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ABSTRACT

Although there is tremendous interest in designing improved net-
works for data centers, very little is known about the network-level
traffic characteristics of current data centers. In this paper, we con-
duct an empirical study of the network traffic in 10 data centers
belonging to three different types of organizations, including uni-
versity, enterprise, and cloud data centers. Our definition of cloud
data centers includes not only data centers employed by large on-
line service providers offering Internet-facing applications, but also
data centers used to host data-intensive (MapReduce style) appli-
cations. We collect and analyze SNMP statistics, topology, and
packet-level traces. We examine the range of applications deployed
in these data centers and their placement, the flow-level and packet-
level transmission properties of these applications, and their im-
pact on network utilization, link utilization, congestion, and packet
drops. We describe the implications of the observed traffic patterns
for data center internal traffic engineering as well as for recently-
proposed architectures for data center networks.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Design studies; Performance
attributes

General Terms

Design, Measurement, Performance

Keywords

Data center traffic, characterization

1. INTRODUCTION
A data center (DC) refers to any large, dedicated cluster of com-

puters that is owned and operated by a single organization. Data
centers of various sizes are being built and employed for a di-
verse set of purposes today. On the one hand, large universities
and private enterprises are increasingly consolidating their IT ser-
vices within on-site data centers containing a few hundred to a few
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thousand servers. On the other hand, large online service providers,
such as Google, Microsoft, and Amazon, are rapidly building geo-
graphically diverse cloud data centers, often containing more than
10K servers, to offer a variety of cloud-based services such as E-
mail, Web servers, storage, search, gaming, and Instant Messaging.
These service providers also employ some of their data centers to
run large-scale data-intensive tasks, such as indexing Web pages or
analyzing large data-sets, often using variations of the MapReduce
paradigm [6].
Despite the growing applicability of data centers in a wide vari-

ety of scenarios, there are very few systematic measurement stud-
ies [19, 3] of data center usage to guide practical issues in data
center operations. Crucially, little is known about the key differ-
ences between different classes of data centers, specifically univer-
sity campus data centers, private enterprise data centers, and cloud
data centers (both those used for customer-facing applications and
those used for large-scale data-intensives tasks).
While several aspects of data centers still need substantial em-

pirical analysis, the specific focus of our work is on issues pertain-
ing to a data center network’s operation. We examine the send-
ing/receiving patterns of applications running in data centers and
the resulting link-level and network-level performance. A better
understanding of these issues can lead to a variety of advancements,
including traffic engineering mechanisms tailored to improve avail-
able capacity and reduce loss rates within data centers, mechanisms
for improved quality-of-service, and even techniques for managing
other crucial data center resources, such as energy consumption.
Unfortunately, the few recent empirical studies [19, 3] of data cen-
ter networks are quite limited in their scope, making their observa-
tions difficult to generalize and employ in practice.
In this paper, we study data collected from ten data centers to

shed light on their network design and usage and to identify prop-
erties that can help improve operation of their networking sub-
strate. The data centers we study include three university campus
data centers, two private enterprise data centers, and five cloud

data centers, three of which run a variety of Internet-facing ap-
plications while the remaining two predominantly run MapReduce
workloads. Some of the data centers we study have been in op-
eration for over 10 years, while others were commissioned much
more recently. Our data includes SNMP link statistics for all data
centers, fine-grained packet traces from select switches in four of
the data centers, and detailed topology for five data centers. By
studying different classes of data centers, we are able to shed light
on the question of how similar or different they are in terms of their
network usage, whether results taken from one class can be applied
to the others, and whether different solutions will be needed for
designing and managing the data centers’ internal networks.
We perform a top-down analysis of the data centers, starting with
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the applications run in each data center and then drilling down to
the applications’ send and receive patterns and their network-level
impact. Using packet traces, we first examine the type of appli-
cations running in each data center and their relative contribution
to network traffic. We then examine the fine-grained sending pat-
terns as captured by data transmission behavior at the packet and
flow levels. We examine these patterns both in aggregate and at a
per-application level. Finally, we use SNMP traces to examine the
network-level impact in terms of link utilization, congestion, and
packet drops, and the dependence of these properties on the loca-
tion of the links in the network topology and on the time of day.
Our key empirical findings are the following:

• We see a wide variety of applications across the data centers,
ranging from customer-facing applications, such as Web ser-
vices, file stores, authentication services, Line-of-Business
applications, and custom enterprise applications to data in-
tensive applications, such as MapReduce and search index-
ing. We find that application placement is non-uniform across
racks.

• Most flows in the data centers are small in size (≤ 10KB),
a significant fraction of which last under a few hundreds of
milliseconds, and the number of active flows per second is
under 10,000 per rack across all data centers.

• Despite the differences in the size and usage of the data cen-
ters, traffic originating from a rack in a data center is ON/OFF
in nature with properties that fit heavy-tailed distributions.

• In the cloud data centers, a majority of traffic originated by
servers (80%) stays within the rack. For the university and
private enterprise data centers, most of the traffic (40-90%)
leaves the rack and traverses the network’s interconnect.

• Irrespective of the type, in most data centers, link utilizations
are rather low in all layers but the core. In the core, we find
that a subset of the core links often experience high utiliza-
tion. Furthermore, the exact number of highly utilized core
links varies over time, but never exceeds 25% of the core
links in any data center.

• Losses occur within the data centers; however, losses are not
localized to links with persistently high utilization. Instead,
losses occur at links with low average utilization implicat-
ing momentary spikes as the primary cause of losses. We
observe that the magnitude of losses is greater at the aggre-
gation layer than at the edge or the core layers.

• We observe that link utilizations are subject to time-of-day
and day-of-week effects across all data centers. However in
many of the cloud data centers, the variations are nearly an
order of magnitude more pronounced at core links than at
edge and aggregation links.

To highlight the implications of our observations, we conclude
the paper with an analysis of two data center network design issues
that have received a lot of recent attention, namely, network bisec-
tion bandwidth and the use of centralized management techniques.

• Bisection Bandwidth: Recent data center network proposals
have argued that data centers need high bisection bandwidth
to support demanding applications. Our measurements show
that only a fraction of the existing bisection capacity is likely
to be utilized within a given time interval in all the data cen-
ters, even in the “worst case” where application instances are

Data Center Type of Type of # of DCs

Study Data Center Apps Measured

Fat-tree [1] Cloud MapReduce 0

Hedera [2] Cloud MapReduce 0

Portland [22] Cloud MapReduce 0

BCube [13] Cloud MapReduce 0

DCell [16] Cloud MapReduce 0

VAL2 [11] Cloud MapReduce 1

Micro TE [4] Cloud MapReduce 1

Flyways [18] Cloud MapReduce 1

Optical switching [29] Cloud MapReduce 1

ECMP. study 1 [19] Cloud MapReduce 1

ECMP. study 2 [3] Cloud MapReduce 19
Web Services

Elastic Tree [14] ANY Web Services 1

SPAIN [21] Any Any 0

Our work Cloud MapReduce 10
Private Net Webservices
Universities Distributed F’S

Table 1: Comparison of prior data center studies, including

type of data center and application.

spread across racks rather than confined within a rack. This
is true even for MapReduce data centers that see relatively
higher utilization. From this, we conclude that load balanc-
ing mechanisms for spreading traffic across the existing links
in the network’s core can help manage occasional conges-
tion, given the current applications used.

• Centralization Management: A few recent proposals [2,
14] have argued for centrally managing and scheduling network-
wide transmissions to more effectively engineer data center
traffic. Our measurements show that centralized approaches
must employ parallelism and fast route computation heuris-
tics to scale to the size of data centers today while supporting
the application traffic patterns we observe in the data centers.

The rest of the paper is structured as follows: we present related
work in Section 2 and in Section 3 describe the data centers studied,
their high-level design, and typical uses. In Section 4, we describe
the applications running in these data centers. In Section 5, we
zoom into the microscopic properties of the various data centers.
In Section 6, we examine the flow of traffic within data centers and
the utilization of links across the various layers. We discuss the im-
plications of our empirical insights in Section 7, and we summarize
our findings in Section 8.

2. RELATED WORK
There is tremendous interest in designing improved networks for

data centers [1, 2, 22, 13, 16, 11, 4, 18, 29, 14, 21]; however, such
work and its evaluation is driven by only a few studies of data cen-
ter traffic, and those studies are solely of huge (> 10K server) data
centers, primarily running data mining, MapReduce jobs, or Web
services. Table 1 summarizes the prior studies. From Table 1, we
observe that many of the data architectures are evaluated without
empirical data from data centers. For the architectures evaluated
with empirical data, we find that these evaluations are performed
with traces from cloud data centers. These observations imply that
the actual performance of these techniques under various types of
realistic data centers found in the wild (such as enterprise and uni-
versity data centers) is unknown and thus we are motivated by this
to conduct a broad study on the characteristics of data centers. Such
a study will inform the design and evaluation of current and future
data center techniques.
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This paper analyzes the network traffic of the broadest set of
data centers studied to date, including data centers running Web
services and MapReduce applications, but also other common en-
terprise and campus data centers that provide file storage, authen-
tication services, Line-of-Business applications, and other custom-
written services. Thus, our work provides the information needed
to evaluate data center network architecture proposals under the
broad range of data center environments that exist.
Previous studies [19, 3] have focused on traffic patterns at coarse

time-scales, reporting flow size distributions, number of concurrent
connections, duration of congestion periods, and diurnal patterns.
We extend these measures by considering additional issues, such as
the applications employed in the different data centers, their trans-
mission patterns at the packet and flow levels, their impact on link
and network utilizations, and the prevalence of network hot-spots.
This additional information is crucial to evaluating traffic engineer-
ing strategies and data center placement/scheduling proposals.
The closest prior works are [19] and [3]; the former focuses

on a single MapReduce data centers, while the latter considers
cloud data centers that host Web services as well as those running
MapReduce. Neither study considers non-cloud data centers, such
as enterprise and campus data centers, and neither provides as com-
plete a picture of traffic patterns as this study. The key observations
from Benson’s study [3] are that utilizations are highest in the core
but losses are highest at the edge. In our work, we augment these
findings by examining the variations in link utilizations over time,
the localization of losses to link, and the magnitude of losses over
time. From Kandula’s study [19], we learned that while most traffic
in the cloud is restricted to within a rack and a significant number
of hot-spots exist in the network. Our work supplements these re-
sults by quantifying the exact fraction of traffic that stays within
a rack for a wide range of data centers. In addition, we quantify
the number of hot-spots, show that losses are due to the underly-
ing burstiness of traffic, and examine the flow level properties for
university and private enterprise (both are classes of data centers
ignored in Kandula’s study [19]).
Our work complements prior work on measuring Internet traf-

fic [20, 10, 25, 9, 8, 17] by presenting an equivalent study on the
flow characteristics of applications and link utilizations within data
centers. We find that data center traffic is statistically different from
wide area traffic, and that such behavior has serious implications
for the design and implementation of techniques for data center
networks.

3. DATASETS AND OVERVIEW OF DATA

CENTERS
In this paper, we analyze data-sets from 10 data centers, includ-

ing 5 commercial cloud data centers, 2 private enterprise data cen-
ters, and 3 university campus data centers. For each of these data
centers, we examine one or more of the following data-sets: net-
work topology, packet traces from select switches, and SNMP polls
from the interfaces of network switches. Table 2 summarizes the
data collected from each data center, as well as some key proper-
ties.
Table 2 shows that the data centers vary in size, both in terms of

the number of devices and the number of servers. Unsurprisingly,
the largest data centers are used for commercial computing needs
(all owned by a single entity), with the enterprise and university
data centers being an order of magnitude smaller in terms of the
number of devices.
The data centers also vary in their proximity to their users. The

enterprise and university data centers are located in the western/mid-

Data Center Name Number of Locations

EDU1 1

EDU2 1

EDU3 1

PRV2 4

Table 3: The number of packet trace collection locations for the

data centers in which we were able to install packet sniffers.

western U.S. and are hosted on the premises of the organizations
to serve local users. In contrast, the commercial data centers are
distributed around the world in the U.S., Europe, and South Amer-
ica. Their global placement reflects an inherent requirement for
geo-diversity (reducing latency to users), geo-redundancy (avoid-
ing strikes, wars, or fiber cuts in one part of the world), and regu-
latory constraints (some data can not be removed from the E.U. or
U.S.).
In what follows, we first describe the data we collect. We then

outline similarities and differences in key attributes of the data cen-
ters, including their usage profiles, and physical topology. We
found that understanding these aspects is required to analyze the
properties that we wish to measure in subsequent sections, such as
application behavior and its impact on link-level and network-wide
utilizations.

3.1 Data Collection
SNMP polls: For all of the data centers that we studied, we

were able to poll the switches’ SNMP MIBs for bytes-in and bytes-
out at granularities ranging from 1 minute to 30 minutes. For the
5 commercial cloud data centers and the 2 private enterprises, we
were able to poll for the number of packet discards as well.
For each data center, we collected SNMP data for at least 10

days. In some cases (e.g., EDU1, EDU2, EDU3, PRV1, PRV2,
CLD1, CLD4), our SNMP data spans multiple weeks. The long
time-span of our SNMP data allows us to observe time-of-day and
day-of-week dependencies in network traffic.
Network Topology: For the private enterprises and university

data centers, we obtained topology via the Cisco CDP protocol,
which gives both the network topology as well as the link capaci-
ties. When this data is unavailable, as with the 5 cloud data centers,
we analyze device configuration to derive properties of the topol-
ogy, such as the relative capacities of links facing endhosts versus
network-internal links versus WAN-facing links.
Packet traces: Finally, we collected packet traces from a few

of the private enterprise and university data centers (Table 2). Our
packet trace collection spans 12 hours over multiple days. Since it
is difficult to instrument an entire data center, we selected a hand-
ful of locations at random per data center and installed sniffers on
them. In Table 3, we present the number of sniffers per data center.
In the smaller data centers (EDU1, EDU2, EDU3), we installed
1 sniffer. For the larger data center (PRV2), we installed 4 snif-
fers. All traces were captured using a Cisco port span. To account
for delay introduced by the packet duplication mechanism and for
endhost clock skew, we binned results from the spans into 10 mi-
crosecond bins.

3.2 High-level Usage of the Data Centers
In this section, we outline important high-level similarities and

differences among the data centers we studied.
University data centers: These data centers serve the students

and administrative staff of the university in question. They pro-
vide a variety of services, ranging from system back-ups to hosting
distributed file systems, E-mail servers, Web services (administra-
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Data Center Data Center Location Age (Years) SNMP Packet Topology Number Number Over

Role Name (Curr Ver/Total) Traces Devices Servers Subscription

Universities

EDU1 US-Mid 10 X X X 22 500 2:1
EDU2 US-Mid (7/20) X X X 36 1093 47:1
EDU3 US-Mid N/A X X X 1 147 147:1

Private
PRV1 US-Mid (5/5) X X X 96 1088 8:3
PRV2 US-West > 5 X X X 100 2000 48:10

Commercial

CLD1 US-West > 5 X X X 562 10K 20:1
CLD2 US-West > 5 X X X 763 15K 20:1
CLD3 US-East > 5 X X X 612 12K 20:1
CLD4 S. America (3/3) X X X 427 10K 20:1
CLD5 S. America (3/3) X X X 427 10K 20:1

Table 2: Summary of the 10 data centers studied, including devices, types of information collected, and the number of servers.

tive sites and web portals for students and faculty), and multicast
video streams. We provide the exact application mix in the next
section. In talking to the network operators, we found that these
data centers “organically” evolved over time, moving from a col-
lection of devices in a storage closet to a dedicated room for servers
and network devices. As the data centers reached capacity, the op-
erators re-evaluated their design and architecture. Many operators
chose to move to a more structured, two-layer topology and intro-
duced server virtualization to reduce heating and power require-
ments while controlling data center size.
Private enterprises: The private enterprise IT data centers serve

corporate users, developers, and a small number of customers. Un-
like university data centers, the private enterprise data centers sup-
port a significant number of custom applications, in addition to
hosting traditional services like Email, storage, and Web services.
They often act as development testbeds, as well. These data cen-
ters are developed in a ground-up fashion, being designed specif-
ically to support the demands of the enterprise. For instance, to
satisfy the need to support administrative services and beta testing
of database-dependent products, PRV1 commissioned the develop-
ment of an in-house data center 5 years ago. PRV2 was designed
over 5 years ago mostly to support custom Line-of-Business appli-
cations and to provide login servers for remote users.
Commercial cloud data centers: Unlike the first two classes

of data centers, the commercial data centers cater to external users
and offer support for a wide range of Internet-facing services, in-
cluding: Instant Messaging, Webmail, search, indexing, and video.
Additionally, the data centers host large internal systems that sup-
port the externally visible services, for example data mining, stor-
age, and relational databases (e.g., for buddy lists). These data cen-
ters are often purpose-built to support a specific set of applications
(e.g., with a particular topology or over-subscription ratio to some
target application patterns), but there is also a tension to make them
as general as possible so that the application mix can change over
time as the usage evolves. CLD1, CLD2, CLD3 host a variety of
applications, ranging from Instant Messaging and Webmail to ad-
vertisements and web portals. CLD4 and CLD5 are primarily used
for running MapReduce style applications.

3.3 Topology andComposition of the Data Cen-
ters

In this section, we examine the differences and similarities in
the physical construction of the data centers. Before proceeding
to examine the physical topology of the data centers studied, we
present a brief overview of the topology of a generic data center. In
Figure 1, we present a canonical 3-Tiered data center. The 3 tiers of
the data center are the edge tier, which consists of the Top-of-Rack
switches that connect the servers to the data center’s network fabric;
the aggregation tier, which consists of devices that interconnect the

Figure 1: Canonical 3-Tier data center topology.

ToR switches in the edge layer; and the core tier, which consists
of devices that connect the data center to the WAN. In smaller data
centers, the core tier and the aggregation tier are collapsed into one
tier, resulting in a 2-Tiered data center topology.
Now, we focus on topological structure and the key physical

properties of the constituent devices and links. We find that the
topology of the data center is often an accident of history. Some
have regular patterns that could be leveraged for traffic engineer-
ing strategies like Valiant Load Balancing [11], while most would
require either a significant upgrade or more general strategies.

Topology. Of the three university data centers, we find that two
(EDU1, EDU2) have evolved into a structured 2-Tier architecture.
The third (EDU3) uses a star-like topology with a high-capacity
central switch interconnecting a collection of server racks – a de-
sign that has been used since the inception of this data center. As
of this writing, the data center was migrating to a more structured
set-up similar to the other two.
EDU1 uses a topology that is similar to a canonical 2-Tier ar-

chitecture, with one key difference: while the canonical 2-Tier data
centers use Top-of-Rack switches, where each switch connects to a
rack of 20-80 servers or so, these two data centers utilize Middle-
of-Rack switches that connect a row of 5 to 6 racks with the po-
tential to connect from 120 to 180 servers. We find that similar
conclusions hold for EDU2 (omitted for brevity).
The enterprise data centers do not deviate much from textbook-

style constructions. In particular, the PRV1 enterprise data center
utilizes a canonical 2-Tier Cisco architecture. The PRV2 data cen-
ter utilizes a canonical 3-Tier Cisco architecture.
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Figure 2: Classification of network traffic to application using

Bro-Id. Each of the sniffers sees a very different mix of appli-

cations, even though the first 4 sniffers are located on different

switches in the same data center.

Note that we do not have the physical topologies from the cloud
data centers, although the operators of these data centers tell us that
these networks uniformly employ the 3-Tier textbook data center
architectures described in [11].

4. APPLICATIONS IN DATA CENTERS
We begin our “top-down” analysis of data centers by first focus-

ing on the applications they run. In particular, we aim to answer
the following questions: (1) What type of applications are running
within these data centers? and, (2) What fraction of traffic origi-
nated by a switch is contributed by each application?
We employ packet trace data in this analysis and use Bro-Id [26]

to perform application classification. Recall that we collected packet
trace data for 7 switches spanning 4 data centers, namely, the uni-
versity campus data centers, EDU1, EDU2, and EDU3, and a pri-
vate enterprise data center, PRV2. To lend further weight to our
observations, we spoke to the operators of each data center, includ-
ing the 6 for which we did not have packet trace data. The operators
provided us with additional information about the specific applica-
tions running in their data centers.
The type of applications found at each edge switch, along with

their relative traffic volumes, are shown in Figure 2. Each bar corre-
sponds to a sniffer in a data center, and the first 4 bars are from the 4
edges switches within the same data center (PRV2). In conversing
with the operators, we discovered that this data center hosts a mix-
ture of authentication services (labeled “LDAP”), 3-Tier Line-Of-
Business Web applications (captured in “HTTP” and “HTTPS”),
and custom home-brewed applications (captured in “Others”).
By looking at the composition of the 4 bars for PRV2, we can in-

fer how the services and applications are deployed across racks in
the data center. We find that each of the edge switches monitored
hosts a portion of the back-end for the custom applications (cap-
tured in “Others”). In particular, the rack corresponding to PRV24
appears to predominantly host custom applications that contribute
over 90% of the traffic from this switch. At the other switches,
these applications make up 50%, 25%, and 10% of the bytes, re-
spectively.
Further, we find that the secure portions of the Line-of-Business

Web services (labeled “HTTPS”) are hosted in the rack correspond-

ing to the edge switch PRV22, but not in the other three racks
monitored. Authentication services (labeled “LDAP”) are deployed
across the racks corresponding to PRV21 and PRV22, which makes
up a significant fraction of bytes from these switches (40% of the
bytes from PRV21 and 25% of the byes from PRV22). A small
amount of LDAP traffic (2% of all bytes on average) originates
from the other two switches, as well, but this is mostly request traf-
fic headed for the authentication services in PRV21 and PRV22.
Finally, the unsecured portions of the Line-of-Business (consist-

ing of help pages and basic documentation) are located predom-
inantly on the rack corresponding to the edge switch PRV23—
nearly 85% of the traffic originating from this rack is HTTP.
We also see some amount of file-system traffic (SMB) across all

the 4 switches (roughly 4% of the bytes on average).
Clustering of application components within this data center leads

us to believe that emerging patterns of virtualization and consol-
idations have not yet led to applications being spread across the
switches.
Next, we focus on the last 3 bars, which correspond to an edge

switch each in the 3 university data centers, EDU1, EDU2 and
EDU3. While these 3 data centers serve the same types of users we
observe variations across the networks. Two of the university data
centers, EDU2 and EDU3, seem to primarily utilize the network for
distributed file systems traffic, namely AFS and NCP—AFSmakes
up nearly all the traffic seen at the EDU3 switch, while NCP con-
stitutes nearly 80% of the traffic at the EDU2 switch. The traffic
at the last data center, EDU1, is split 60/40 between Web services
(both HTTP and HTTPS) and other applications such as file sharing
(SMB). The operator of this data center tells us that the data center
also hosts payroll and benefits applications, which are captured in
“Others.”
Note that we find file system traffic to constitute a more signifi-

cant fraction of the switches in the university data centers we mon-
itored compared to the enterprise data center.
The key take-aways from the above observations are that (1)

There is a wide variety of applications observed both within and
across data centers, such as “regular” and secure HTTP transac-
tions, authentication services, file-system traffic, and custom ap-
plications and (2) We observe a wide variation in the composition
of traffic originated by the switches in a given data center (see the
4 switches corresponding to PRV2). This implies that one cannot
assume that applications are placed uniformly at random in data
centers.
For the remaining data centers (i.e., PRV1, CLD1–5), where we

did not have access to packet traces, we used information from op-
erators to understand the application mix. CLD4 and CLD5 are
utilized for running MapReduce jobs, with each job, scheduled to
pack as many of its nodes as possible into the same rack to reduce
demand on the data center’s core interconnect. In contrast, CLD1,
CLD2, and CLD3 host a variety of applications, ranging from mes-
saging and Webmail to Web portals. Each of these applications is
comprised of multiple components with intricate dependencies, de-
ployed across the entire data center. For example, the Web portal
requires access to an authentication service for verifying users, and
it also requires access to a wide range of Web services from which
data is aggregated. Instant Messaging similarly utilizes an authen-
tication service and composes the user’s buddy list by aggregating
data spread across different data stores. The application mix found
in the data centers impacts the traffic results, which we look at next.
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5. APPLICATIONCOMMUNICATIONPAT-

TERNS
In the previous section, we described the set of applications run-

ning in each of the 10 data centers and observed that a variety of
applications run in the data centers and that their placement is non-
uniform. In this section, we analyze the aggregate network trans-
mission behavior of the applications, both at the flow-level and at
the finer-grained packet-level. Specifically, we aim to answer the
following questions: (1) What are the aggregate characteristics of
flow arrivals, sizes, and durations? and (2) What are the aggre-
gate characteristics of the packet-level inter-arrival process across
all applications in a rack — that is, how bursty are the transmis-
sion patterns of these applications? These aspects have important
implications for the performance of the network and its links.
As before, we use the packet traces in our analysis.

5.1 Flow-Level Communication Characteris-
tics

First, we examine the number of active flows across the 4 data
centers where we have packet-level data, EDU1, EDU2, EDU3,
and PRV2. To identify active flows, we use a long inactivity time-
out of 60 seconds (similar to that used in previous measurements
studies [19]).
In Figure 3(a), we present the distribution of the number of active

flows within a one second bin, as seen at seven different switches
within 4 data centers. We find that although the distribution varies
across the data centers, the number of active flows at any given
interval is less than 10,000. Based on the distributions, we group
the 7 monitored switches into two classes. In the first class are
all of the university data center switches EDU1, EDU2 and EDU3,
and one of the switches from a private enterprise, namely PRV24,
where the number of active flows is between 10 and 500 in 90% of
the time intervals. In the second class, are the remaining switches
from the enterprise, namely, PRV21, PRV22, and PRV23, where
the number of active flows is between 1,000 and 5,000 about 90%
of the time.
We examine the flow inter-arrival times in Figure 3(b). We find

that the time between new flows arriving at the monitored switch is
less than 10µs for 2-13% of the flows. For most of the switches in
PRV2, 80% of the flows have an inter-arrival time under 1ms. This
observation supports the results of a prior study [19] of a cloud data
center. However, we found that this observation does not hold for
the university data centers, where we see 80% of the flow inter-
arrival times were between 4ms and 40ms, suggesting that these
data centers have less churn than PRV2 and the previously stud-
ied cloud data center [19]. Among other issues, flow inter-arrival
time affects what kinds of processing can be done for each new
flow and the feasibility of logically centralized controllers for flow
placement. We return to these questions in Section 7.
Next, we examine the distributions of flow sizes and and lengths

in Figure 4(a) and (b), respectively. From Figure 4(a), we find that
flow sizes are roughly similar across all the studied switches and
data centers. Across the data centers, we note that 80% of the flows
are smaller than 10KB in size. Most of the bytes are in the top 10%
of large flows. From Figure 4(b), we find that for most of the data
centers 80% of the flows are less than 11 seconds long. These re-
sults support the observations made in prior a study [19] of a cloud
data center. However, we do note that the flows in EDU2 appear
to be generally shorter and smaller than the flows in the other data
centers. We believe this is due to the nature of the predominant
application that accounts for over 70% of the bytes at the switch.
Finally, in Figure 5, we examine the distribution of packet sizes

in the studied data centers. The packet sizes exhibit a bimodal pat-
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Figure 3: CDF of the distribution of the number of flows at

the edge switch (a) and the arrival rate for flows (b) in EDU1,

EDU2, EDU3, and PRV2.

tern, with most packet sizes clustering around either 200 Bytes and
1400 Bytes. Surprisingly, we found application keep-alive packets
as a major reason for the small packets, with TCP acknowledg-
ments, as expected, being the other major contributor. Upon close
inspection of the packet traces, we found that certain applications,
including MSSQL, HTTP, and SMB, contributed more small pack-
ets than large packets. In one extreme case, we found an appli-
cation producing 5 times as many small packets as large packets.
This result speaks to how commonly persistent connections occur
as a design feature in data center applications, and the importance
of continually maintaining them.

5.2 Packet-Level Communication Character-
istics

Wefirst examine the temporal characteristics of the packet traces.
Figure 6 shows a time-series of packet arrivals observed at one of
the sniffers in PRV2, and the packet arrivals exhibit an ON/OFF
pattern at both 15ms and 100ms granularities. We observed similar
traffic patterns at the remaining 6 switches as well.
Per-packet arrival process: Leveraging the observation that

traffic is ON/OFF, we use a packet inter-arrival time threshold to
identify the ON/OFF periods in the traces. Let arrival95 be the
95th percentile value in the inter-arrival time distribution at a par-
ticular switch. We define a periodon as the longest continual pe-
riod during which all the packet inter-arrival times are smaller than
arrival95. Accordingly, a periodoff is a period between two ON
periods. To characterize this ON/OFF traffic pattern, we focus on
three aspects: (i) the durations of the ON periods, (ii) the durations
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Figure 5: Distribution of packet size in the various networks.

of the OFF periods, and (iii) the packet inter-arrival times within
ON periods.
Figure 7(a) shows the distribution of inter-arrival times within

ON periods at one of the switches for PRV2. We bin the inter-
arrival times according to the clock granularity of 10µs. Note that
the distribution has a positive skew and a heavy tail. We attempted
to fit several heavy-tailed distributions and found that the lognormal
curve produces the best fit with the least mean error. Figure 7(b)
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Figure 6: ON/OFF characteristics: Time series of Data Center

traffic (number of packets per time) binned by two different

time scales.

Data center Off period ON period Interarrival Rate
DistributionDistribution Distribution

PRV 21 Lognormal Lognormal Lognormal

PRV 22 Lognormal Lognormal Lognormal

PRV 23 Lognormal Lognormal Lognormal

PRV 24 Lognormal Lognormal Lognormal

EDU1 Lognormal Weibull Weibull

EDU2 Lognormal Weibull Weibull

EDU3 Lognormal Weibull Weibull

Table 4: The distribution for the parameters of each of the ar-

rival processes of the various switches.

shows the distribution of the durations of ON periods. Similar to
the inter-arrival time distribution, this ON period distribution also
exhibits a positive skew and fits well with a lognormal curve. The
same observation can be applied to the OFF period distribution as
well, as shown in Figure 7(c).
We found qualitatively similar characteristics at the other 6

switches where packet traces were collected. However, in fitting a
distribution to the packet traces (Table 4), we found that only the
OFF period at the different switches consistently fit the lognormal
distribution. For the ON periods and interarrival rates, we found
that best distribution was either Weibull and lognormal, varying by
data center.
Our findings indicate that certain positive skewed and heavy-

tailed distributions can model data center switch traffic. This high-
lights a difference between the data center environment and the
wide area network, where the long-tailed Pareto distribution typ-
ically shows the best fit [27, 24]. The differences between these
distributions should be taken into account when attempting to apply
models or techniques from wide area networking to data centers.
Per-application arrival process: Recall that the data centers in

this analysis, namely, EDU1, EDU2, EDU3, and PRV2, are domi-
nated byWeb and distributed file-system traffic (Figure 2). We now
examine the arrival processes for these dominant applications to
see if they explain the aggregate arrival process at the correspond-
ing switches. In Table 5, we present the distribution that best fits
the arrival process for the dominant application. From this table,
we notice that the dominant applications in the universities (EDU1,
EDU2, EDU3), which account for 70–100% of the bytes at the
respective switches, are indeed characterized by identical heavy-
tailed distributions as the aggregate traffic. However, in the case
of two of the PRV2 switches (#1 and #3), we find that the domi-
nant application differs slightly from the aggregate behavior. Thus,
in the general case, we find that simply relying on the characteris-
tics of the most dominant applications is not sufficient to accurately
model the aggregate arrival processes at data center edge switches.
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Data center Off period Interarrival Rate ON period Dominant
Distribution Distribution DistributionApplications

PRV 21 Lognormal Weibull Exponential Others

PRV 22 Weibull Lognormal Lognormal LDAP

PRV 23 Weibull Lognormal Exponential HTTP

PRV 24 Lognormal Lognormal Weibull Others

EDU1 Lognormal Lognormal Weibull HTTP

EDU2 Lognormal Weibull Weibull NCP

EDU3 Lognormal Weibull Weibull AFS

Table 5: The distribution for the parameters of each of the ar-

rival processes of the dominant applications on each switch.
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Figure 7: CDF of the distribution of the arrival times of packets

at 3 of the switches in PRV2. The figure contains best fit curve

for lognormal, Weibull, Pareto, and Exponential distributions,

as well as the least mean errors for each.

Finally, we compare the observed distributions for HTTP applica-
tions in the data center against HTTP applications in the wide area
and find that the distribution of ON periods in the data center does
match observations made by others [7] in the WAN.
The take aways from our observations are that: (1) The num-

ber of active flows at a switch in any given second is, at most,
10,000 flows. However, new flows can arrive within rapid suc-
cession (10µs) of each other, resulting in high instantaneous arrival
rates; (2) Most flows in the data centers we examined are small in
size (≤ 10KB) and a significant fraction last under a few hun-
dreds of milliseconds; (3) Traffic leaving the edge switches in a

data center is bursty in nature and the ON/OFF intervals can be
characterized by heavy-tailed distributions; and (4) In some data
centers, the predominant application drives the aggregate sending
pattern at the edge switch. In the general case, however, simply
focusing on dominant applications is insufficient to understand the
process driving packet transmission into the data center network.
In the next section, we analyze link utilizations at the various

layers within the data center to understand how the bursty nature of
traffic impacts the utilization and packet loss of the links at each of
the layers.

6. NETWORK COMMUNICATION

PATTERNS
In the two previous sections, we examined the applications em-

ployed in each of the 10 data centers, their placement, and trans-
mission patterns. In this section, we examine, with the goal of
informing data center traffic engineering techniques, how existing
data center applications utilize the interconnect. In particular, we
aim to answer the following questions: (1) To what extent does
the current application traffic utilize the data center’s interconnect?
For example, is most traffic confined to within a rack or not? (2)
What is the utilization of links at different layers in a data center?
(3) How often are links heavily utilized and what are the proper-
ties of heavily utilized links? For example, how long does heavy
utilization persist on these links, and do the highly utilized links
experience losses? (4) To what extent do link utilizations vary over
time?

6.1 Flow of Traffic
We start by examining the relative proportion of traffic generated

by the servers that stays within a rack (Intra-Rack traffic) versus
traffic that leaves its rack for either other racks or external des-
tinations (Extra-Rack traffic). Extra-Rack traffic can be directly
measured, as it is the amount of traffic on the uplinks of the edge
switches (i.e., the “Top-of-Rack” switches). We compute Intra-
Rack traffic as the difference between the volume of traffic gen-
erated by the servers attached to each edge switch and the traffic
exiting edge switches.
In Figure 8, we present a bar graph of the ratio of Extra-Rack to

Intra-Rack traffic in the 10 data centers we studied. We note that
a predominant portion of server-generated traffic in the cloud data
centers CLD1–5—nearly, 75% on average—is confined to within
the rack in which it was generated.
Recall from Section 4 that only two of these 5 data centers,

CLD4 and CLD5, run MapReduce style applications, while the
other three run amixture of different customer-facingWeb services.
Despite this key difference in usage, we observe surprisingly little
difference in the relative proportions of Intra-Rack and Extra-Rack
traffic. This can be explained by revisiting the nature of applica-
tions in these data centers: as stated in Section 4, the services run-
ning in CLD1–3 have dependencies spread across many servers in
the data center. The administrators of these networks try to colo-
cate applications and dependent components into the same racks to
avoid sharing a rack with other applications/services. Low Extra-
Rack traffic is a side-effect of this artifact. In the case of CLD4 and
CLD5, the operators assign MapReduce jobs to co-located servers
for similar reasons. However, fault tolerance requires placing re-
dundant components of the application and data storage into dif-
ferent racks, which increases the Extra-Rack communication. Our
findings of high Intra-Rack traffic within data centers supports ob-
servations made by others [19], where the focus was on cloud data
centers running MapReduce.
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Figure 8: The ratio of Extra-Rack to Intra-Rack traffic in the

data centers.

Next, we focus on the enterprise and university data centers.
With the exception of EDU1, these appear to be both very diffe-
rent from the cloud data centers and qualitatively similar to each
other: at least 50% of the server-originated traffic in the data cen-
ters leaves the racks, compared with under 25% for the cloud data
centers. These data centers run user-facing applications, such as
Web services and file servers. While this application mix is simi-
lar to CLD1–3 discussed above, the Intra/Extra rack usage patterns
are quite different. A possible reason for the difference is that the
placement of dependent services in enterprise and campus data cen-
ters may not be as optimized as the cloud data centers.

6.2 Link Utilizations vs Layer
Next, we examine the impact of the Extra-Rack traffic on the

links within the interconnect of the various data centers. We ex-
amine link utilization as a function of location in the data center
topology. Recall that all 10 data centers employed 2-Tiered or 3-
Tiered tree-like networks.
In performing this study, we studied several hundred 5-minute

intervals at random for each data center and examined the link uti-
lizations as reported by SNMP. In Figure 9, we present the utiliza-
tion for links across different layers in the data centers for one such
representative interval.
In general, we find that utilizations within the core/aggregation

layers are higher than those at the edge; this observation holds
across all classes of data centers. These findings support observa-
tions made by others [3], where the focus was on cloud data centers.
A key point to note, not raised by prior work [3], is that across

the various data centers, there are differences in the tail of the dis-
tributions for all layers–in some data centers, such as CLD4, there
is a greater prevalence of high utilization links (i.e., utilization 70%
or greater) especially in the core layer, while in others there are no
high utilization links in any layer (e.g., EDU1). Next, we examine
these high utilization links in greater depth.

6.3 Hot-spot Links
In this section, we study the hot-spot links—those with 70%

or higher utilization—unearthed in various data centers, focusing
on the persistence and prevalence of hot-spots. More specifically,
we aim to answer the following questions: (1) Do some links fre-
quently appear as hot-spots? How does this result vary across lay-
ers and data centers? (2) How does the set of hot-spot links in
a layer change over time? (3) Do hot-spot links experience high
packet loss?
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Figure 9: CDF of link utilizations (percentage) in each layer.

6.3.1 Persistence and Prevalence

In Figure 10, we present the distribution of the percentage of
time intervals that a link is a hot-spot. We note from Figures 10(a)
and (b) that very few links in either the edge or aggregation lay-
ers are hot-spots, and this observations holds across all data centers
and data center types. Specifically, only 3% of the links in these
two layers appear as a hot-spot for more than 0.1% of time inter-
vals. When edge links are congested, they tend to be congested
continuously, as in CLD2, where a very small fraction of the edge
links appear as hot-spots in 90% of the time intervals.
In contrast, we find that the data centers differ significantly in

their core layers (Figure 10(c)). Our data centers cluster into 3 hot-
spot classes: (1) Low Persistence-Low Prevalence: This class of
data centers comprises those where the hot-spots are not localized
to any set of links. This includes PRV2, EDU1, EDU2, EDU3,
CLD1, and CLD3, where any given core link is a hot-spot for no
more than 10% of the time intervals; (2) High Persistence-Low
Prevalence: The second group of data centers is characterized by
hot-spots being localized to a small number of core links. This in-
cludes PRV1 and CLD2 where 3% and 8% of the core links, respec-
tively, each appear as hot-spots in> 50% of the time intervals; and
(3) High Persistence-High Prevalence: Finally, in the last group
containing CLD4 and CLD5, a significant fraction of the core links
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Figure 10: A CDF of the fraction of times that links in the var-

ious layers are hot-spots.

appear persistently as hot-spots. Specifically, roughly 20% of the
core links are hot-spots at least 50% of the time each. Note that
both CLD4 and CLD5 run MapReduce applications.
Next, we examine the variation in the fraction of the core links

that are hot-spots versus time. In Figure 13, we show our observa-
tions for one data center in each of the 3 hot-spot classes just de-
scribed. From this figure, we observe that each class has a different
pattern. In the low persistence-low prevalence data center, CLD1,
we find that very few hot-spots occur over the course of the day, and
when they do occur, only a small fraction of the core links emerge
as hot-spots (less than 0.002%). However, in the high persistence
classes, we observe that hot-spots occur throughout the day. In-
terestingly, with the high persistence-high prevalence data center,
CLD5, we observe that the fraction of links that are hot-spots is
affected by the time of day. Equally important is that only 25% of
the core links in CLD5 are ever hot-spots. This suggests that, de-
pending on the traffic matrix, the remaining 75% of the core links
can be utilized to offload some traffic from the hot-spot links.

6.3.2 Hot-spots and Discards

Finally, we study loss rates across links in the data centers. In
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Figure 11: A CDF of the number of bits lost across the various

layers.

particular, we start by examining the discards for the set of hot-
spot links. Surprisingly, we find that none of the hot-spot links
experience loss. This implies that in the data centers studied, loss
does not correlate with high utilization.
To understand where losses are prevalent, we examine Figures 11

and 12 that display the loss rates and link utilization for the links
with losses. In the core and aggregation, all the links with losses
have less than 30% average utilization, whereas at the edge, the
links with losses have nearly 60% utilization. The fact that links
with relatively low average utilization contain losses indicates that
these links experience momentary bursts that do not persist for a
long enough period to increase the average utilization. These mo-
mentary bursts can be explained by the bursty nature of the traffic
(Section 5).

6.4 Variations in utilization
In this section, we examine if the utilizations vary over time and

whether or not link utilizations are stable and predictable.
We examined the link utilization over a one week period and

found that diurnal patterns exist in all data centers. As an example,
Figure 14 presents the utilization for input and output traffic at a
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Figure 12: A CDF of the utilization of links with discards.

router port in one of the cloud data centers. The 5-day trace shows
diurnal and pronounced weekend/weekday variations.
To quantify this variation, we examine the difference between

peak and trough utilizations for each link across the studied data
centers. In Figure 15, we present the distribution of peak versus
trough link utilizations across the various data centers. The x-axis
is in percentage. We note that edge links in general show very
little variation (less than 10% for a least 80% of edge links). The
same is true for links in the aggregation layer (where available),
although we see slightly greater variability. In particular, links in
the aggregation layer of PRV2 show significant variability, whereas
those in the other data centers do not (variation is less than 10% for
a least 80% of edge links). Note that links with a low degree of
variation can be run at a slower speed based on expected traffic
volumes. This could result in savings in network energy costs [14].
The variation in link utilizations at the edge/aggregation are sim-

ilar across the studied data centers. At the core, however, we are
able to distinguish between several of the data centers. While most
have low variations (less than 1%), we find that two cloud data
centers (CLD4 and CLD5) have significant variations. Recall that
unlike the other cloud data centers, these two cloud data centers
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run primarily MapReduce-style jobs. The large variations reflect
differences between the periods when data is being reduced from
the worker nodes to the master and other periods.
To summarize, the key take-aways from our analysis of network

traffic patterns are as follows: (1) In cloud data centers, a signifi-
cant fraction of traffic stays inside the rack, while the opposite is
true for enterprise and campus data centers; (2) On average, the
core of the data center is the most utilized layer, while the data
center edge is lightly utilized; (3) The core layers in various data
centers do contain hot-spot links. In some of the data centers, the
hot-spots appear only occasionally. In some of the cloud data cen-
ters, a significant fraction of core links appear as hot-spots a large
fraction of the time. At the same time, the number of core links
that are hot-spots at any given time is less than 25%; (4) Losses
are not correlated with links with persistently high utilizations. We
observed losses do occur on links with low average utilization indi-
cating that losses are due to momentary bursts; and (5) In general,
time-of-day and day-of-week variation exists in many of the data
centers. The variation in link utilization is most significant in the
core of the data centers and quite moderate in other layers of the
data centers.
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Figure 15: Difference between the peak and trough utilization.

7. IMPLICATIONS FOR DATA CENTER

DESIGN

7.1 Role of Bisection Bandwidth
Several proposals [1, 22, 11, 2] for new data center network ar-

chitectures attempt to maximize the network bisection bandwidth.
These approaches, while well suited for data centers, which run
applications that stress the network’s fabric with all-to-all traffic,
would be unwarranted in data centers where the bisection band-
width is not taxed by the applications. In this section, we re-evaluate
the SNMP and topology data captured from the 10 data centers and
examine whether the prevalent traffic patterns are likely to stress the
existing bisection bandwidth. We also examine how much of the
existing bisection bandwidth is needed at any given time to support
the prevalent traffic patterns.
Before explaining how we address these questions, we provide

a few definitions. We define the bisection links for a tiered data
center to be the set of links at the top-most tier of the data center’s
tree architecture; in other words, the core links make up the bisec-
tion links. The bisection capacity is the aggregate capacity of these
links. The full bisection capacity is the capacity that would be re-
quired to support servers communicating at full link speeds with
arbitrary traffic matrices and no oversubscription. The full bisec-
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tion capacity can be computed as simply the aggregate capacity of
the server NICs.
Returning to the questions posed earlier in this section, we use

SNMP data to compute the following: (1) the ratio of the current
aggregate server-generated traffic to the current bisection capacity
and (2) the ratio of the current traffic to the full bisection capacity.
In doing so, we make the assumption that the bisection links can
be treated as a single pool of capacity from which all offered traffic
can draw. While this may not be true in all current networks, it
allows us to determine whether more capacity is needed or rather
better use of existing capacity is needed (for example, by improving
routing, topology, or the migration of application servers inside the
data center).
In Figure 16, we present these two ratios for each of the data

centers studied. Recall (from Table 2) that all data centers are over-
subscribed, meaning that if all servers sent data as fast as they can
and all traffic left the racks, then the bisection links would be fully
congested (we would expect to find utilization ratios over 100%).
However, we find in Figure 16 that the prevalent traffic patterns are
such that, even in the worst case where all server-generated traffic
is assumed to leave the rack hosting the server, the aggregate output
from servers is smaller than the network’s current bisection capac-
ity. This means even if the applications were moved around and
the traffic matrix changed, the current bisection would still be more
than sufficient and no more than 25% of it would be utilized across
all data centers, including the MapReduce data centers. Finally, we
note that the aggregate output from servers is a negligible fraction
of the ideal bisection capacity in all cases. This implies that should
these data centers be equipped with a network that provides full bi-
section bandwidth, at least 95% of this capacity would go unused
and be wasted by today’s traffic patterns.
Thus, the prevalent traffic patterns in the data centers can be sup-

ported by the existing bisection capacity, even if applications were
placed in such a way that there was more inter-rack traffic than
exists today. This analysis assumes that the aggregate capacity of
the bisection links forms a shared resource pool from which all
offered traffic can draw. If the topology prevents some offered traf-
fic from reaching some links, then some links can experience high
utilization while others see low utilization. Even in this situation,
however, the issue is one of changing the topology and selecting
a routing algorithm that allows offered traffic to draw effectively
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from the existing capacity, rather than a question of adding more
capacity. Centralized routing, discussed next, could help in con-
structing the requisite network paths.

7.2 Centralized Controllers in Data Centers
The architectures for several proposals [1, 22, 12, 2, 14, 21, 4,

18, 29] rely in some form or another on a centralized controller
for configuring routes or for disseminating routing information to
endhosts. A centralized controller is only practical if it is able to
scale up to meet the demands of the traffic characteristics within the
data centers. In this section, we examine this issue in the context of
the flow properties that we analyzed in Section 5.
In particular, we focus on the proposals (Hedera [2], MicroTE [4]

and ElasticTree [14]) that rely on OpenFlow and NOX [15, 23]. In
an OpenFlow architecture, the first packet of a flow, when encoun-
tered at a switch, can be forwarded to a central controller that deter-
mines the route that the packet should follow in order to meet some
network-wide objective. Alternatively, to eliminate the setup delay,
the central controller can precompute a set of network paths that
meet network-wide objectives and install them into the network at
startup time.
Our empirical observations in Section 5, have important implica-

tions for such centralized approaches. First, the fact that the number
of active flows is small (see Figure 4(a)) implies that switches en-
abled with OpenFlow can make do with a small flow table, which
is a constrained resource on switches today.
Second, flow inter-arrival times have important implications for

the scalability of the controller. As we observed in Section 5, a sig-
nificant number of new flows (2–20%) can arrive at a given switch
within 10µs of each other. The switch must forward the first pack-
ets of these flows to the controller for processing. Even if the data
center has as few as a 100 edge switches, in the worst case, a con-
troller can see 10 new flows per µs or 10 million flows per sec-
ond. Depending on the complexity of the objective implemented at
the controller, computing a route for each of these flows could be
expensive. For example, prior work [5] showed a commodity ma-
chine computing a simple shortest path for only 50K flow arrivals
per second. Thus, to scale the throughput of a centralized con-
trol framework while supporting complex routing objectives, we
must employ parallelism (i.e., use multiple CPUs per controller and
multiple controllers) and/or use faster but less optimal heuristics to
compute routes. Prior work [28] has shown, through parallelism,
the ability of a central controller to scale to 20 million flows per
second.
Finally, the flow duration and size also have implications for the

centralized controller. The lengths of flows determine the relative
impact of the latency imposed by a controller on a new flow. Recall
that we found that most flows last less than 100ms. Prior work [5]
showed than it takes reactive controllers, which make decisions at
flow start up time, approximately 10ms to install flow entries for
new flows. Given our results, this imposes a 10% delay overhead
on most flows. Additional processing delay may be acceptable
for some traffic, but might be unacceptable for other kinds. For
the class of workloads that find such a delay unacceptable, Open-
Flow provides a proactive mechanism that allows the controllers,
at switch start up time, to install flow entries in the switches. This
proactive mechanism eliminates the 10ms delay but limits the con-
troller to proactive algorithms.
In summary, it appears the number and inter-arrival time of data

center flows can be handled by a sufficiently parallelized imple-
mentation of the centralized controller. However, the overhead of
reactively computing flow placements is a reasonable fraction of
the length of the typical flow.

8. SUMMARY
In this paper, we conducted an empirical study of the network

traffic of 10 data centers spanning three very different categories,
namely university campus, private enterprise data centers, and cloud
data centers running Web services, customer-facing applications,
and intensive Map-Reduce jobs. To the best of our knowledge, this
is the broadest-ever large-scale measurement study of data centers.
We started our study by examining the applications run within

the various data centers. We found that a variety of applications
are deployed and that they are placed non-uniformly across racks.
Next, we studied the transmission properties of the applications in
terms of the flow and packet arrival processes at the edge switches.
We discovered that the arrival process at the edge switches is
ON/OFF in nature where the ON/OFF durations can be character-
ized by heavy-tailed distributions. In analyzing the flows that con-
stitute these arrival process, we observed that flows within the data
centers studied are generally small in size and several of these flows
last only a few milliseconds.
We studied the implications of the deployed data center applica-

tions and their transmission properties on the data center network
and its links. We found that most of the server generated traffic in
the cloud data centers stays within a rack, while the opposite is true
for campus data centers. We found that at the edge and aggrega-
tion layers, link utilizations are fairly low and show little variation.
In contrast, link utilizations at the core are high with significant
variations over the course of a day. In some data centers, a small
but significant fraction of core links appear to be persistently con-
gested, but there is enough spare capacity in the core to alleviate
congestion. We observed losses on the links that are lightly uti-
lized on average and argued that these losses can be attributed to
the bursty nature of the underlying applications run within the data
centers.
On the whole, our empirical observations can help inform data

center traffic engineering and QoS approaches, as well as recent
techniques for managing other resources, such as data center net-
work energy consumption. To further highlight the implications of
our study, we re-examined recent data center proposals and archi-
tectures in light of our results. In particular, we determined that full
bisection bandwidth is not essential for supporting current applica-
tions. We also highlighted practical issues in successfully employ-
ing centralized routing mechanisms in data centers.
Our empirical study is by no means all-encompassing. We rec-

ognize that there may be other data centers in the wild that may or
may not share all the properties that we have observed. Our work
points out that it is worth closely examining the different design and
usage patterns, as there are important differences and commonali-
ties.
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