
Revisiting the Case for a Minimalist Approach
for Network Flow Monitoring

Vyas Sekar
Carnegie Mellon University

Pittsburgh, PA

vyass@cs.cmu.edu

Michael K Reiter
UNC Chapel Hill
Chapel Hill, NC

reiter@cs.unc.edu

Hui Zhang
Carnegie Mellon University

Pittsburgh, PA

hzhang@cs.cmu.edu

ABSTRACT

Network management applications require accurate estimates of a
wide range of flow-level traffic metrics. Given the inadequacy of
current packet-sampling-based solutions, several application-specific
monitoring algorithms have emerged. While these provide bet-
ter accuracy for the specific applications they target, they increase
router complexity and require vendors to commit to hardware prim-
itives without knowing how useful they will be to meet the needs
of future applications.

In this paper, we show using trace-driven evaluations that such
complexity and early commitment may not be necessary. We re-
visit the case for a “minimalist” approach in which a small num-
ber of simple yet generic router primitives collect flow-level data
from which different traffic metrics can be estimated. We demon-
strate the feasibility and promise of such a minimalist approach
using flow sampling and sample-and-hold as sampling primitives
and configuring these in a network-wide coordinated fashion using
cSamp. We show that this proposal yields better accuracy across a
collection of application-level metrics than dividing the same mem-
ory resources across metric-specific algorithms. Moreover, because
a minimalist approach enables late binding to what application-
level metrics are important, it better insulates router implementa-
tions and deployments from changing monitoring needs.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network Opera-
tions—network monitoring, network management

General Terms

Measurement, Management

Keywords

Traffic Monitoring, Sampling, Data Streaming, Anomaly Detection

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’10, November 1–3, 2010, Melbourne, Australia.
Copyright 2010 ACM 978-1-4503-0057-5/10/11 ...$10.00.

1. INTRODUCTION
Flow monitoring supports vital network management tasks such

as traffic engineering [18], anomaly detection [28, 29], account-
ing [14, 17], identifying and analyzing end-user applications [12,
22], understanding traffic structure [43], detecting worms, scans,
and botnet activities [44, 41, 35], and forensic analysis [42]. These
require accurate estimates of different traffic metrics relevant to
each application.

High traffic rates exceed the monitoring capabilities of routers,1

and since traffic is scaling at least as fast as routers’ capabilities,
some form of sampling or data reduction is necessary in commod-
ity solutions. (There are high-end solutions for full packet cap-
ture [3]. These are expensive and require specialized instrumenta-
tion.) The de-facto standard is NetFlow [11, 2] which uses packet
sampling. Each packet is sampled with some probability and the
selected packets are aggregated into flows.2 NetFlow-style moni-
toring is sufficient for applications such as traffic volume estimation
that require only a coarse view of traffic, but several studies have
shown the inadequacy of packet sampling for many of the fine-
grained monitoring applications mentioned earlier (e.g., see [34,
21, 15, 26, 7, 35, 17]).

A consequence of these results is that several research efforts
have focused on developing application-specific monitoring tech-
niques. This is exemplified by the proliferation of data stream-
ing algorithms for computing specific traffic metrics, e.g., comput-
ing the flow size distribution [26], entropy estimation [30], super-
spreader detection [41], degree histogram estimation [44], change
detection [25], and so on.

While this body of work has made valuable algorithmic contribu-
tions, this shift to application-specific approaches is undesirable for
two practical reasons. First, having many application-specific pro-
posals increases the implementation complexity and possibly the
resource requirements of routers. Second, the set of applications
is a moving target, as both normal and anomalous traffic patterns
change over time. This requires router vendors and network man-
agers to commit to a fixed set of application-level metrics without
knowing if these will meet future requirements.

In this work, we reflect on these developments and ask a funda-
mental question:

Is such complexity and early commitment necessary?

Are there simpler alternatives that can provide the requisite fidelity

and generality?

1Our arguments apply to non-router-based monitoring solutions as
well.
2A flow is a sequence of packets with the same IP 5-tuple 〈 srcip,
dstip, srcport, dstport, protocol 〉.

328

Figure 1: A minimalist approach runs a few collection algo-

rithms. Applications can use the collected data later (pos-

sibly offline). NetFlow/packet sampling is a minimalist ap-

proach, but it is not well-suited for many applications. An

application-specific architecture implements many focused al-

gorithms. These work well for the specific applications, but in-

crease complexity and are not robust to changing demands. We

demonstrate a minimalist alternative that performs favorably

compared to application-specific approaches over a wide spec-

trum of applications.

Approach and Intuition: We revisit the case for a minimalist ap-
proach that retains the simplicity of NetFlow, where routers only
need to support a few monitoring primitives, but still provide cov-
erage over a wide spectrum of applications.

To understand how we can achieve this, we can think of each
monitoring application as being composed of two logical phases:
(1) a collection phase that needs to operate at line rates and (2) an
estimation phase to compute different traffic metrics that need not
strictly work at line rates. Application-specific alternatives tightly
couple these two components, only retaining counters and statistics
relevant to a specific application context (Figure 1). In contrast, we
envision a minimalist approach that decouples the collection and
estimation phases as much as possible.

A key question is whether such an approach can provide estima-
tion accuracy comparable to application-specific alternatives. One
rationale to suggest that it can, is that the primary bottleneck for
monitoring is keeping counters in fast memory (SRAM). Instead
of splitting the available memory across different applications, we
can aggregate it, and run a few simple primitives with high-enough
sampling rates to obtain accurate estimates of traffic metrics for a
wide spectrum of applications. In other words, when we look at
each application in isolation, application-specific strategies are ap-
pealing. However, when we consider a portfolio of applications in
aggregate, a minimalist approach might be a better alternative.

Contributions and Implications: Our goal is not to design an op-
timal minimalist approach. Rather, our objective is to establish a
feasible instance.

We present a practical minimalist approach in Section 4 that
combines sample-and-hold [17], flow sampling [21], and cSamp [39].
Our choice of these specific primitives is guided by the understand-
ing that monitoring applications fall into two broad classes that ana-

lyze (1) volume structure (e.g., traffic engineering) or (2) communi-

cation structure (e.g., security applications). Flow sampling is ide-
ally suited for the latter class [21, 34, 32] and sample-and-hold for
the former [17]. cSamp provides a framework to efficiently lever-
age the available monitoring resources at routers to meet network-
wide monitoring goals.

We use trace-driven analysis to evaluate this design against sev-
eral application-specific approaches (Section 6): detecting heavy
hitters [17], superspreaders [41], and large traffic changes [25];
computing entropy [30] and the outdegree histogram [44]; and es-
timating the flow size distribution [26]. When our approach has the
same total memory resources as that used by the different application-
specific algorithms in aggregate, it provides comparable or bet-
ter estimation accuracy across the entire spectrum of applications.
Moreover, by delaying the binding to specific applications, it en-
ables computation of not-yet-conceived measures that will be in-
teresting in the future.

Our work shows the promise of a minimalist approach even with
a simple combination of existing techniques. We believe that this
has significant implications for router vendors, network operators,
and measurement researchers. First, it can reduce router complex-
ity without compromising a vendor’s ability to satisfy its customers’
demands. Second, it helps insulate network deployments from the
changing needs of monitoring applications. Finally, we hope that
these results motivate further research in developing better mini-
malist primitives and estimation algorithms, and in understanding
their fidelity for different applications.

2. BACKGROUND AND RELATED WORK

Packet sampling: Router vendors today use uniform packet sam-
pling [11]: a router selects a subset of packets, and aggregates
the sampled packets into flow reports. However, packet sampling
has inherent limitations. There are known biases toward sampling
larger flows (e.g., [21, 26, 34]) and several studies have questioned
its accuracy for many management applications (e.g., see [34, 21,
15, 26, 7, 35, 17]).

Application-specific approaches: The limitations of packet sam-
pling have motivated many application-specific data streaming al-
gorithms. The high-level approach is to use a small number of
SRAM counters that track traffic statistics pertinent to each appli-
cation and then estimate the relevant application-level metrics from
these counters. These include algorithms for estimating the flow
size distribution [26, 36], identifying heavy hitters [17], entropy es-
timation [30], superspreader detection [41], degree histogram esti-
mation [44], and change detection [25]. However, these approaches
are tightly coupled to the specific applications and report summary
statistics only relevant to these applications. Thus, it is difficult to
estimate other measures of interest from these reports. Therefore,
these lack the generality to serve as minimalist primitives.

Some data structures (e.g., sketches [13]) provide more general-
ity. However, these have two limitations. First, they are designed
primarily for coarse volume queries and less suited for fine-grained
tasks like entropy estimation and superspreader detection. Second,
sketches operate with a specific “flowkey” over one or more fields
of the IP 5-tuple (srcip, dstip, srcport, dstport, protocol). Each
flowkey of interest requires a separate instance. However, it is of-
ten necessary to analyze combinations of two or more fields for
diagnostic purposes (e.g., for investigating anomalies). Having a
separate instance for each combination incurs high overhead. Fur-
thermore, this needs prior knowledge of which flowkeys will be
useful, which may not be known until after the operator begins to
investigate specific events.

329

Selective sampling: Some approaches assign different sampling
rates for different classes of packets [27, 35]. Others only log flows
with pre-specified patterns (e.g., [45, 1, 4, 33, 8]). While these ap-
proaches provide some flexibility, they need to know the specific
classes and sampling rates to meet the applications’ requirements.
In contrast, we envision a minimalist approach that is largely ag-
nostic to the specific types of analyses that may be performed.

Network-wide measurements: Many studies have stressed the
importance of network-wide measurements to meet operational re-
quirements as applications and attacks become more distributed [18,
28, 29]. For example, understanding peer-to-peer traffic [12], de-
tecting botnets [35] and hit-list worms [32], understanding DDoS
attacks [38], and network forensics [42] inherently require a network-
wide view aggregated from multiple vantage points. In this respect,
recent proposals show the benefits of moving beyond router-centric
solutions to network-wide monitoring solutions [9, 39].

3. DESIGN CONSIDERATIONS
Given this background, we synthesize key requirements for a

flow monitoring architecture and derive guiding principles for a
minimalist approach, echoing the charter of the IETF PSAMP work-
ing group [5].

3.1 Requirements

Minimize router complexity: Given the hardware and develop-
ment costs involved in modern router design, we want to keep
router implementations as simple as possible.

Generalize to many applications: The monitoring infrastructure
should cover a wide spectrum of applications and ideally be robust
to future application needs.

Enable diagnostics: The monitoring architecture should support
diagnostic “drill-down” tasks; e.g., by providing the capability to
give different views into traffic structure.

Provide network-wide views: The monitoring architecture should
provide network-wide capabilities as these are increasingly crucial
for several aspects of network management and traffic analysis.

3.2 Design Principles

A few, simple, and generic primitives: A natural way to reduce
router complexity is to have a few primitives that are easy to imple-
ment but powerful enough to support many management tasks.

Decouple collection and computation: Now, how can we provide
generality and support diagnostics with a few monitoring primi-
tives? We believe that this best achieved by decoupling the collec-
tion and computation phases involved in the monitoring tasks. Note
that this is already implicit in network operations today: routers ex-
port NetFlow reports to a (logically) central collector and operators
analyze this data. We retain this operational model; routers run
some collection algorithms and export the collected flow reports.
Once we have the flow-level reports, we can compute any traffic
metric of interest and provide different views required for further
diagnosis.

Network-wide resource management: To provide network-wide
capabilities, we need a framework that assigns monitoring respon-
sibilities across routers to satisfy network-wide monitoring goals.
At the same time, this framework should be resource-aware and
respect the constraints (e.g., SRAM capacity) of individual routers.

3.3 Challenges
Given the above considerations, two questions remain:

1. Concrete Design: What primitives should be implemented
on routers to support a range of applications? How should
monitoring responsibilities be assigned to meet network-wide
measurement goals?

2. Performance: Does the intuitive appeal of a minimalist ap-
proach translate into quantitative benefits for a wide spec-
trum of applications?

In addressing these challenges, our goal is not to look for an
“optimal” minimalist approach. (In fact, it is not clear if we can
formally reason about optimality without committing to a fixed set
of applications.) Rather, we want to look for a feasible instance
that covers a broad spectrum of applications. We present one such
proposal in the next section.

4. ARCHITECTURE
The first challenge above requires that we choose a small set

of generic collection primitives that runs on each router and de-
sign a framework to manage them intelligently across a network
of routers. Our specific proposal combines three ideas: flow sam-
pling [21] and sample-and-hold [17] as single router sampling al-
gorithms, and cSamp [39] for network-wide management. Keys et
al. designed a system for providing traffic summaries and detect-
ing “resource hogs” [23] using a combination of flow sampling and
sample-and-hold, similar to our approach. We extend their work in
two significant ways. First, we show how to combine these primi-
tives with the network-wide capabilities of cSamp [39] in contrast
to the single-vantage-point view in their work. Second, we look
beyond simple traffic summaries and demonstrate that this combi-
nation can support a much wider range of applications.

4.1 Router Primitives

Choice of primitives: Flow monitoring applications can be divided
into two broad classes: (1) those that require an understanding of
volume structure; e.g., heavy-hitter detection and traffic engineer-
ing that require an understanding of the number of packets/bytes
per-port or per-src and (2) those that depend on the communication

structure; e.g., security applications and anomaly detection appli-
cation that require an understanding of “who-talks-to-whom”. Our
choice of primitives is guided by these two broad classes. Flow
sampling is well suited for security and anomaly detection appli-
cations that analyze communication structure [21, 34, 32]. Sim-
ilarly, sample-and-hold is well suited for traffic engineering and
accounting applications that analyze volume structure [17]. Thus,
these two primitives effectively complement each other in their ca-
pabilities. We do note that there are other proposals for capturing
the communication structure (e.g., [35, 27]) and volume structure
(e.g., [13, 15, 24]), and flow sampling and sample-and-hold may
not necessarily be the optimal primitives. Our goal is to pick a
feasible point in this design space and quantitatively compare it to
application-specific approaches.

For the following discussion, a flow is defined by the 5-tuple:
〈srcip, dstip, srcport, dstport, protocol〉. We use flow sampling and
sample-and-hold at this 5-tuple granularity. The collected flows can
be sliced-and-diced after the fact by projecting from this general
definition to others (e.g., per destination port, per source address).

Sample-and-Hold (SH): Sample-and-hold (SH) [17] keeps near-
exact counts of “heavy hitters” — flows with high packet counts.
SH works as follows. For each packet, the router checks if it is

330

tracking this packet’s flowkey, defined over one or more fields of
the IP 5-tuple. If yes, the router updates that counter. If not, the
flowkey for this packet is selected with probability p, and the router
keeps an exact count for this selected flowkey subsequently. Since
this requires per-packet counter updates, the counters are kept in
SRAM [17].

To configure SH, we specify the flowkey(s) (e.g., srcport, sr-
cip, or 5-tuple), the anticipated total number of packets for a spe-
cific time interval (numpkts), and the number of flows that can be
logged (L) depending on the SRAM constraint. To ensure that the
number of flow entries created does not exceed the SRAM capac-
ity, we use numpkts in configuring SH to set the packet sampling
probability p = L

numpkts
.3 In our minimalist design, we use one

instance of SH and configure it to operate at the 5-tuple granularity.

Hash-based flow sampling (FS): Flow sampling (FS) picks flows
rather than packets at random [21]. One way to implement FS is
as follows. Each router has a sampling manifest — a table of one
or more hash ranges indexed using a key derived from each packet
header. On receiving a packet, the router computes the hash of the
packet’s 5-tuple (i.e., the flowkey). Next, it selects the appropriate
hash range from the manifest and selects the flow if the hash falls
within this range. If the flow is selected, then the router uses its
hash as an index into a table of flows and updates the byte and
packet counters for the flow. The hash function maps the input 5-
tuple uniformly into the interval [0, 1]. Thus, the size of each hash
range determines the flow sampling rate for each category of flows
in the manifest.

Similar to SH, FS requires per-packet table lookups; the flow ta-
ble must therefore be implemented in SRAM. It is possible to add
a packet sampling stage to make DRAM implementations possi-
ble [24]. For simplicity, we assume that the counters are stored in
SRAM.

4.2 Resource Management
Having chosen FS and SH as our minimalist primitives, we ad-

dress the following question. Given a fixed amount of SRAM avail-
able for monitoring on each router, how should we divide it be-
tween these primitives?

Combining FS-SH on a single router: Consider a single router
with a fixed amount of SRAM that can hold L flow counters. A
simple way to split L is to give a fraction f to FS and the remaining
1− f to SH. We show in Section 6 that f ≈ 0.8 is a good choice.

Network-wide case: The above split works for the single router
case. Next, we see how we can manage the monitoring resources
across a network of routers. Network-wide management tasks are
typically specified in terms of Origin-Destination pairs, specified
by an ingress and egress router (or PoP). OD-pairs are convenient
abstractions that naturally fit many of the objectives (e.g., traffic
engineering) and constraints (e.g., routing paths, traffic matrix) in
network management. A natural extension of the single router hy-
brid primitive to the network-wide case is to consider the resource
split per OD-pair [9, 39].

Here, we observe a key difference between FS and SH. It is pos-
sible to coordinate FS instances by assigning non-overlapping re-
sponsibilities across routers on a path [39]. However, because SH
logs heavy hitters, the same set of heavy hitters will be reported

3Estan and Varghese use SH to track heavy hitters who contribute
more than a fraction 1

x
to the total traffic volume. In their pro-

posal, p is set to O×x
numpkts

, where O is an oversampling factor [17].

Our configuration can be viewed as determining x and O from the
memory budget L.

across routers on a path. Thus, replicating SH across routers on a
path duplicates measurements and wastes router resources.

To address this issue, we make a distinction between ingress and
non-ingress routers. Ingresses implement both FS and SH, sharing
the aggregate memory as in the single router case. At each such
ingress router, the SH resources are split between the OD-pairs
originating at the ingress, in proportion to the anticipated number
of packets per OD-pair.4 Non-ingress routers only implement FS.
In order to distribute FS responsibilities across the network, we use
cSamp [39], which we describe next.

Overview of cSamp: We choose cSamp because, for a given set
of router resource constraints, it provides a framework to optimize
fine-grained network-wide monitoring goals; it leverages the avail-
able monitoring capacity efficiently by avoiding redundant mea-
surements; and it naturally load balances responsibilities to avoid
hotspots.

The inputs to cSamp are the flow-level traffic matrix (approxi-
mate number of flows per OD-pair), router-level path(s) for each
OD-pair, the resource constraints of routers, and an ISP’s objec-
tive function specified in terms of the fractional flow coverages
per OD-pair (i.e., the fraction of flows on this OD-pair that are
logged). These input parameters are typically available to network
operators [18]. The output is a set of sampling manifests specifying
the monitoring responsibility of each router in the network. Each
sampling manifest contains entries of the form 〈OD , [start , end]〉,
where [start , end] ⊆ [0, 1] denotes a hash range and OD is an
identifier for an OD-pair. In the context of the FS algorithm, this
means that the OD-pair identifier is used as the “key” to get a hash
range from the sampling manifest.5

The main idea is to bootstrap routers with the same hash func-
tion but assign non-overlapping hash ranges per OD-pair. Thus, the
flows sampled by different routers do not overlap. This coordina-
tion also makes it possible to optimally achieve network-wide flow
coverage goals. Next, we describe the optimization model used in
cSamp to assign FS responsibilities across a network.

Each OD-PairODi (i = 1, . . . ,M) is characterized by its router-
level path Pi and the estimated number Ti of IP-level flows per
measurement epoch (e.g., five minutes).6 Each router Rj is con-
strained by the available memory for maintaining flow counters. Lj

captures this constraint, and denotes the number of flows router Rj

can record and report per epoch. dij denotes the fraction of flows
of ODi that router Rj logs. For i = 1, . . . ,M , let Ci denote the
fraction of flows on OD i that is logged.

cSamp can support a variety of network-wide objectives. Here
we describe its use for one particular goal: achieving the best flow
coverage subject to maximizing the minimum fractional flow cov-
erage per OD-pair. First, the largest possible minimum fractional
coverage per OD-pair, mini{Ci}, subject to the resource constraints
is found. Next, this value is used as the parameter α to the linear
program shown below (in Eq (1)–(4)) and the total flow coverage∑

i(Ti ×Ci) is maximized, i.e.,

4We use packets and not flows since the SH configuration depends
on the number of packets in the traffic. In practice, we need only
approximate estimates to divide the available memory resources.
5This formulation assumes that routers in the middle of the net-
work can infer the OD-pair from packet headers using MPLS labels
or ingress-egress prefix maps [6]. cSamp can also be implemented
without OD-pair identifiers [40]. For clarity, we describe the sim-
pler approach using OD-pairs.
6For simplicity, we assume that each OD-pair has one route, though
cSamp accommodates multi-path routing [39].

331

