
Selecting Representative IP Addresses for Internet
Topology Studies∗

Xun Fan
USC/Information Sciences Institute

4676 Admiralty Way, Suite 1001
Marina del Ray, CA, 90292

xunfan@isi.edu

John Heidemann
USC/Information Sciences Institute

4676 Admiralty Way, Suite 1001
Marina del Ray, CA, 90292

johnh@isi.edu

ABSTRACT

An Internet hitlist is a set of addresses that cover and can
represent the the Internet as a whole. Hitlists have long been
used in studies of Internet topology, reachability, and per-
formance, serving as the destinations of traceroute or per-
formance probes. Most early topology studies used man-
ually generated lists of prominent addresses, but evolution
and growth of the Internet make human maintenance un-
tenable. Random selection scales to today’s address space,
but most random addresses fail to respond. In this paper we
present what we believe is the first automatic generation of
hitlists informed censuses of Internet addresses. We formal-
ize the desirable characteristics of a hitlist: responsiveness,
each representative responds to pings; completeness, they
cover all the allocated IPv4 address space; and stability, list
evolution is minimized when possible. We quantify the accu-
racy of our automatic hitlists, showing that only one-third of
the Internet allows informed selection of representatives. Of
informed representatives, 50–60% are likely to respond three
months later, and we show that causes for non-responses are
likely due to dynamic addressing (so no stable representative
exists) or firewalls. In spite of these limitations, we show
that the use of informed hitlists can add 1.7 million edge
links (a 5% growth) to traceroute-based Internet topology
studies Our hitlists are available free-of-charge and are in
use by several other research projects.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Network topology ; C.2.5 [Com-
puter-Communication Networks]: Local and Wide-Area
Networks—Internet ; C.2.6 [Computer-Communication
Networks]: Internetworking
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1. INTRODUCTION
Smooth operation of the Internet is important to the global

economy, so it is essential that Internet users, providers,
and policy makers understand its performance and robust-
ness. Although on the surface, individuals care only about
their personal performance, a full diagnosis of “why is my
web connection slow?” must consider not just the user’s
“first mile” connection, but dozens of servers that affect per-
formance [9]. Web content providers invest great effort in
optimizing page load times to sub-second values [23] and in
building distributed content distribution networks that man-
age traffic (for example, [14]). Policy makers debate ques-
tions about universal access [33], a nation’s relative availabil-
ity for broadband access [24], and the robustness of what is
recognized as critical infrastructure.

To answer these questions, network researchers, opera-
tions, and industry have developed a number of tools to
map the Internet [17, 15, 26, 20, 22, 8], evaluate perfor-
mance [32, 20, 23], consider questions about routing and
reachability [31, 3], or the performance of replica placement
(examples include [32, 10]), and evaluate topology robust-
ness [1]. With the Internet’s lack of centralization and mul-
tiple overlapping global “backbones”, active probing plays
an essential role in this process, with traceroute and ping
and their variants providing the main source of router-level
reachability. While one may add AS-level views [4], the In-
ternet’s router-level topology is the focus of this paper. Dif-
ferent router-level studies either target specific networks [26]
or the whole Internet. Here we are most interested in observ-
ing the whole Internet—more than three billion allocated
IPv4 addresses.

Studies of the entire Internet typically employ a hitlist—
a list of IP address that can represent the billions of allo-
cated addresses. The defining characteristic of a a hitlist
is completeness, where a representative is chosen for every
autonomous system or, in our case, for every allocated block
of addresses defined by a /24 prefix, the smallest unit typi-
cally present in a default-free routing table. Representatives
provide a 256-fold (or more) reduction in scanning size, al-
lowing Internet-wide studies to take place in hours instead
of months.
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Although completeness is necessary to study the whole In-
ternet, an ideally hitlist is also responsive and stable. A re-
sponsive representative replies to ICMP messages, allowing
traceroute to confirm a path to the edge of the network, and
ping to measure round-trip time to an edge host. To support
longitudinal studies, the hitlist should be stable, with repre-
sentative identities not changing frequently or arbitrarily.

Although hitlists are easy to define and have been used in
topology studies for many years (we review related work in
Section 2), they are surprisingly hard to create and main-
tain. Early hitlists were built manually from well known
sites [20], but the size of the Internet and rate of churn in
even well-known servers made manual maintenance unten-
able as it quickly became incomplete. More recent studies
have typically used randomly chosen representatives. While
randomness has some advantages (it can be statistically un-
biased), it sacrifices secondary goals of stability and respon-
siveness.

The contribution of this paper is to provide a new, au-
tomated method of hitlist generation that provides com-
plete coverage while maximizing stability and responsive-
ness.1 Our hitlists are constructed (Section 3) by mining
data from IP address censuses, complete, ping-based enu-
merations of the allocated IPv4 address space taken every
two to three months [18].

The second contribution of our work is to evaluate our
hitlists (Section 4). Our hitlists are 100% complete as of
when they are constructed, although when we have no his-
tory (in about two-thirds of the blocks) we select represen-
tatives at random. We define the accuracy of our hitlists
has how many representatives are responsive three months
after the hitlist is taken. We find that two-thirds of the al-
located address space never responds to ICMP probes and
so never has responsive representatives. Of the remaining,
responsive Internet, our hitlists select representatives that
are responsive about 55% of the time. To our knowledge we
are the first to study hitlist responsiveness and accuracy.

The final contribution of our work is what hitlists reveal
about that nature of the Internet itself. We were surprised
that, in spite of such complete input data, the responsive-
ness of our predicted representatives is not higher. We be-
lieve this upper bound on responsiveness characterizes the
portion of the Internet that has an inherently high rate of ad-
dress churn. One corollary of this limit to representative re-
sponsiveness is that no manual system could ever have been
successful due to natural turnover of addresses in parts of the
network. We also characterize the distribution of addresses
in each block and show that it strongly reflects address al-
location patterns (Section 5).

We make our hitlists available free-of-charge, and they are
already being used by several research projects. In Section 6
we discuss the security and policy issues involved in sharing
this data.

2. RELATEDWORK
Hitlists are used in active probing for studies of topol-

ogy [17, 15, 19, 26, 30, 22, 25, 8], performance [32, 20,
23], and reachability [31, 4]. and for other purposes [32,
1, 10]. Each of these studies uses some hitlist (sometimes

1We would like to thank Randy Bush for suggesting the
idea that our address censuses data could support hitlist
generation.

called a seed or probe list) generated manually, randomly,
or automated from several sources. We review each hitlist
generation method next.

Early topology work used manually generated lists. Skit-
ter is a well-known measurement tool developed at CAIDA,
to study the IPv4-interface-level of the core Internet topol-
ogy [19]. (With IP alias resolution, this can provide a router-
level map.) It uses traceroutes from multiple locations to a
hitlist of destinations. Their target address list was manu-
ally built from many sources, including tcpdump from the
UCSD–CERF link, hostnames from search engines, and in-
termediate addresses seen from their own traces records. In
2000 their hitlist included about 313,000 destinations, and
by 2004 it had grown to 971,080. While their hitlist was
of high quality, they found it very labor-intensive to main-
tain, and responsiveness degraded over time as destinations
changed. (They report that their initial, web-server based
list shows a 2–3% reduction each month in reachable destina-
tions [19].) The cost of manual list maintenance was one rea-
son that prompted them to change to random probing with
Archipelago. More recently, Maennel has maintained a man-
ual list, derived from the Skitter list, but augmented with
guided scanning to cover each AS and provide 306,708 repre-
sentatives. They require reachable addresses study routing
reachability [4]. We used a version of their list to seed our
initial stable list, but our techniques provide much greater
coverage at lower cost. Unlike all of these manual hitlists,
our goal is to fully automate hitlist generation to allowing
more complete and timely coverage.

Random representative selection allows low-cost genera-
tion of hitlists to much larger numbers of networks. Merca-
tor developed informed random probing to adaptively ad-
just its probe list based on prior results [17]. By adap-
tively growing the hitlist, Mercator strives to quickly and
efficiently discover a topology while minimizing hitlist size.
Archipelago (Ark) is a measurement platform designed to
support traceroute and other measurements [8], effectively
a next-generation Skitter. Ark’s hitlist covers all routed /24
blocks, choosing a random last-octet within each /24 block,
The random hitlists in Mercator and Ark are essential to
cover the millions of /24 networks in today’s Internet, but
Mercator’s adaptive algorithm means completeness is uncer-
tain (although efficiency, not completeness, was their goal),
and random probing in both Mercator and Ark may sac-
rifice responsiveness of the destination address. Our hitlist
provides complete coverage while maximizing responsiveness
(both defined precisely in Section 3.1). In Section 4.5 we
evaluate the degree to which informed hitlist generation may
improve the number of links discovered in a topology study.

Rather than a random destination, DisCarte’s hitlist se-
lects the .1 address in each /24 block of the routed address
space. DisCarte [25] adds record route information to tracer-
oute probing to obtain more accurate and complete network
topologies. DisCarte requires a responsive destination, and
find 376,408 responsive representatives in the .1 address of
each routed /24. Our work confirms that the .1 address is
responsive twice as often as the address with median respon-
siveness (Section 5), but we suggest that census-informed
representative selection can get much better responsiveness.

Finally, there has been some work in IPv6 topology dis-
covery. The Atlas system uses a manually generated list
built from 6bone destinations [30], then expanded it based
on discoveries. The full address-space census that is the ba-
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sis of our work is only applicable to the IPv4 address space,
so combinations of active and passive methods as proposed
in Atlas are essential for IPv6. As future work, comparison
of both active and passive hitlist generation approaches in
the IPv4 space may provide a basis for inferring coverage of
passive studies of IPv6.

3. METHODOLOGY
We next describe the requirements of an IP hitlist (Sec-

tion 3.1), and how we transform census data (reviewed in
Section 3.2) using several possible prediction methods (Sec-
tion 3.3) to get a good quality hitlist. We also provide some
details on how our implementation copes with Internet-sized
datasets.

3.1 Hitlist Requirements
Our goal is to provide representatives that are responsive,

complete and stable.
By responsive, we mean each representative is likely to re-

spond to an echo request with an echo reply instead of an
ICMP error code. As we describe below, we select repre-
sentatives that have responded frequently in the past. We
do not guarantee that that address responded in the most
recent census, but we bias our selection to favor recent re-
sults. We consider several prediction functions below in Sec-
tion 3.3.

By complete, we mean we report one representative ad-
dress for every allocated /24 block. Some groups have used
other definitions of completeness, such as one representative
per AS, or per routed BGP block. AS- or BGP-complete
hitlists will be both sparser and smaller than /24-complete
maps, since ASes typically include routes for many prefixes,
and routed prefixes often cover blocks larger than /24s. In-
stead, we select one representative for each /24 block for
two reasons. The main reason is so that the hitlist is decou-
pled from the routing system, to allow independent study
of the routing system itself, and since routing tables vary
depending on when and where they are taken. Second, it is
relatively easy for researchers to derive custom hitlist from
ours, perhaps selecting sparser representatives per AS or
per routed prefix. We believe our per-/24 representatives
thus provide a more general and reusable result than more
“cooked” alternatives.

By stable, we mean that representatives do not change ar-
bitrarily. We change representatives when a new represen-
tative would significantly improve the score for that block,
typically because a representative has ceased to be reach-
able. We promote stability as a goal to simplify longitudi-
nal studies, where frequent changes of representative would
make comparisons across time more difficult. Stability also
reduces the effects of transient routing outages or packet loss
on the long-term hitlist. We implement stability by apply-
ing inertia as a threshold to changing a previously selected
representative. Currently we switch representatives when
the switch will improve its score significantly, with inertia of
0.34 (see Section 4.3).

The three goals of responsiveness, completeness, and sta-
bility can be in conflict. For example, completeness requires
that we select representatives that may be non-responsive.
To guarantee representatives for all allocated addresses, we
select representatives even for blocks that have no recent re-
sponses. We also select representative for blocks that have
never responded. In both cases, we annotate these repre-

Censuses Date Duration (days)

it11w 2006-03-07 23
it12w 2006-04-13 24
it13w 2006-06-16 31
it14w 2006-09-14 31
it15w 2006-11-08 61
it16w 2007-02-14 50
it17w 2007-05-29 52
it18w 2007-09-14 47
it19w 2007-12-18 48
it20w 2008-02-29 86
it21w 2008-06-17 49
it22w 2008-09-11 35
it23w 2008-11-25 29
it24w 2009-02-03 29
it25w 2009-03-19 29
it26w 2009-05-27 31
it27w 2009-07-27 25
it28w 2009-09-14 30
it29w 2009-11-02 30
it30w 2009-12-23 29
it31w 2010-02-08 30
it32w 2010-03-29 29

Table 1: IPv4 censuses [29] used in this paper.

sentatives with distinguished scores. Stability and inertia
can also decrease responsiveness; in Section 4.3 we examine
how the inertia threshold reduces churn and how it affects
responsiveness.

3.2 Background: Internet censuses
Our main goal with a hitlist is to predict the future: a

representative should be responsive in the future. Our tool
to make this prediction is data from past responses. Hitlists
selection leverages Internet censuses that have been taken
regularly since 2003 [18].

Each Internet census is the results of a ping (an ICMP
ECHO REQUEST message) sent to every allocated IPv4 ad-
dress. Censuses are far from perfect: a census must be taken
carefully to avoid ICMP rate limiting or transient router er-
rors, and firewalls reduce ping response rates by around 40%.
Hitlist, however, prefer hosts that are ICMP responsive,
since traceroute consists of iterated, TTL-limited ICMP mes-
sages. Firewall-limited censuses are therefore ideal for hitlist
generation.

It takes 2–3 months to carry out a full census (the IPv4
space has more than 3 billion allocated unicast addresses,
with 4 machines probing at about 6000 probes/s [18]). For
this paper we consider censuses starting in Mar 2006 as
shown in Table 1, since censuses before this date used a
slightly different collection methodology. The results of this
paper use all 22 censuses taken over the four years preced-
ing analysis, but we expect to update our results as new
censuses become available.

A census elicits a number of responses, including ECHO
REPLY messages as well as a variety of errors. Each census
is quite large, and more than 3 billion records per census,
22 censuses is over 260GB of raw data. We therefore pre-
process all censuses into a history map convenient for analy-
sis. A history map consists of a bitstring for each IP address
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where each 1 indicates a positive response, and a 0 indicates
either a non-response or negative response.

In paper, we only consider echo replies (“positive” re-
sponses) as indicating a responsive address. We also ex-
plored treating both positive and negative responses (desti-
nation unreachable and similar error replies) as predicting a
responsive address. However, we found that negative replies
only rarely are helpful in predicting future responsiveness.
We look at it28w and found 64% of positive responses were
also responsive in the next census (165M in it28w, 107M
of which respond in it29w). By contrast, of the 50M nega-
tive replies in it28w, only 2.7% (1.4M) respond positively in
it29w. We therefore believe that negative responses are of
little value in predicting future responsiveness.

We next show how this history map can predict future
response rates.

3.3 Prediction Method
Of our hitlist goals of responsiveness, completeness, and

stability, completeness and stability are under our control,
but responsiveness requires predicting the future. Our guid-
ance in this task is the prior history of each address. We
next review several prediction functions that strive to se-
lect the best representative for each /24 block, where best
is most likely to respond in the future.

Prediction functions take the prior history of address a as
input and weights that history in different ways. Each bit of
the history is presented by ri(a), the response (1 for positive,
otherwise 0) of address a to the ith probe, numbered from 0
(oldest) to Nh−1, the most recent observation. We consider
several different weights w(i) to get the scores s(a) in the
form:

s(a) =

Nh−1
X

i=0

ri(a)w(i)

For each block of addresses, the address with the highest
s(a) is selected as the best representative. We may bias this
by prior representatives to promote stability. In the case of
ties and no prior representative we select any top scoring
address in the block at random.

We considered several possible weights w(i). The simplest
is w(i) = 1, so all responses are averaged. To give more re-
cent observations greater influence we consider two biased
weights. With linear weighting, w(i) = (i + 1) ∗ 1/Nh, and
for a power function, w(i) = 1

Nh−i
. Weighting of each ob-

servation for an 8-observation history is shown in Figure 1.
In addition, we can normalize scores by to the maximum

possible score (the minimum in all cases is zero), allowing
all to fall in the range 0 to 1.

As an example of the different functions, Figure 2 shows
scores for three different weights and different history lengths.
For simplicity, we assume Nh = 8, shorter than we use in
practice (in Section 4.1.2 we vary history duration). We
consider three cases, all with 4 of 8 responding, but either
responding most recently (Figure 2a), in the middle past
(Figure 2b), or alternating response and non-response (Fig-
ure 2c). To a first approximation, all three weights are about
the same, particularly with intermittent responsiveness in
Figure 2c. The differences in decay rates are more obvious
when responsiveness is consistent for blocks of time, with
power and linear decay faster than average in Figures 2a
and 2b. Finally, difference in history duration make a large
difference when a block is non-responsive, comparing the left
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Figure 1: bits weight for different function

and right parts of Figures 2a and 2b, and these effects are
even greater when comparing across weights (for example,
compare history durations 1–4 of Figures 2a and 2b).

This framework provides flexibility, but requires setting
several parameters. We later evaluate which weighting is
best (Section 4.1.1), how much history is beneficial (Sec-
tion 4.1.2), and the underlying reasons addresses are difficult
to predict (Section 4.1.3).

3.4 Gone-Dark Blocks
Firewalls are probably the greatest impediment to active

probing, since a conservative firewall can suddenly stop traf-
fic an entire block. We will see in Section 4.1.3 that gone
dark blocks are one cause of poor representative responsive-
ness. A gone-dark blocks is one that contained responsive
addresses for some period of time, but then becomes un-
responsive and stays that way, due to firewall or possibly
renumbering. While we must select a representative for each
allocated block, even if populated only by non-responsive ad-
dresses, we would like to indicate our low expectations for
gone-dark blocks.

We define a block as gone dark within history Nd if, for
the most recent Nd observations, no address in the block re-
sponded, even though we had some positive response before
Nd observations.

We add gone-dark analysis to our hitlist generation by
overriding the representative’s score with a designated“gone-
dark” value to indicate our skepticism that it will reply.
We explored different values of Nd and ultimately select
Nd = Nh = 16, identifying only those addresses whose
responses have aged-out of our history as gone-dark. We
use this large value of Nd because this value maximizes the
absolute number of responsive representatives, while only
decreasing the percentage of responsive, predicted represen-
tatives a small amount.

For gone-dark blocks, we still select the representative as
the address with the best score. For allocated but never-
responsive blocks, we select the .1 address as the repre-
sentative because that is most likely to be first used (Sec-
tion 5). In Section 4.1.3 we show the contribution of gone-
dark blocks to responsiveness.
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Figure 2: Comparison of three history functions for selected addresses.

3.5 Hitlist Description
To summarize, our hitlist contain three kind of represen-

tatives for all allocated /24 blocks: informed and predicted
representatives, where we select the best responder; gone-
dark representatives, where some address once responded
but has not recently; and allocated but never-responsive
blocks, where we pick .1 as the representative.

Table 6 lists the hitlists we have publicly released to-date.
We identify hitlists by the name of the last census used in
their creation, and include the number of censuses in the
history. Thus HL28/16 uses 16 hitlists through it28w. When
necessary, we add the gone-dark window, so HL28/16-3 uses
a window of 3. If no gone-dark window is specified, we
disable gone-dark processing.

In addition to these public hitlists, Tables 2 and 3 show
unreleased hitlists used to evaluate our methods.

4. EVALUATION
We next evaluate the success of our hitlist: how accurate

are its predictions and how complete and stable is it? We
first consider how responsiveness is affected by choices in our
prediction mechanism. In Section 4.1.3 then look at causes
of prediction failure. Finally, we consider completeness and
stability.

4.1 Responsiveness
Our primary goal with prediction is responsiveness: how

accuracy is our prediction that the representatives in a hitlist
will respond in the future? We can define based on the
number responding in the future, Nr, from the number of
predicted representatives (including representatives of gone-
dark and informed predicted blocks) Np as:

α =
Nr

Np

Responsiveness accuracy is affected by our choice of his-
tory weighting and length. We consider these next, and then
consider structural reasons perfect accuracy is impossible to
achieve.

Our general approach to test responsiveness is to gener-
ate a hitlist, then evaluate it against ICMP probes in the
next census. For example, the first line of Table 2 evalu-
ates HL19/8, generated from the eight censuses from it12w
through it19w, tested against it20w. This approach has
the advantage of supporting retroactive evaluation of hitlist

weighting function
hitlist average linear power

HL19/8 0.50 0.51 0.51
HL21/8 0.53 0.54 0.55
HL23/8 0.53 0.54 0.54
HL25/8 0.53 0.54 0.54
HL27/8 0.54 0.55 0.55

Table 2: Fraction of responsive representatives across 5 dif-
ferent hitlists for three different history weights.

quality under different, controlled conditions. However, it
also means each representative is only given one opportu-
nity to be available. For this reason we report exact counts
of results, without error estimates such as standard devia-
tion. We evaluate repeatability of our results by considering
multiple hitlists at different times.

4.1.1 Comparing History Weights

We first consider how our weighting of prior history affects
accuracy. Here we assume a history duration of 8 prior cen-
suses (a reasonable choice as evaluated next in Section 4.1.2),
and from that history we predict the results of the next cen-
sus for the three weights we defined in Section 3.3. Since the
network is dynamic, our expectation is that biased weight-
ings will perform best since they favor recent information
over older information.

To answer this question, Table 2 compares our three weight-
ings for several predictions. Each line evaluates a different
hitlist as generated with three different weights, and eval-
uated for all predicted representatives (Np). The most im-
portant observation is that all weights provide quite simi-
lar performance—the worst case responsiveness is only 5%
worse than the best. Linear and power functions provide
marginally better responsiveness. The examples of the weights
in Figure 2 suggests on reason the difference is so small. For
many histories, all three weights produce roughly the same
relative scores.

4.1.2 Effects of History Duration

A second factor that can affect responsiveness is the dura-
tion of history considered in a prediction. Does more history
provide more information, or does very old information be-
come irrelevant or even misleading?
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To study this question, we considered all history available
to us at time of analysis—then we had 18 Internet censuses
covering 3.5 years. We consider only the power weighting of
history, and look at the responsiveness of our predictions.

Table 3 shows responsiveness of our predictions as a func-
tion of history length, for five predictions. We see that very
short histories are insufficient: prediction rates are a 1–2%
lower when fewer than 8 (about 1.5 years) observations are
considered. On the other hand, we see no difference in pre-
diction accuracy for histories from 8 to 16 censuses. (We
also looked at history duration with the average function,
and found there that long histories became slightly less ac-
curate, although only by 1–2%. This observation argues in
favor of a weighting that decays by history, like power.)

Finally, while longer histories may not improve the frac-
tion that respond, it does provide information that allows
more representatives to be selected. Table 3 shows the abso-
lute number of responders as a function of history duration.
Longer history allows 20k more responders with length 16
than with length 8. More history always increases the num-
ber responding, although with diminishing returns past a 12
censuses or so.

In practice, the incremental cost of longer history lengths
is not large. So we use a history length of 16 censuses in our
production lists.

Although 8 censuses provides slightly betters results, the
faction responding, only 55%, seems lower than we might ex-
pect. We therefore next consider causes of non-responsiveness.

4.1.3 Causes of Failed Responses

We found the observation that our best methods get only
55% responsiveness seems somewhat surprising. Surely such
a large amount of history (over three years of full censuses)
can be explored somehow to select representatives with greater
accuracy. To answer that question, we next explore the
causes of why representatives fail to respond. Our conclu-
sion is that it is unlikely that any prediction can do better
than about 70% because of the use of dynamic address as-
signment and firewalls.

To support this claim, Table 4 counts prediction failures
for HL28/16, tested against it29w (We found roughly similar
results in examination of HL31/16 evaluated against it32w.)
We see that 44% of representatives are non-responsive (1.8M
of the 4M blocks). Two explanations account for the ma-
jority of our misses: blocks that use only dynamic address
assignment, and “gone-dark” blocks. We consider each of
these below.

While dynamic addressing and firewalls are target-specific
causes of representative non-responsiveness, measurement
error is a possible source of uncertainty. We believe that
Internet census-taking methodology reduces these sources of
error to random noise for reasons described in prior work [18].
To summarize briefly: we monitor the network hosting the
probes for local routing outages. Probes are in pseudoran-
dom order, so routing outages in the middle or near the des-
tination result in lower responsiveness in proportion to out-
age rates, but randomly distributed. Pseudorandom prob-
ing is spread over two months, so the probe rate to any
individual /24 is well below typical ICMP rate limits. We
considered packet loss and routing outages in the middle or
of the network or near probe sources are potential sources
of error. For more complete discussion of sources of error

in Internet census-taking, and validation studies, we refer to
prior work [18].

Defining stable blocks: Blocks that lack stable ad-
dresses makes representative selection inherently difficult.
In a block with a stable representative, it will likely remain
responsive, but if all addresses in the block are unstable
then the probability a representative will respond is equal
to the occupancy of that block and independent of prior his-
tory. Addresses can lack stability either because the hosts
using the addresses are only on intermittently, or because ad-
dresses in the block are allocated dynamically to a changing
population of computers. Multiple groups have used differ-
ent techniques to identify dynamically assigned addresses in
the Internet [27, 34, 5]. A recent study estimates that about
40% of responsive Internet blocks are dynamic based on In-
ternet address surveys using ICMP probes taken every 11
minutes for two weeks [5]. (We assume here that non-stable
blocks are primarily due to dynamic addressing.)

To evaluate the prevalence of stable and non-stable blocks,
we would like to identify them from the history that we col-
lect. Prior analysis of surveys used address availability and
volatility to identify dynamic addressing. Availability is the
fraction of times the address responds in all probes, while
volatility is the fraction of times the address changes be-
tween responsive and non-responsive [5]. While appropriate
for survey data with 11-minute probes, volatility makes less
sense when probes are months apart.

To identify stable blocks with infrequent probes, define a
new metric, truncated availability, the fraction of time an
address responds from its first positive response. More for-
mally, if ri(a) is the response of address a to the ith probe,
the raw and scaled availability, A∗(a) and A(a) (from [5])
and truncated availability, At(a) are:

A∗(a) =

Nh
X

1

ri

A(a) = A∗(a)/Nh

At(a) = A∗(a)/L∗(a)

where L∗(a) is the length of a history, in observations, from
the first positive response to the present.

While both volatility and truncated availability are corre-
lated, we found that low volatility and high truncated avail-
ability are both good predictors a stable block. Low At

values are a good predictor of intermittently used addresses.
Continuing the examples in Figure 2, 00001111 has At = 1,
while 01010101 has At = 0.57.

While At is good at differentiating between these solid
(00001111) and intermittent (01010101) addresses, it inter-
acts with gone-dark addresses, which will have a string of
trailing 0s.

From these, we define a stable representative as At
≥ 0.9.

From Table 4 We find that 43% of all representatives are
not stable by At < 0.9 , a little higher than other indepen-
dent observations 40% [5], and of 34–61% [34] (these values
are for a random sample of DNS and for Hotmail users, re-
spectively). We do not claim strong validation of this exact
percentage because each work is a percentage of a different
populations, and different definitions of what is dynamic or
not stable. We claim only that our metric is in the right or-
der of magnitude and so provides some insight into sources
of non-responsive representatives.
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Responsive representatives and fraction
hitlist predicted representatives (Np) 4 8 12 16

HL19/- 3,091,646 (100%) 1,558,620 (50%) 1,586,303 (51%) — —
HL21/- 3,386,540 (100%) 1,813,276 (54%) 1,846,019 (55%) — —
HL23/- 3,613,523 (100%) 1,925,322 (53%) 1,948,634 (54%) 1,950,960 (54%) —
HL25/- 3,794,973 (100%) 2,007,138 (53%) 2,049,607 (54%) 2,059,019 (54%) —
HL27/- 3,971,208 (100%) 2,135,337 (54%) 2,179,777 (55%) 2,193,062 (55%) 2,200,674 (55%)

Table 3: Responsive representatives with power weighting across 5 different hitlists for different history length.

HL28/16 HL31/16

predicted representatives (Np) 4,055,193 100% 4,307,644 100%

not stable 1,749,471 43% 1,820,806 42%
gone dark 703,987 17% 772,014 18%

responsive (Nr) 2,250,091 56% 2,560,420 59%
non-responsive (Nn) 1,805,102 44% [100%] 1,747,224 41% [100%]

non-responsive and not stable (only) 590,472 14% [33%] 565,654 13% [32%]
non-responsive and gone dark only 0 0% [0%] 0 0% [0%]
non-responsive, not stable and gone-dark 693,832 17% [38%] 766,338 18% [44%]
non-responsive, just unlucky 520,798 13% [29%] 415,232 10% [24%]

Table 4: Causes of unsuccessful representatives predicted from HL28/16 and HL31/16, evaluated against responses in it29w
and it32w. We don’t apply gone-dark window on prediction here, gone-dark blocks are detected separately with gone-dark
window size of 3.

Re-evaluating causes of non-responsive represen-
tatives: With these definitions, we return to Table 4. We
see that both gone-dark and not-stable blocks contribute
three-quarters of our misses. Almost one third are in not-
stable only blocks, with almost 40% gone-dark. We therefore
claim that three-quarters of our non-responses are due either
to new firewalls or selection of representatives in not-stable
blocks, neither of which can ever have always responsive
representatives.

To support the claim that lower At values correlate with
poorer response, Table 5 breaks out the 1.8M non-responsive
representatives by two values of At. We see that 29% of non-
responses come from stable blocks (At > 0.9). Representa-
tives with poor truncated availability (At < 0.9) account for
more than two-thirds of non-responses. We conclude there
are many unstable blocks, such blocks simply cannot be ex-
pected to support stable representatives. Also note, by our
definition of gone-dark, dark blocks also qualify as not stable
(because At < 0.9).

To show our choice of threshold for At does not alter our
conclusion, Figure 3 shows the cumulative distribution of At

for both non-responsive and responsive representatives. It
shows a large difference in responsiveness for any value of
At.

4.2 Completeness
To evaluate completeness, Figure 4 shows the absolute

number of representatives for using 16-deep histories through
five different censuses, and Table 6 shows the raw data. We
consistently see that about one-third of blocks have some
history data allowing an informed selection of representa-
tives (the white region of the graphs, with around 4.2M

non-responsive representatives
At < 0.9 1,284,304 (71%)
At

≥ 0.9 520,798 (29%)
total 1,805,102 (100%)

Table 5: Fraction of representatives that are non-responsive,
based on At (HL28/16 tested against it29w).

blocks). By contrast, about two-thirds of blocks have never
responded (the top grey regions)

In addition, this data shows gone-dark selection from Sec-
tion 3.4. We identify about 0.3–1.5% of allocated blocks as
formerly responsive (the black region in the middle of Fig-
ure 4).

To guarantee completeness, we select random represen-
tatives for never-responsive blocks. However, we can see
that we can provide informed choices for only a third of
blocks. Finally, we note that IANA only releases new allo-
cation maps quarterly, and routing studies suggest this space
becomes routable gradually [3], so we expect our hitlist to
be useful for at least three months, about the frequency we
update them.

4.3 Stability and Inertia
We next consider two aspects of hitlist stability: how

much churn is there in the hitlist, with and without a rep-
resentative inertia, and how much does inertia reduce pre-
diction accuracy.

Recall that inertia is the amount I by which prediction
score must improve to change representatives. An inertia
I = 0 means we always pick the highest rank address in
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class HL28/16 HL29/16 HL30/16 HL31/16 HL32/16

allocated /24 blocks 12,774,056 12,774,056 12,905,128 13,036,541 13,167,613
never responding blocks 8,718,863 8,631,417 86,797,99 8,728,897 8,775,398
predicted blocks 4,055,193 4,142,639 4,225,329 4,307,644 4,392,215

gone-dark blocks 35,341 75,714 109,099 154180 195,216
informed prediction blocks 4,019,852 (100%) 4,066,925 (100%) 4,116,230 (100%) 4,153,464 (100%) 4,196,999

changed representatives — (5%) 218,419 (8%) 341,765 (7%) 292,079 (7%) 306,588
new representatives — (4%) 171,428 (2%) 82,690 (2%) 82,315 (2%) 84,571

responsiveness 2,250,091 2,344,539 2,411,662 2,451,351 —

Table 6: Released hitlists to-date, by last census used in prediction (top). The top group of rows show hitlist composition,
including churn (changed) and new representatives relative to the prior hitlist. The bottom line, responsiveness, evaluates the
hitlist against the census.
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a block as the representative, independent of the represen-
tative in a hitlist based on a prior censuses. As inertia ap-
proaches 1, we will never switch representatives once chosen.
For our production hitlists, we use I = 0.34 based on score
changes due to weighting (Section 4.1.1) and the following
analysis.
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Figure 5: Effects of different inertia on representative churn
(HL28/16 modified three times by it29w through it31w;
modified twice by it29w, it30w; and once by only it29w).

Inertia on churn: We first consider how much inertia
affects churn. Churn is that rate at which we switch repre-
sentatives for established blocks. Table 6 shows the amount
of churn for four hitlists when using our standard inertia
I = 0.34. Churn is shown in the “changed representatives”
row, so in the HL32/16 column, we see that about 7% of
all predictions (306,588 representatives) changed relative to
the prior hitlist (HL31/16)). This Table 6 shows that the
rate of churn is relatively stable over time, with 5–7% of all
informed predictions changing each census.

While Table 6 shows churn over time for a fixed inertia,
in Figure 5 we vary inertia to observe its effect on churn. To
estimate the relationship shown in this figure, we generate
HL28/16, then modify it three times with censuses it29w,
it30w, and it31w with different levels of inertia. (Here we
suspend gone-dark processing to focus only on inertia.) We
then evaluate the hitlist against observations from census
it32w. We evaluate inertia over several steps for two reasons.
First, hitlist staleness is partially a function of time. Second,
large values of inertia suppress changes in single or a few
censuses.

As expected, Figure 5 shows that higher inertia suppresses
churn, because it takes several new negative responses for a
representative’s score to change. In fact, weight selection
means score can change only by 0.3 from one new census,
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Figure 6: Effects of different inertia on responsiveness
(HL28/16; modified once by it29w, then tested against
it30w; modified twice by it29w, and it30w, then test against
it31w; then modified three times by it29w through it31w
and tested against it32w).

and decrease to 0.5 from two new censuses since the weight
decrease in our pow weighting, so with three new observa-
tions here, an inertia of 0.2 has one observations that might
cause change, while I = 0.4 has two; I = 0.6, three; and
I = 0.8 requires more than eight observations to change.

Inertia on responsiveness: Inertia is selected to keep
hitlists stable, reducing the amount of arbitrary represen-
tative turnover in long-running experiments. Such turnover
can be eliminated by simply never changing representatives
(setting I = 1), but prior experience shows that the respon-
siveness of a static hitlist will degrade over time as servers
move, losing as much as 2–3% per month for the early Skitter
web-server-based list [19]. We would therefore like to know
the trade-off between inertia and representative responsive-
ness.

Figure 6 shows hitlist responsiveness for different values of
inertia after this process. (This analysis was generated with
the same multi-step process as Figure 5 described above.)
We see that responsiveness degrades slightly for high inertia
values, from 59% responsiveness with no inertia, to a low of
53% responsiveness when I = 0.8, when there are effectively
no changes. We conclude that a moderate inertia has little
effect on responsiveness costing at most 6 percentage points,
even over eight months.

4.4 Effects of Probe Frequency
Hitlists are based on periodic censuses, so an important

operational question is how the frequency of such censuses
affect the quality of the hitlists. Intuitively, more frequent
sampling can provide more information on address respon-
siveness, resulting in better predictions. Our current cen-
suses are taken every two to three months (Table 1). More
more frequent collection is possible, but should be justified
because data collection entails some operational cost.

While Internet censuses cover the whole Internet very few
months, we also have access to surveys that probe 1% of
the Internet every 11 minutes for two weeks [18]. Here we
turn to these much more frequent probes to evaluate the
effects of different probe rates. A survey has about 1800

Responsive
Probe Frequency Representatives

Survey, 12 hours 15,484 (68%)
24 hours 15,362 (67%)
48 hours 15,197 (66%)

HL30/16 (3-months) 16,123 (70%)

total blocks analyzed 22,861 (100%)

Table 7: Prediction accuracy (in responsiveness) from dif-
ferent probe frequencies, for a given number of /24 blocks.

observations, but we downsample this information to get
observations every 12, 24, or 48 hours, providing 28, 14, and
7 bits of history. We use survey 30 (taken at the same time
as it30w in Dec., 2009) to do prediction, and test it against
it31w. We use the average weighting function to evaluate
these observations, since it seems unnecessary to favor re-
cent observations when all are taken of a short, two-week
period. In addition, in Section 4.1.1 we showed that weight-
ing has relatively little effect on responsiveness. We then
test the prediction from this history against the next census
(it31w) to evaluate prediction accuracy. We compare the
representatives found from the survey with those computed
in HL30/16.

Table 7 compares responsiveness as a function of probe
frequency. First, we see that, of the survey-derived hitlists,
more frequent probing provides a slightly better prediction
(68% responsive from 12-hour samples vs. 66% for 48 hours).
This small improvement is because more frequent probing
gives more information on host responsiveness. Second, we
see that the census-derived hitlist is a better prediction than
any of the survey-derived hitlists, by 2–4%. The main source
of this difference is that the survey’s hitlist finds some ad-
dresses that don’t appear in the census-derived hitlist. These
addresses seems less stable in the next census because the
survey-derived hitlist considers only a short period of his-
tory, while the census-based hitlist considers many months
history and so finds long-term stable addresses, if they ex-
ist. In addition, because our survey observations are taken
at specific times of day, they may discover addresses that
are only up during particular daily hours, while evaluating
against the next census tests at random times of day.

4.5 Effects on Other Research
The above sections evaluate hitlists based on our goals:

responsiveness, completeness, and stability. But hitlists are
a tool to enable other research, so their ultimate benefits
come by how they improve the quality of other network per-
formance and topology studies.

Some network performance studies require responsiveness
in their destinations. These studies include those that evalu-
ate performance [32, 20, 23], consider questions about rout-
ing and reachability [31, 3], or the performance of replica
placement (examples include [32, 10]). For studies that
require end-to-end latency measurements, our representa-
tive selection methods optimize reachability within the con-
straints of sparse measurement. Our work also suggests
directions for potential improvements: more frequent mea-
surement could potentially better track reachable addresses
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in dynamically assigned blocks. In addition, our approach to
stability assists evaluation of long-term performance trends.

Responsiveness is helpful but not essential for many other
topology studies (such as [17, 15, 26, 20, 22, 8]). Most
topology studies employ traceroutes to study paths across
the Internet. A traceroute attempts to discover all IP ad-
dresses on the path towards a destination, and many such
paths are aggregated with alias elimination [17, 26, 21] to
produce a router-level map. However, in such studies, the
presence or absence of the destination itself affects only
the last hop. Topology studies thus do not require respon-
sive representatives, but they may benefit from responsive-
ness. However, many have moved towards the use random
or deterministically selected representatives. As one exam-
ple, topology probing in Skitter [20] began with a manu-
ally generated hitlist, but later shifted to random probing
in Archipelago [8]. Two reasons for this shift were difficulty
in maintaining a responsive hitlist and the recognition that
responsive targets are not essential.

Although responsiveness is not essential for topology stud-
ies that focus on the core of the Internet, it is important for
studies that wish to explore the edge of the network. We can
get a rough estimate on the number of edge links that are
missed by randomly selected representatives: empirically,
about 4–7% of the Internet responds to ICMP probes [18],
so we expect that 93% of random representatives will not
respond (approximating the distribution of responders as
uniform, to get a rough estimate). If 55% of our hitlists re-
spond, that will improve edge detection for 38% of blocks.
With 1.3 million allocated /24 blocks (as of Nov. 2009),
statistics suggest that responsive hitlists will detect about
630,000 additional links compared to those found using a
random hitlist. Some topology studies examining the core
of the Internet find about 33M links, so this increases the
size of the discovered Internet topology by 2% [6]. This
simple analysis ignores correlation in the data, so it is only
approximate.

To confirm this simple analysis, we consider CAIDA’s In-
ternet Topology Data Kit (ITDK-2010-01 [6]). ITDK com-
bines the results of traceroutes from many traceroutes with
alias resolution [17, 8] to produce a router-level map of the
Internet. ITDK is formed from 42 cycles of data, each rep-
resenting a traceroute to a randomly chosen representative
in each /24 prefix.

Unfortunately, we cannot directly evaluate ITDK with dif-
ferent approaches to representative selection because it is the
result of several levels of processing (aggregation of multi-
ple cycles of data, and duplicate and alias elimination). In
addition, direct comparison would be somewhat misleading
since the goal of ITDK is to map the Internet’s core, not
edges. Instead, we obtained the raw IPv4 topology data [7]
used to generate ITDK. We then compare the results of one
cycle with random representatives, to using what we expect
would have resulted using our HL29/16 (based on censuses
from 2007 through Dec. 2009). We can evaluate the respon-
siveness of randomly selected representatives by looking at
the raw data, while we test hitlist responsiveness by com-
paring to it30w completed in Jan. 2010. (Here report these
results comparing to a single cycle, #739, of the raw IPv4
data. We got very similar results comparing to cycles 740
and 741.)

Table 8 summarizes our observations. First, we see that
we only have data to make predictions for just under half

of the blocks (Np of 4,008,861). For the remaining 51%,
we too fall back on random probing. (We actually predict
about 100k additional prefixes because we use a more recent
routing table compared to the IPv4 raw data, however, we
omit these from the table to provide a more fair comparison.)

Second, we see that random probing finds responsive ad-
dresses about 9% of the time. This result is somewhat better
than we predict (4-7% [18]), a difference probably because
our prediction is over all allocated blocks, but here we study
only routable blocks, and non-routable blocks cannot possi-
bly predict representatives.

Finally, we find about 1.7 million additional edges if we
use our hitlist compared to random probing, about 2.4×
more edge links than random probing alone finds. For stud-
ies of edge links, this is a significant amount of additional
coverage. Compared to the 33M links found in ITDK-2010-
01, this use of informed probing would discover about 5%
greater coverage. However, care must be taken in making
this comparison for several reasons. First, ITDK is com-
posed of 42 cycles, while we compare to only a single cycle.
Because each cycle probes a different random destination,
total coverage will improve as it eventually finds responsive
destinations by chance. (In fact, with enough cycles, ran-
dom probing may provide better coverage as it converges on
probing all possible addresses.) Second, it is important to
note that ITDK is designed to study the Internet core, not
the edges, and this goal is well met with random probing
alone. However, our results show they could get additional
coverage with no additional probing effort by changing to
representatives selected with a method such as ours.

4.6 Cost of Hitlist Generation
Finally, turning from hitlist quality, we consider the cost

of generating hitlists. Hitlists are generated from a number
of Internet censuses. We therefore review the cost of taking
a census and then look at the cost of processing censuses to
produce a hitlist.

Hitlists require Internet censuses as input. New censuses
are started every two to three months; during most of that
time four machines are actively probing the Internet, while
there is a week or two of setup and data curation time at the
beginning and end of a census [18]. Each census currently
requires 12–15GB of archival storage Censuses are carried
out as part of an ongoing Internet topology research project
and are used for multiple purposes, but if carried out exclu-
sively for hitlist generation they would represent an ongoing
cost.

Processing hitlist from census data incurs several ongoing
costs. First, we maintain a master history file with bitmaps
of all censuses to date, indexed by IP address. Each census
creates an observation file with about 1–2GB of new positive
observations. We merge observations into an ongoing history
file of all observations to date. Currently 22 observation files
(32GB total) are merged into one 7.5GB history file, and the
size of that file grows by about 300MB every new census.

We parallelize our computation with the Hadoop imple-
mentation [11] of map/reduce [12], running over a cluster of
about 40 computers with about 120 CPU cores. With this
parallelism, join in a new census into an existing history
takes about half an hour, and evaluation of a new hitlist
takes about another half hour. (our code is written in Perl
and not optimized for speed). Our map function groups

420



/24 routable blocks studied 8,248,027 100%

no prediction (Np) 4,239,166 51%
prediction (Np) 4,008,861 49% [100%]

responsive 2,454,500 [61%]

random probing responsive 730,496 9%
random probing responsive also in Np 725,930 [18%]

extra edges found 1,728,570 21% [43%]

Table 8: Evaluation of random and informed representatives on destinations from one cycle of IPv4 traceroute data.
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Figure 7: Frequency of responsiveness by last octet of the
address (from it29w).

results by block, while the reducer carries out the join or
evaluation.

5. OTHER OBSERVATIONS
Given no knowledge about a /24 block, which address

is most likely to be responsive?2 This question has some
bearing on which representative we should select for gone-
dark blocks, or for newly-allocated blocks with no census
data yet.

Discussions with network operators suggest some network
practices are common. Often addresses are allocated sequen-
tially from the start of an block, and network managers often
use the first or last address in a block for the routers. Since
address blocks are allocated on powers-of-two according to
CIDR [16], we expect to see uneven use of the address space.
Recent work has confirmed visibility of allocation blocks in
census data [5], but not last-octet usage.

To evaluate this question, Figure 7 shows the distribution
of responsiveness for the last octet for all in it29w. (We
got similar results on it28w and it30w censuses.) Consistent
with expectation, the most responsive octet is .1, responding
0.86% of the time, more than twice as often as the median
responsiveness (0.38%), and 1.5× more frequent than .129
(0.55%), the next most responsive last octet.

Figure 7 shows a pattern in responsiveness, with responses
being most frequent at addresses that are one greater than

2We thank Kim Claffy for suggesting the question of last
octet distribution for study.
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Figure 8: Rank (shown by circle area) of responsiveness by
last octet, in a 16 × 16 grid by address (from it29w).

a power of two. The top ten are ranked .1, .129, .65, .33,
.2, .254, .17, .193, .97, .9, and of these only 2 and 254 do
not follow this pattern. To show this trend more clearly,
Figure 8 shows the rank of each last octet as the area of a
circle, with the octets arranged in a sequential grid (so the x
axis lists octets sequentially in groups of 16, while each step
up the y axis is 16 more than the previous). The vertical
lines correspond to more frequent responses, with x = 1
showing strong response from .1, .129, .65, etc., and x = 9
for .9, etc. The other prominent features are .254 and across
y = 0 (.1, .2, .3, etc.). While showing ranks exaggerate what
can be small absolute differences, these strong patterns show
power-of-two allocations affect responsiveness.

6. SHARING HITLISTS
Our goal in generating hitlists is to share them with other

research groups carrying out topology studies. We offer
them free-of-charge to all, and to date we have provided
them to four other projects. Although hitlists are not hu-
man subjects, networks are operated by and involve humans.
Hitlist use by multiple prompts us to consider their distribu-
tion in the context of the Belmont protocols [28], weighing
the benefits and potential costs of sharing and designing
policies accordingly.

The benefits of sharing hitlists are similar to sharing of
other research results. Shared data is a boon to researchers.
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A common data source can lower the barrier to entry for
future research, and it also makes it easier for researchers
to compare their results. (For example, the TREC bench-
marks are seen as essential to rapid advances in the field of
Information Retrieval [13], although our efforts are far more
modest.) As importantly, we expect that the scrutiny of
multiple researchers on a common dataset can often identify
data or methodological errors that might be otherwise unno-
ticed. (In Internet topology, the problem of alias resolution
is one that is still being refined [2, 21], nearly ten years after
the first techniques [17].) For the hitlist creator, a shared
result amortizes the operational costs of collection and pro-
cessing of the input data (Internet censuses) needed to create
hitlists. Finally, for the hitlist subjects, network operators
in the Internet, a common source allows us to centralize “do-
not-probe” blacklists and reduces raw data collection.

Shared hitlists have some costs, however. Most serious is
that a hitlist can focus the probing of several researchers on
a specific representative address in a network, while indepen-
dently derived hitlists are more likely to distribute probing
load. Second, eventually hitlists will be acquired by ma-
licious users on the Internet. Potential harms are hiding
malicious traffic mixed with research traffic, and the slight
risk that any list of known active IP addresses may be at risk
of additional malicious traffic such as worms or cracking at-
tempts. While a risk, the effort to generate a hitlist is within
the reach of a motivated individual, so strong restrictions on
hitlists seem unwarranted.

Our current hitlist distribution policies are designed to
balance risks with benefits. Although we share hitlists free-
of-charge, we provide them subject to a usage agreement.
Hitlist users may not redistribute hitlists so we can establish
this agreement directly with all users. Tracking hitlist users
allows us to estimate load on representatives. We also plan
to seed the hitlist with representatives that we monitor to
track load. We also hope controlled hitlist distribution
delays their acquisition by malicious parties. We expect to
review these policies as we gain more experience.

7. FUTUREWORK
Although we are providing our current hitlists for use cur-

rently, we see two directions for future work.
First, we would like to better understand the stability of

Internet address usage. Our study shows only 50–60% of in-
formed representatives respond three months later, implying
a great deal of churn on Internet address usage. We would
like to better understand why usage of the remaining ad-
dresses cannot be better predicted. More detailed analysis
of gone-dark and unstable blocks may provide more informa-
tion; and a combination of our data with information IANA
assignments, RIR registration and block reassignment may
explain causes for failure to respond. Alternatively, changes
in firewalling may explain address instability.

Second, we expect to get more information about how
hitlists are used. Several groups expressed concern that rep-
resentatives may become overloaded as multiple groups tar-
get them with measurement traffic. We are in the process
of seed our hitlist with monitors so we can observe hitlist
use and compare it to normal “background radiation”. Such
an evaluation will help understand hitlist use and charac-
terize general unsolicited Internet traffic. If representative
load becomes high, it will suggest operational changes, such
as multiple representatives per /24 block.

8. CONCLUSIONS
We have defined the properties that are important to

hitlists: representatives that are responsive, stable, and pro-
vide complete coverage for the Internet. We have developed
a fully automated algorithm that mines data from Internet
censuses to select informed representatives for the visible In-
ternet. We employ information that is available for about
one-third of the Internet, and when an informed represen-
tative is available we see it is 50–60% likely to respond 2–
3 months later. We showed that the primary reasons for
prediction failure are blocks with dynamic addressing and
gone-dark blocks that are probable firewalls.

Our hitlists are available free-of-charge and have already
been distributed to four different research groups. Although
we do not have external evaluation of how their use changes
those studies, our evaluation of one prior study suggests the
potential to discover 1.7 million additional edge links.
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