
Google search. Finally, excluding Comcast and OpenDNS users,
43% of sessions with NXDOMAIN wildcarding also showed wild-
carding for non-www names. Wildcarding all addresses mistakenly
assumes that only web browsers will generate name lookups.

DNS Proxies, NATs, and Firewalls. Many NATs and firewalls
are DNS-aware. Although we find 99% able to perform direct DNS
queries, 11% of these sessions show evidence of a DNS-aware net-
work device, where a non-DNS test message destined for 53/udp
failed (but proper DNS messages succeeded). Far fewer networks
contain in-path DNS proxies, with only 1.3% of DNS-capable ses-
sions manifesting a changed DNS transaction ID.

Although most NATs don’t automatically proxy DNS, most con-
tain DNS proxies. We found 69% of the NATs would forward a
DNS request to the server (with this measurement restricted to the
cases where Netalyzr correctly guessed the gateway IP address). Of
these, only 1.6% of the sessions contained their own recursive re-
solver, rather than forwarding the request to a different recursive
resolver. Finally, although rare, the number of NATs providing
open DNS resolution externally accessible is still significant. When
queried by our server, 4.8% of the NATed sessions forwarded the
query to our DNS servers. Such systems can be used both for DNS
amplification attacks and to probe the ISP’s resolver.

DNS Reliability of Important Names. DNS lookups can
fail for a variety of reasons, including an unreliable local net-
work, problems in the DNS resolver infrastructure, and failures
in the DNS authorities or paths between the resolver and au-
thority. Table 2 characterizes some failure modes for 10 com-
mon domain names. For general lookups, “failure” reflects
a negative result or an exception returned to the applet by
InetAddress.getByName(), or a 20 sec timeout expiring.

“Blocked” denotes the return of an obviously invalid address (such
as a loopback address).

Some behavior immediately stands out. First, regardless of re-
solver, we observe significant unreliability of DNS to the client,
due to packet loss and other issues. Caching also helps, as highly
popular names have a failure rate substantially less than that for
less common names. For example, compare the failure rate of
www.nationwide.co.uk to that of mail.google.com, for
which we presume resolvers or end-hosts will have cached the lat-
ter significantly more often.

Second, we observe high reliability for the DNS authorities of
the names we tested. Only 14 sessions had OpenDNS returning
the SERVFAIL wildcard in response to a legitimate query. (One
such session showed many names failing to resolve, obviously due
to a problem with OpenDNS’s resolver rather than the authority
servers.)

Third, we can see the acceptance of DNS as a tool for network
management and control. All but the www.google.com case for
OpenDNS represent user or site-admin configured redirections. For
domains like mail.yahoo.com, the common change is to return
a private Internet address, most likely configured in the institution’s
DNS server, while blocking of ad.doubleclick.net com-
monly uses nonsense addresses (such as 0.0.0.0), which may
reflect resolution directly from the user’s hosts file (as suggested on
some forum discussions on blocking ad.doubleclick.net).

The DNS results also included two strains of maliciousness. The
first concerns an ISP (Wide Open West) that commonly returned
their own proxy’s IP address as an answer for www.google.com,
search.yahoo.com, and www.bing.com, but not for sites
such as mail.google.com or www.yahoo.com. Delib-
erately invalid requests to these proxies return a reference to
phishing-warning-site.com, a domain parked with Go-
Daddy. The proxy seems to have been modified between Febru-
ary and July 2010, as later probing revealed that it was based on
Squid 2.6. For SSL-encrypted Google searches, it will forward the
request to Google unmolested. We contacted Wide Open West re-
garding the matter but received no response. We observed similarly
divergent lookup behavior for customers of sigecom.net, cavtel.net,
rcn.net, fuse.net, and o1.com.

Second, in a few dozen sessions we observed malicious DNS
resolvers due to malcode having reconfigured an infected user’s
system settings. These servers exhibit two signatures: (i) mali-
cious resolution for windowsupdate.microsoft.com, which instead
returns an arbitrary Google server to disable Windows Update, and
(ii) sometimes a malicious result for ad.doubleclick.net. In these
latter (less frequent) instances, these ad servers insert malicious ad-
vertisements that replace the normal ads a user sees with ones for
items like “ViMax Male Enhancement” [11].

5.5 HTTP Proxying and Caching
8.4% of all sessions show evidence of HTTP proxying. Of these,

32.5% had the browser explicitly configured to use an HTTP proxy,
as the server recorded a different client-side IP address only for
HTTP connections made via Java’s HTTP API. More interestingly,
91.2% of proxied sessions showed evidence of in-path proxies for
all HTTP traffic. (These are not mutually exclusive—the overlap is
explained by users that are double-proxied.) We detect such prox-
ies by changes to headers or expected content, requests from a dif-
ferent IP address, or in-network caching. A proxy may announce
its location through Via or X-Cache-Lookup response headers.
The applet follows such clues by attempting a direct connection to
such potential proxies with instructions to connect to our back-end
server, which succeeded in 10.9% of proxied sessions.

256

We rarely observed caching of our 67 KB image (5.1% of ses-
sions cached at least one version of it). Manual examination reveals
that such caching most commonly occurred in wireless hotspots
and corporate networks. Two South African ISPs used in-path
caching throughout, presumably to reduce bandwidth costs and im-
prove latency.

The infrequency of such caches perhaps represents a blessing
in disguise, as they often get it wrong. A minor instance con-
cerns the 55.1% of caches that cached the image when we speci-
fied it as weakly uncacheable (no cache-specific HTTP headers).
More problematic are the 35.6% that cached the image despite
strong uncacheability (use of headers such as Cache-control:
no-cache, no-store, a fresh Last-Modified timestamp
expiring immediately). Finally, 5.0% of these broken caches failed
to cache a highly cacheable version of the image (those with
Last-Modified well in the past and Expires well into the
future, or with an ETag identifier). Considering that 42.7% of all
HTTP-proxied connections did not gain the benefits of caching le-
gitimately cacheable content, we identify considerable unrealized
savings.

Network proxies seldom transcode the raw images during this
test, but 0.06% of the sessions did, detected as a returned result
smaller than the original length but > 10 KB. Manual examination
of a few cases verified that the applet received a proper HTTP re-
sponse for the image with a reduced Content-Length header,
and thus the network did indeed change the image (presumably to
save bandwidth by re-encoding the .jpg with a higher loss rate)
rather than merely truncate the request.

In-path processes also only rarely interrupt file transfers. Only
0.7% of all sessions failed to correctly fetch the .mp3 file and 0.9%
for the .exe. Slightly more, 1.2%, failed to fetch the .torrent
file, suggesting that some networks filter on file type. However,
10% filtered the EICAR test “virus”, suggesting significant deploy-
ment of either in-network or host-based AV. As only 0.36% failed
to fetch all four test-files, these results do not reflect proxies that
block all of the tests.

5.6 ISP Profiles
Table 3 illustrates some of the policies that Netalyzr observed

for the 15 most common ISPs. We already discussed the relative
lack of SMTP blocking above. A few ISPs do not appear to filter
Windows traffic; however, they might block these ports inbound,
which we cannot determine since Netalyzr does not perform in-
bound scanning.

Another characteristic we see reflects early design decisions still
in place today: many DSL providers initially offered PPPoE con-
nections rather than IP over Ethernet, while DOCSIS-based cable-
modems always used IP-over-Ethernet. For Verizon, only 9% of
Verizon customers whose reverse name suggests FiOS (fiber to the
home) manifest the PPPoE MTU, while 68% of the others do.

A final trend concerns the growth of NXDOMAIN wildcard-
ing, especially ISPs wildcarding all names rather than just www
names. During Netalyzr’s initial release, Comcast had yet to im-
plement NXDOMAIN wildcarding, but began wildcarding during
Fall 2009.

We also confirmed that the observed policies for Comcast match
their stated policies. Comcast has publicly stated that they will
block outbound traffic on the Windows ports, and may block out-
bound SMTP with dynamic techniques [6]. When they began
widespread deployment of their wildcarding, they also stated that
they would only wildcard www addresses, but we did observe the
results of an early test deployment that wildcarded all addresses for
a short period of time.

6. RELATED WORK
There is a substantial existing body of work on approaches for

measuring various aspects of the Internet. Here we focus on those
related to our study in the nature of the measurements conducted or
how data collection occurred.

Network performance. Dischinger et al. studied network-level
performance characteristics, including link capacities, latencies, jit-
ter, loss, and packet queue management [8]. They used measure-
ment packet trains similar to ours, but picked the client machines
by scanning ISP address ranges for responding hosts, subsequently
probing 1,894 such hosts autonomously. In 2002 Saroiu et al. stud-
ied similar access link properties as well as P2P-specific aspects of
17,000 Napster file-sharing nodes and 7,000 Gnutella peers [22].
They identified probe targets by crawling the P2P overlays, and
identified a large diversity in bandwidth (only 35% of hosts ex-
ceeded an upload bandwidth of 100Kb/s, 8% exceeded 10Mbps,
between 8% and 25% used dial-up modems, and at least 30% had
more than 3Mb/s downstream bandwidth) and latency (the fastest
20% of hosts exhibited latencies under 70ms, the slowest 20% ex-
ceeded 280ms). Maier et al. analyzed residential broadband traf-
fic of a major European ISP [15], finding that round-trip laten-
cies between users and the ISP’s border gateway often exceed that
between the gateway and the remote destination (due to DSL in-
terleaving), and that most of the observed DSL lines used only a
small fraction of the available bandwidth. Ritacco et al. [21] de-
veloped a network testsuite that like Netalyzr is driven by a Java
applet. Their work is intended as an exploratory study, focusing
more on performance in general and wireless networks and their
device populations in particular. (While numerous techniques have
been developed for measuring network performance, we do not dis-
cuss these further in keeping with our main focus on ways that users
have their connectivity restricted or shaped, rather than end-to-end
performance.)

Network neutrality. Several studies have looked at the degree
to which network operators provide different service to different
types of traffic. Dischinger et al. studied 47,000 sessions conducted
using a downloadable tool, finding that around 8% of the users ex-
perienced BitTorrent blocking [9]. Bin Tariq et al. devised NANO,
a distributed measurement platform, to detect whether a given ISP
induces degraded performance for specific classes of service [24].
They evaluate their system in Emulab, using Click configurations to
synthesize “ISP” discrimination, and source synthetic traffic from
PlanetLab nodes. Beverly et al. leveraged the “referral” feature of
Gnutella to conduct TCP port reachability tests from 72,000 unique
Gnutella clients, finding that Microsoft’s network filesharing ports
are frequently blocked, and that email-related ports are more than
twice as likely to be blocked as other ports [3]. Reis et al. used
JavaScript-based “web tripwires” to detect modifications to HTTP-
borne HTML documents [20]. Of the 50,000 unique IP addresses
from which users visited their test website, approximately 0.1%
experienced content modifications. Nottingham provided a cache
fidelity test for XMLHttpRequest implementations [18], analyzing
a large variety of caching properties including HTTP header val-
ues, content validation and freshness, caching freshness, and vari-
ant treatment. NetPolice [28] measured traffic differentiation in
18 large ISPs for several popular services in terms of packet loss,
using multiple end points inside a given ISP to transmit application-
layer traffic to destinations using the same ISP egress points. They
found clear indications of preferential treatments for different kinds
of service. Finally, subsequent to Netalyzr’s release, Huang et al.
released a network tester for smartphones to detect hidden proxies
and service blocks using methodology inspired by Netalyzr [13].

257

DNS
BLOCKED (%) WILDCARDING PPPOE

ISP SESSIONS COUNTRY WIN SMTP MSSQL TYPE % (%) MEDIUM

Comcast 14,765 US 99 8 www 37 Cable
RoadRunner 6,321 US www 64 Cable
Verizon 4,341 US 7 21 www 84 33 DSL/Fiber
SBC 3,363 US 52 74 DSL
Deutsche Telekom 2,694 DE 76 all 49 55 DSL
Cox Cable 2,524 US 93 77 88 all 30 Cable
Charter Comm. 1,888 US 95 22 36 all 63 Cable
Qwest 1,502 US 18 6 all 50 69 DSL
BE Un Limited 1,439 UK 49 DSL
BellSouth 1,257 US 59 69 96 19 DSL
Telefonica 1,206 ES 7 80 DSL
Arcor 1,206 DE 32 5 DSL
Shaw Cable 1,198 US 5 59 Cable
British Telecom 1,098 UK 10 5 DSL
Alice DSL 1,080 DE 30 www 62 74 DSL
Telecom Italia 1,075 IT 8 5 13 all 63 67 DSL
Virgin Media 1,028 UK 90 www 66 Fiber
Rogers Cable 994 CA 95 79 all 77 Cable
Optimum Online 983 US 98 79 www 79 Cable
Comcast Business 847 US 93 10 Cable

Table 3: Policies detected for the top 20 ISPs. We indicate blocking when > 5% of sessions manifested outbound filtering, with WIN
corresponding to Windows services (TCP 135/139/445). We infer PPPoE from path MTUs of 1492 B.

Address fidelity. Casado and Freeman investigated the reliabil-
ity of using a client’s IP address—as seen by a public server—in
order to identify the client [4]. Their basic methodology somewhat
resembles ours in that they used active web content to record and
measure various connection properties, but also differs significantly
with regard to the process of users running the measurements. They
instrumented several websites to serve an iframe “web bug”,
leading to narrow data collection—users had to coincidentally visit
those sites, and remained oblivious to the fact that measurement
was occurring opportunistically. They found that 60% of the ob-
served clients reside behind NATs, which typically translated no
more than seven clients, while 15% of the clients arrived via HTTP
proxies, often originating from a diverse geographical region. Fi-
nally, Maier et al. [15] found that DHCP-based address reuse is
frequent, with 50% of all addresses being assigned at least twice
per day.

7. FUTURE WORK
The main goal of Netalyzr is to provide a comprehensive suite of

network functionality tests to a wide range of users. To this end,
we are currently enhancing the test reports to become more acces-
sible for non-technical users, and have partnered with websites in
Germany, Poland, the UK, and the US to bring Netalyzr to an in-
creasingly diverse audience.

Additionally, we are developing several additional tests we ex-
pect to deploy in the near future, including a command-line client to
enable Netalyzr’s inclusion in large test suites, a path MTU tracer-
oute to find the location of path MTU failures, advanced DNS prob-
ing of the DNS proxies provided by NATs, and an IPv6 test suite,
including IPv6 differential latency, path MTU, traceroute, and ser-
vice reachability.

8. SUMMARY
The Netalyzr system demonstrates the possibility of developing

a browser-based tool that provides detailed diagnostics, discovery,
and debugging for end-user network connectivity. Visitors who
ran the Netalyzr applet conducted 130,000 measurement sessions
from 99,000 public IP Addresses. Netalyzr reveals specific prob-

lems to individual users in a detailed report that enables them to
understand and potentially fix the trouble, and forms the foundation
for a broad, longitudinal survey of edge-network behavior. Some
systemic problems revealed include difficulties with fragmentation,
the unreliability of path MTU discovery, restrictions on DNSSEC
deployment, legacy network blocks, frequent over-buffering of ac-
cess devices, poor DNS performance for many clients, and deliber-
ate manipulations of DNS results. We believe these results to be of
significant interest to implementors and operators, and have to date
been approached by several organizations with specific inquiries
about our findings.

Netalyzr remains in active use and we aim to support it indefi-
nitely as an ongoing service for illuminating edge network neutral-
ity, security, and performance.

9. ACKNOWLEDGEMENTS
We are deeply grateful to the Netalyzr users for enabling this

study and to our beta testers for the insightful comments and feed-
back. We would particularly like to thank Mark Allman, Paul Bar-
ford, Scott Bradner, John Brzozowski, Randy Bush, Niels Bakker,
Richard Clayton, Chris Cowart, Keith Dawson, Adrian Dimcev,
Holger Dreger, Brandon Enright, Kevin Fall, Carrie Gates, Andrei
Gurtov, Mark Handley, Theodore Hong, Kelly Kane, Matthew Ko-
gan, Keith Medcalf, Thomas Narten, Michael Ross, Chris Switzer,
Wooter Wijngaards, and Richard Woundy. We thank Amazon.com
for supporting our EC2 deployment. This work was supported by
the National Science Foundation under grants NSF CNS-0722035,
NSF-0433702, and CNS-0905631, with additional support from
Google.

10. REFERENCES
[1] D. Ardelean, E. Blanton, and M. Martynov. Remote active

queue management. In NOSSDAV ’08: Proceedings of the

18th International Workshop on Network and Operating

Systems Support for Digital Audio and Video, pages 21–26,
New York, NY, USA, 2008. ACM.

258

[2] J. Bennett, C. Partridge, and N. Shectman. Packet reordering
is not pathological network behavior. IEEE/ACM

Transactions on Networking (TON), 7:789–798, 1999.
[3] R. Beverly, S. Bauer, and A. Berger. The Internet’s Not a Big

Truck: Toward Quantifying Network Neutrality. In Proc.

PAM, 2007.
[4] M. Casado and M. Freedman. Peering through the Shroud:

The Effect of Edge Opacity on IP-based Client Identification.
In Proc. NSDI, 2007.

[5] Chad R. Dougherty. CERT Vulnerability Note VU 800113:
Multiple DNS implementations vulnerable to cache
poisoning, July 2008.

[6] What ports are blocked by Comcast High-Speed Internet?
http://lite.help.comcast.net/content/faq/
What−ports−are−blocked−by−Comcast−High−
Speed−Internet.

[7] D. Dagon, M. Antonakakis, P. Vixie, T. Jinmei, and W. Lee.
Increased DNS Forgery Resistance Through 0x20-bit
Encoding. In Proc. CCS, 2008.

[8] M. Dischinger, A. Haeberlen, K. P. Gummadi, and S. Saroiu.
Characterizing Residential Broadband Networks. In Proc.

IMC, 2007.
[9] M. Dischinger, A. Mislove, A. Haeberlen, and K. Gummadi.

Detecting BitTorrent Blocking. In Proc. IMC, 2008.
[10] R. Erzs and R. Bush. Clarifications to the DNS Specification.

RFC 2181, IETF, July 1997.
[11] M. Fauenfelder. How to get rid of Vimax ads.

http://boingboing.net/2009/01/16/how−to−get−
rid−of−vi.html, January 2009.

[12] R. Giobbi. CERT Vulnerability Note VU 435052:
Intercepting proxy servers may incorrectly rely on HTTP
headers to make connections, February 2009.

[13] J. Huang, Q. Xu, B. Tiwana, and M. Mao. The UMich
Smartphone 3G Test.
http://www.eecs.umich.edu/3gtest/.

[14] C. Kent and J. Mogul. Fragmentation considered harmful.
ACM SIGCOMM Computer Communication Review,
25(1):87, 1995.

[15] G. Maier, A. Feldmann, V. Paxson, and M. Allman. On
dominant characteristics of residential broadband internet
traffic. In Proc. IMC, 2009.

[16] M. Mathis and J. Heffner. Packetization Layer Path MTU
Discovery. RFC 4821, IETF, March 2007.

[17] Mozilla. Effective TLD names. http://mxr.mozilla.
org/mozilla−central/source/netwerk/dns/src/
effective_tld_names.dat.

[18] M. Nottingham. XMLHttpRequest Caching Tests.
http://www.mnot.net/javascript/
xmlhttprequest/cache.html, December 2008.

[19] V. Paxson. An analysis of using reflectors for distributed
denial-of-service attacks. ACM SIGCOMM Computer

Communication Review, 31(3):38–47, 2001.
[20] C. Reis, S. Gribble, T. Kohno, and N. Weaver. Detecting

In-Flight Page Changes with Web Tripwires. In Proc. NSDI,
2008.

[21] A. Ritacco, C. Wills, and M. Claypool. How’s My Network?
A Java Approach to Home Network Measurement. In
ICCCN 2009, pages 1–7. IEEE, 2009.

[22] S. Saroiu, P. Gummadi, S. Gribble, et al. A measurement
study of peer-to-peer file sharing systems. In Proceedings of

Multimedia Computing and Networking, volume 2002, page
152, 2002.

[23] P. Savola. MTU and Fragmentation Issues with
In-the-Network Tunneling. RFC 4459, 2006.

[24] M. Tariq, M. Motiwala, N. Feamster, and M. Ammar.
Detecting network neutrality violations with causal
inference. In Proc. Emerging Networking Experiments and

Technologies, 2009.
[25] P. Vixie. Extension Mechanisms for DNS (EDNS0). RFC

2671, IETF, August 1999.
[26] Wikipedia. http://en.wikipedia.org/wiki/Usage_

share_of_operating_systems, January 2010.
[27] Wikipedia. http://en.wikipedia.org/wiki/Usage_

share_of_web_browsers, January 2010.
[28] Y. Zhang, Z. M. Mao, and M. Zhang. Detecting traffic

differentiation in backbone ISPs with NetPolice. In Proc.

IMC, 2009.

259

