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Abstract

In this paper we conduct an extensive and in-depth study
of traffic exchanged between YouTube data centers and its
users, as seen from the perspective of a tier-1 ISP in Spring
2008 after YouTube was acquired by Google but before Google
did any major restructuring of YouTube. Using flow-level
data collected at multiple PoPs of the ISP, we first infer
where the YouTube data centers are located and where they
are connected to the ISP. We then deduce the load balancing
strategy used by YouTube to service user requests, and in-
vestigate how load balancing strategies and routing policies
affect the traffic dynamics across YouTube and the tier-1
ISP.

The major contributions of the paper are four-fold: (1)
we discover the surprising fact that YouTube does not con-
sider the geographic locations of its users at all while serving
video content. Instead, it employs a location-agnostic, pro-
portional load balancing strategy among its data centers to
service user requests from all geographies; (2) we perform
in-depth analysis of the PoP-level YouTube traffic matrix
as seen by the ISP, and investigate how it is shaped by the
YouTube load balancing strategy and routing policies uti-
lized by both YouTube and the ISP; (3) with such knowl-
edge, we develop a novel method to estimate unseen traffic
(i.e. traffic that is carried outside the ISP network) so as to
“complete” the traffic matrix between YouTube data centers
and users from the customer ASes of the ISP; and 4) we
explore “what if” scenarios by assessing the pros and cons of
alternative load balancing and routing policies. Our study
sheds light on the interesting and important interplay be-
tween large content providers and ISPs in today’s Internet.

Categories and Subject Descriptors

C.2.4 [Distributed systems]: Distributed applications; C.4
[Performance of systems]: Performance attributes
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1. INTRODUCTION
A significant portion of today’s digital multimedia content

is serviced by large content providers such as YouTube (now
a subsidiary of Google), Yahoo, Google, and the like. These
large content providers often employ several huge data cen-
ters – each of which is comprised of thousands of servers
– to meet and serve growing user demands. For a variety
of reasons, these data centers are typically located in dif-
ferent geographical sites, and connected to one or multiple
ISPs at the nearby major Internet “interconnection regions”
or Points-of-Presence (PoPs)1. In other words, the content
serviced by a large content provider typically flows from one
of its data centers through one of these PoPs to enter these
ISPs, and is then carried to eventually reach various users.
The dynamic inter-dependence and interplay between con-
tent providers and ISPs raise many interesting and impor-
tant questions that have not been adequately studied.

Take YouTube as an example. As the most popular video
sharing site on the Internet, YouTube attracts millions of
users every day. Given the significant amount of traffic gen-
erated by YouTube videos, how YouTube manages its traf-
fic dynamics and performs load-balancing among its data
centers will have a considerable impact on the traffic flows
across and within ISPs. Further, the (BGP) routing policies
employed by both YouTube and ISPs also shape and drive
the traffic dynamics between YouTube and those ISPs. Such
dynamic inter-dependence and interplay therefore have sig-
nificant implications in traffic management to both YouTube
and the ISPs. For instance, can an ISP effectively estimate
YouTube-specific traffic matrix so as to better manage its
traffic dynamics?

In this paper we take a measurement-oriented approach to
study the YouTube traffic dynamics from the perspective of

1For example, according to [11], there are eight major “in-
terconnection regions” within the United States – namely,
New York, Washington D.C. and Atlanta on the east coast,
Dallas and Chicago in the central US, and Los Angles, the
Bay Area and Seattle on the west coast – at which content
providers typically buy transit from or peer with various
ISPs.
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a tier-1 ISP, with emphasis on the interplay between the two
players, its effect on the traffic dynamics across them, and
implications in traffic management for both players. Our
study is based on sampled flow-level data collected at various
PoPs of a tier-1 ISP.

From BGP routing tables, YouTube (AS36561) advertises
3 prefixes, namely, 64.15.112.0/20, 208.65.152.0/22, and
208.117.224.0/19. Using this information, we first extract
all flows related to YouTube from the ISP flow-level mea-
surement data. Through reverse DNS look-ups and other
analysis, we infer and deduce that YouTube employs seven
data centers2 to service user demands, and that it is con-
nected to the tier-1 ISP at six out of the eight Internet “in-
terconnection regions” (or PoPs) mentioned in [11].

Using the extracted YouTube traffic, we perform an ex-
tensive and in-depth analysis of the traffic dynamics be-
tween YouTube and the ISP, and explore how load balanc-
ing strategies and routing policies employed by both players
drive and affect the traffic dynamics between them. In the
following we provide a brief overview of the major observa-
tions and contributions of our study along four inter-related
lines of investigations.
Location-Agnostic Load Balancing: We analyze and in-
fer the load balancing strategies used by YouTube to service
user requests. We find that YouTube employs a proportional
load balancing strategy among the seven data centers (as op-
posed to, say, a locality- or proximity-aware strategy), where
the proportionality seems to be determined by the “size” of
the data centers, e.g., as measured by the number of pub-
lic IP addresses seen in the data that are associated with
(front-end) video servers at each data center. This propor-
tionality stays fairly constant over time and across different
geographical locations (PoPs) of the tier-1 ISP, and holds for
both the client-to-YouTube and YouTube-to-client traffic.
This finding is of particular interest, as it provides an im-
portant contrast to the findings of several earlier studies on
CDNs [7, 9], which show the prevalence of proximity-based
content distribution among several CDN services.
Prevalence of Early-Exit Routing in the ISP Net-

work: With knowledge of the YouTube load balancing strat-
egy, we examine how the YouTube traffic flows between
various PoPs of the ISP and the six PoP locations where
YouTube is connected to the ISP. In other words, we esti-
mate and analyze the PoP-level YouTube traffic matrix as
seen by the ISP. Due to the routing asymmetry, we consider
the client-to-YouTube and YouTube-to-client traffic sepa-
rately. We find that the PoP-level client-to-YouTube traffic
matrix is highly geographically biased in the sense that the
client-to-YouTube traffic originated from a source PoP al-
ways leaves the ISP and enters YouTube at the “closest”
of the six destination PoPs, regardless of which YouTube
data center the traffic is destined to. For instance, the
client-to-YouTube traffic originated at a source PoP near
New York City, despite being proportionally load balanced
across seven YouTube data centers, always exits the ISP and
enters YouTube at the New York PoP itself. This observa-

2As inferred based on DNS names as well as traceroutes,
the seven YouTube data centers are located respectively in
New York City, Ashburn (near Washington D.C.), Miami,
Chicago, Dallas, Los Angles, and the San Jose Bay Area.
YouTube is connected to the tier-1 ISP in question at six
PoP locations: New York City, Washington D.C., Chicago,
Dallas, Los Angles, and the San Jose Bay Area.

tion suggests that YouTube somehow has to carry the client
traffic from New York across its “internal” network to the
destination data center. On the other hand, the YouTube-
to-client traffic originated from six YouTube data centers al-
ways enters the ISP at the corresponding PoP that they are
closest to. For instance, the YouTube-to-client traffic origi-
nated from the YouTube New York data center always enters
the ISP at the New York PoP. In particular, the YouTube-
to-client traffic from the Miami data center is not carried
by the ISP, i.e., “unseen” by the ISP. This suggests that
the YouTube-to-client traffic from the Miami data center
is carried by another ISP to the clients. The asymmetry
in the client-to-YouTube and YouTube-to-client traffic ma-
trices can be attributed to the BGP routing policies such
as “early exit” and route preferences set by the ISP and
YouTube.
Estimating Unseen Traffic: Despite the highly asymmet-
ric nature of the client-to-YouTube and YouTube-to-client
traffic, the proportionality of traffic split across YouTube
data centers (when seen by the ISP) still holds, even when we
zero in on a specific customer AS (or prefix) of the ISP. This
observation leads us to develop a novel method to estimate
the unseen YouTube traffic (traffic that is being carried out-
side of ISP-X network), and “complete” the YouTube traf-
fic matrices between YouTube data centers and client ASes
of the ISP. This ability to estimate unseen traffic is useful
and important both in theory and in practice: It allows us
to infer and estimate the total traffic demand matrices be-
tween YouTube and various customer ASes of the ISP; it
also enables an ISP to estimate the “new” traffic demand
and prepare for the potential impact on its network, when
routing changes lead YouTube to re-route this unseen traffic
through the ISP instead.
Better Understanding of Interplay through “What

If”Analysis: Using the YouTube traffic matrices estimated
above, we investigate several “what if” scenarios to examine
the pros and cons of different load balancing strategies and
routing policies, and the impact of the resulting traffic dy-
namics on both YouTube and the ISP. For example, we find
that due to uneven traffic demand distribution across the ge-
ographical locations, a locality-aware data center selection
strategy [9], while may reduce the overall video download
latency for users, can also lead to un-balanced loads across
different data centers, especially when the capacities of data
centers do not match the geographical load distribution.
This plausibly explains why YouTube prefers a location-
agnostic, proportional load balancing strategy, as server-
load and network bandwidth are likely more critical than
latency to the performance of video download/streaming ser-
vices. We also explore how selective route announcements
can shift traffic between YouTube and the tier-1 ISP, and
how the ISP can prepare for such changes in YouTube traf-
fic dynamics using the unseen traffic estimation.

To our best knowledge, our paper provides the first exten-
sive study of traffic exchanged between YouTube data cen-
ters and users, as seen from the perspective of a large (tier-
1) ISP. More importantly, while YouTube is one of many
(albeit one of great importance) large content providers on
the Internet, our work provides a valuable case study that
demonstrates the importance of understanding the inter-
play between large content providers and ISPs. In particu-
lar, our study illustrates that the load balancing strategies
employed by a content provider (be it proportional load-
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balancing, locality-aware, latency-aware, or other more so-
phisticated strategies) and (BGP) routing policies can have
a significant impact on the traffic dynamics across content
providers and ISPs, and have important implications in traf-
fic management and performance engineering for both con-
tent providers and ISPs. With the increasing prominence
of data centers in content delivery and emergence of cloud
computing, we believe that the interplay between large con-
tent (or application service) providers and ISPs will have
broad ramifications in a number of key areas such as traf-
fic engineering, network management, business agreements
and economic models. Our work is only a first attempt in
addressing this broad set of questions.

Caveat. The study presented in this paper provides a
snapshot of YouTube traffic as seen by the tier-1 ISP in
Spring 2008, shortly after Google acquired YouTube. Since
then, Google has been expanding and restructuring YouTube.
In Appendix A, we discuss some of the things that have
changed after we collected the data used in this study and
argue that our methodology and the insights gained from
this work still apply to today’s YouTube traffic.

The remainder of the paper is structured as follows. In
Sec. 2 we overview the YouTube video delivery framework
and datasets used in our study. In Sec. 3 we present the
method used for inferring YouTube data centers, and in
Sec. 4, we analyze and deduce the load balancing strate-
gies used by YouTube among its data centers. In Sec. 5 we
study the YouTube traffic matrices as seen by the ISP, and
investigate the effects of load balancing and routing poli-
cies. In Sec. 6 we present a novel method for estimating the
unseen traffic, and in Sec. 7 we explore “what-if” scenarios.
The paper is concluded in Sec. 8.

2. OVERVIEW& RELATED WORK

2.1 A Quick Overview of YouTube

Figure 1: Overview of YouTube video delivery

framework.

YouTube is the most popular video serving website that
serves user-generated and other videos. It lets any user up-
load videos in a number of formats. YouTube then converts
them in flash-video format and makes them available for
viewing. Users with a browser that have Adobe Flash player
(or some other compatible player) can watch those videos on
YouTube.com or some other sites that embed those videos.

Fig. 1 schematically depicts a typical sequence of steps in-
volved when a user watches a YouTube video. When a user
goes to www.youtube.com to watch a video, a HTTP request
is sent to one of the servers corresponding to www.youtube.com,

which we refer to as the (front-end) web-servers, and
a web page is returned that also contains a place-holder
for the video. When the user clicks on the video or when
the video starts playing automatically, the front-end web
server instructs the browser (or the flash plug-in inside the
browser) to stream video from another server within one of
the YouTube data centers, which actually serves the Flash
video content. We refer to these servers as the (front-end)

video-servers – they are publicly visible in the sense each
is assigned a public IP address (and a DNS name). Hence,
to watch any YouTube video, a user’s browser typically has
to communicate with both one of the three front-end web
servers and one of many (front-end) Flash video-servers. All
parts of this communication - including the video streaming
- happens over HTTP.

2.2 Datasets and General Statistics
In our study we use sampled Netflow records collected

by a tier-1 ISP, which we will refer to as ISP-X, at vari-
ous PoPs in the US and Europe. The collected flow data
is augmented with BGP routing updates and other relevant
information such as AS Paths, source and destination IP
prefixes advertised by the neighbor ASes, egress router from
which the destination prefix is learned (hence this is the
router at which the flow exits ISP-X network), and so forth.
The augmented routing information allows us to attribute
the source and destination IP addresses contained in the IP
headers to the source/destination ASes and the (specific)
prefixes they own and announce via BGP. For our study, we
use two flow datasets, each collected at 44 PoPs in US and
Europe of the ISP for three consecutive days in two sepa-
rate weeks in Spring, 2008. Using these datasets, we then
extract all YouTube-related traffic, i.e., all flows containing
IP addresses (either as source or destination IP) belonging
to the 3 prefixes announced by YouTube.

Table 1 summarizes the basic statistics for the first dataset,
where the statistics for the client-to-YouTube traffic is listed
in the second column, and those for YouTube-to-client traf-
fic in the last column. (The statistics for the second dataset
is similar; we omit them here for lack of space.) In total,
there are approximately 172 million sampled flows contain-
ing YouTube IP addresses, out of which 54 million flows are
from clients (users) to YouTube, and 118 million flows from
YouTube to clients. There are no flows from YouTube to
YouTube traffic. The difference in the numbers of flows from
clients to YouTube vs. YouTube to clients is partly due the
traffic asymmetry in the two directions: the amount of traffic
sent from YouTube to clients are in general far larger than
the amount of traffic sent from clients to YouTube. (This
traffic asymmetry also manifests in the disparate byte counts
of flows in each direction, not shown here, see Sec. 5.) An-
other contributing factor is the effect of routing asymmetry:
we see that the number of BGP prefixes for client IPs and the
number of client AS numbers in the YouTube-to-client traf-
fic are more than double of those in the client-to-YouTube
traffic. Despite the routing and traffic asymmetries, there
are ∼3,000 ASes which are seen in both client-to-YouTube
and YouTube-to-client traffic, and there are ∼10,000 BGP
advertised prefixes that are seen in both directions. Hence
these client ASes (or prefixes) use ISP-X for connecting to
YouTube in both directions.

In addition to the aforementioned augmented flow datasets,
we also conduct reverse DNS look-ups and traceroutes to
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Table 1: Summary Statistics for Dataset I.

to YouTube from YouTube

Total flows ∼ 54 × 106
∼ 118 × 106

Client IP addresses seen ∼ 10 × 106
∼ 20 × 106

BGP advertised client prefixes ∼ 28, 000 ∼ 61, 000

Number of client ASes ∼ 4, 000 ∼ 9, 000

YouTube IP addresses seen ∼ 2, 000 ∼ 2, 000

classify YouTube traffic, infer and discover the locations of
YouTube data centers, etc. We also collect several giga-
bytes of tcpdump [8] data by playing hundreds of randomly
selected YouTube videos on a couple of our lab machines.
Collected data includes IP, TCP, HTTP headers and as well
as first 200 bytes of the payload. The tcpdump data is used
to confirm and validate the YouTube traffic characteristics
inferred from the sampled Netflow records.

2.3 Related Work
Existing studies of YouTube traffic characteristics have ei-

ther focused on user behaviors or relied on data collected at
end hosts or edge networks. For example, the authors in [3]
examine video access patterns, user behavior, popularity life
cycle of videos, etc., and compare these characteristics with
the traditional web, whereas in [4] the authors explore the
“social networks” of YouTube videos. The studies in [6, 16]
utilize packet traces collected at campus networks to study
the YouTube traffic characteristics from the perspective of
an edge network. In a more recent work [12], Fahmy et
al. analyze and compare the underlying distribution frame-
works of three video sharing services, YouTube, Dailymo-
tion and Metacafe, again using the traces collected at edge
networks. The focus of the work is to investigate the vari-
ation in service delay experienced by users in different ge-
ographical locations, and when accessing videos of different
popularity and ages. In contrast, using the flow-level data
collected at multiple PoPs of a tier-1 ISP, we study the in-
terplay between YouTube and the ISP by investigating the
effects of load balancing strategies and routing policies (of
both YouTube and the ISP) on the YouTube traffic dynam-
ics. Our work also differs from existing studies (see, e.g.,
[1, 5, 14]) on characterizing large-scale Content Distribution
Networks such as Akamai. With increasing reliance on large
data centers for content delivery, our work sheds light on
the interesting and important interplay between large con-
tent providers and ISPs.

3. CLASSIFICATION&LOCALIZATIONOF

YOUTUBE SERVERS
As explained in Sec. 2.1, YouTube has a two-tier video de-

livery framework, where servers can be divided into mainly
two categories, front-end and video-servers. Although it
might not be very difficult to get a list of data centers
YouTube uses, it is a non-trivial task to identify the geo-
graphic locations and the roles played by individual YouTube
servers in the video delivery framework. In this section we
use the Netflow data along with DNS records to classify
YouTube server IP addresses into these categories. We also
use another dataset collected using the tcpdump, by playing
a large number of videos on couple of client machines, to val-
idate the classification. We explain how we map YouTube

server IP addresses to different locations using reverse DNS
mapping and traceroutes from multiple vantage points.

3.1 Classifying YouTube Server IP Addresses
We see a total of 2093 YouTube IP addresses in the datasets,

and perform reverse DNS look-ups on each of them. Using
the host names thus resolved, we classify YouTube IP ad-
dresses and corresponding flows into three categories: i) 3
YouTube IP addresses (i.e., front-end web servers) whose
host names are all mapped to www.youtube.com; the corre-
sponding flows are referred as the web front-end flows. ii)
more than 2000 YouTube IP addresses (83% of the total
YouTube IP addresses) whose host names are of the format
loc-v xx.loc.

youtube.com (e.g., dal-v 26.dal.youtube.com), where loc

is one of the 8 city codes, ash, chi, dal, lax, mia, nyc,

sjc, sjl, and xx is an integer. We deduce and later vali-
date that these host names correspond to front-end (Flash)
video servers within various YouTube data centers. iii) The
remaining IP addresses are either mapped to host names
with other formats (roughly 5%), containing keywords such
as smtp, dns, db, webcam, or are not resolvable, i.e., with no
public host names (roughly 11%). For flows associated with
these IP addresses, many of them are either UDP, or are as-
sociated with TCP port numbers other than 80. Hence we
deduce that these flows are unrelated to YouTube video de-
livery, and hence ignore them in the remainder of our study.
For flows belonging to the first two categories, we further
classify them based on the directions of the flows: client-to-
YouTube, or YouTube-to-client.
Validating YouTube Server IP Address Classifica-

tion using tcpdump Data. To validate the YouTube IPs
and flow classification presented above, we also collect tcp-
dump data (packet traces) at end hosts by playing hundreds
of randomly selected YouTube videos on these hosts. By
examining the payload, we obtain the ground-truth regard-
ing the role of the YouTube IP addresses seen in the tcp-
dump data. As above, we classify the flows into four (sub-
)categories and characterize the overall traffic characteris-
tics of each category: i) Clients to (web) front-ends: These
packets carry the HTTP requests to front-ends for down-
loading various objects in the web-page. These packets are
likely to be smaller but of variable sizes. ii) Clients to Video
servers: These packets mainly carry the acknowledgments
for the data sent by the video servers. These packets gen-
erally contain a smaller number of bytes. iii) Front-ends to
clients: These flows carry packets mostly with HTML and
javascripts etc which describes the downloaded web-page.
These packets are likely to be larger packets, with varying
number of bytes because of the varying sizes of the web ob-
jects. iv) Video servers to clients: These flows carry the
video content, therefore are likely to be containing a con-
stant but large number of bytes.

For flows of each category, we obtain the overall traffic
characteristics of the flows obtained using the tcpdump data
collected at the end hosts, and compare them with those
obtained flows within the same category in the ISP (sam-
pled) flow datasets. As an example, in Fig. 2, we plot the
cumulative distribution of the packet sizes of flows in each
category computed using the tcpdump data as well as the
same distribution computed using the ISP datasets. The
distribution of the former is shown as the dashed line, and
the latter the solid line. We see that the two distributions in
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Figure 2: Packet size distribution.

each category match quite well, and are visibly distinct from
those in the other categories. These results corroborate and
confirm that the YouTube IP address and flow classification
presented is indeed valid.

3.2 Locating YouTube Servers
The host names of video server IP addresses discovered

through reverse DNS look-ups seem to suggest that there are
eight data centers. We perform traceroutes from multiple
vantage points to geo-locate and verify the locations for the
IP addresses. We find that traceroute queries corresponding
to the IP addresses located in the same city produce the
same last-hop IP addresses. This traceroute-based analysis
also reveals that the two city codes sjc and sjl point to the
same (data center) location, namely within the San Jose Bay
Area. We therefore group these two together as a single data
center location. This yields a total of seven data centers, as
shown in Table 2. The last column of the table also provides
the percentage of video server IP addresses belonging to each
data center, as seen in the ISP datasets.

We further associate the data center locations (city codes)
with the PoP locations of the ISP. More specifically, we
compare these origin PoP locations for each YouTube IP
address with our 3-letter city code based classification. Ex-
cept for those YouTube video server IP addresses contain-
ing the city code mia, in all other cases flows containing
(as the source IP address) YouTube video server IP ad-
dresses originate from either a source PoP with the same
city code or from a source PoP that is nearby. For instance,
nyc-v24.nyc.youtube.com appears as a source IP address
only in flows from New York PoP of the ISP, whereas ash-

v22.ash.youtube.com appears as a source IP address only
in flows from Washington D.C. PoP of the ISP. Furthermore,
flows with the source IP addresses containing the city code
sjc and sjl are only seen at the San Jose Bay Area PoP
of the ISP. This analysis also reveals that YouTube is con-
nected with the ISP at six PoP locations, Washington DC,
New York City, Chicago, Dallas, Los Angles and San Jose.

Lastly, in terms of the three front-end web server IP ad-
dresses, they only show up in flows (as source IP addresses)
originating from the San Jose PoP. Moreover, other YouTube
IP addresses within the same /24 block are also mapped to
the San Jose PoP. Traceroute analysis also reveals that these
three front-end web server IP addresses are located within
the San Jose Bay Area. Hence we deduce that all three

Table 2: Number of video servers at different loca-

tions
Code City % of IP addresses

ash Ashburn, VA 24.77

chi Chicago, IL 17.27

dal Dallas, TX 07.89

lax Los Angeles, CA 17.33

mia Miami, FL 7.37

nyc New York City 7.26

sjc, sjl San Jose Bay Area 18.07

front-end web servers are located within the San Jose Bay
Area.

4. LOADBALANCINGAMONGYOUTUBE

DATA CENTERS
In this section we analyze and infer the load balancing

strategy used by YouTube among its data centers to service
user requests. The key discovery we make is that YouTube
employs a proportional load balancing strategy among the
seven data centers and not based on the geographical prox-
imity to clients, where the proportionality seems to be de-
termined by the “size” of the data centers; this is in contrast
to several studies [7, 9] on CDNs which typically exploit
proximity-based server selection strategy to reduce end-to-
end latency3.

4.1 Proportional Load Balancing of Client-to-
YouTube Traffic

We now examine how client-to-YouTube traffic is distributed
among the seven YouTube data centers. Our initial hypoth-
esis is that YouTube does proximity-aware content distribu-
tion meaning clients are served videos primarily from the
data-center that results in lowest latency. To our surprise,
we found that this was not the case. For instance, when we
examined a “/24” prefix belonging to New York Public Li-
brary, it was exchanging only about 7% of the total flows
with YouTube NYC data-center. Similarly, another pre-

3In Sec. 7 we will discuss the pros and cons of using pro-
portional load-balancing vs. proximity-aware load-balancing
strategies. We also note that the authors in [9] find that sim-
ply relying on proximity for serving client requests lead to
poor CDN performance for some users; the quality of paths
should be also taken into account.
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Figure 3: Distribution of client traffic to YouTube

data centers.

fix owned by Illinois Century Network was only exchanging
19% of its traffic with YouTube Chicago data-center. It was
also very clear that the flows were not being equally divided
among data-centers because YouTube Ashburn data-center
was receiving the highest share of traffic from both the net-
works and was significantly higher from traffic shares that
other data-centers were getting. When we examined the
traffic distribution more closely, we noticed that the traf-
fic was being distributed at a fixed proportion to YouTube
data-centers from all the ISP-X PoPs irrespective of which
PoP was geographically closer to which data-center.

The distribution of the overall client-to-YouTube traffic is
shown in Fig. 3. We can see that the client-to-YouTube traf-
fic is clearly not equally divided among the data centers. In
particular, we see that the ASH data center receives slightly
more than a quarter of the traffic, while the LAX, CHI, and
DAL data centers receive about 17% of the total traffic. On
the other hand, the DAL, MIA and NYC data centers re-
ceive only ∼7% of the total traffic each. This is very similar
to what we observed in case of the two prefixes we discussed
above.

Fig.3 shows how the total traffic is divided. Next, we look
at how traffic coming from individual source PoPs of ISP-
X is distributed. In Fig. 4, we show how client-to-video
server traffic is distributed among 7 YouTube data centers
for traffic originating at each ISP-X PoP. In this figure x-
axis shows different PoP for ISP-X, and y-axis shows the
fraction of total traffic going to different YouTube data cen-
ters. As seen in this figure, the fraction of traffic received
by each YouTube data center from each PoP is the same
for all PoPs. It implies that although PoPs of ISP-X and
YouTube data centers are located at geographically diverse
locations, they do not have any preferences to each other in
terms of network/geographic “proximity”. More specifically,
traffic coming from clients is distributed to 7 YouTube data
centers according to fixed proportions. We have also verified
that these proportions hold at various other levels such as
over time, at AS level, and individual IP prefix level (plots
not shown due to space limitations).

4.2 Load Balancing among ThreeWeb Servers
We now analyze how YouTube performs load balancing

among the three front-end web servers. Since all the web-
servers are located inside San Jose data-center, all the traffic
to front-end web servers have to come to San Jose. An in-
teresting but not so surprising discovery is that the traffic
is equally distributed among those 3 front-end server IP ad-
dresses. This observation holds true at different time gran-

ularity, e.g., over different hours or over different days, as
well as across different spatial granularity, e.g., at the level
of individual PoPs of the ISP or with respect to individ-
ual client ASes. These observations are shown in Fig. 5,
where Fig. 5(a) plots the traffic distribution among the three
front-end web servers over different hours, Fig. 5(b) plots the
traffic distributions among the three front-end web servers
at various PoPs of the ISP, and Fig. 5(c) plots the traffic
distributions among the three front-end web servers at vari-
ous (large) client ASes of the ISP. That the traffic is equally
distributed among the front-end web servers is expected, as
YouTube front-ends employs the round-robin DNS resolu-
tion [2] for mapping www.youtube.com to the IP addresses
of front-end web servers.

4.3 Proportional Load Balancing of YouTube-
to-Client Traffic

In the discussion so far we used only one direction of the
traffic. i.e, traffic going from clients to YouTube data cen-
ters. Our findings show that this traffic is proportionally
distributed among various YouTube data centers. In the
following, we analyze the traffic from the reverse direction,
i.e., from YouTube data centers to clients. Comparing dis-
tributions in these two directions is inherently challenging
because of asymmetric routing in the Internet. Routing in
the Internet is not symmetric, that is the network path taken
by the traffic going from a client to one of the YouTube data
centers may not be the same as the path taken by the reply
traffic coming from the YouTube data center to the client.
Furthermore, since the network flow data available to us
is only collected at various PoPs of the ISP-X, it may not
have the YouTube to client traffic for some of the client-to-
YouTube traffic, as the reply traffic from YouTube can go
through different ISPs. Therefore, in order to analyze how
the traffic from YouTube data centers to various ISP-X PoP
is distributed, we only consider the IP prefixes for which we
see the traffic coming from all the YouTube data center lo-
cations. In addition, some of the YouTube data centers may
not use ISP-X to send the reply traffic to customers at all.
In our data, we do not find any reply traffic from Miami
YouTube data center. Hence we ignore traffic from Miami
YouTube data center in the following analysis.

ASH (28.36%)

CHI (20.25%)

DAL (5.98%)

LAX (20.79%)

NYC (10.04%)

SJ (14.55%)

Figure 6: Traffic distribution from YouTube data

centers to clients.

Fig. 6 shows how much traffic is sent by each of the YouTube
data center to clients. As seen in this figure, the largest
fraction of video traffic is sent by the YouTube ASH data
center. While CHI and LAX send 20% of the traffic each,
and remaining traffic is sent by the SJ, NYC and DAL data
centers.
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Figure 4: Client traffic distribution to different video serving data centers.

Figure 5: Load balancing among three front-end YouTube servers.

Next, we investigate if the proportional traffic distribu-
tion holds for the YouTube data center-to-client traffic at
the PoP level. As mentioned before due to asymmetric rout-
ing in Internet, for this analysis, we consider traffic for only
those IP prefixes which receive traffic from all the YouTube
data centers (except Miami data center) through ISP-X.
Furthermore, we group all the IP prefixes using ISP-X PoPs.
For this we assign a PoP to each IP prefixes, which is the
PoP from where traffic with the corresponding IP prefix en-
ters in the ISP network.

We plot the fraction of traffic sent by each data center
to various ISP-X PoPs in Fig. 7. In this figure different
destination ISP-X PoPs are shown on the x-axis, and y-axis
shows the fraction of the traffic as number of sampled flows
received by the PoP, from a given YouTube data center. As
seen in this figure, traffic from different YouTube data center
to ISP-X PoP is distributed proportionally. In addition,
these proportions are the same as the total proportions of
the traffic sent by each data center shown in Fig. 6.

4.4 Proportional Load Balancing and “Size”
of Data Centers

Our analysis has shown that YouTube does not do a proximity-
aware load balancing. Instead, it does load balancing among
its data centers in a fixed proportions. As we show next, the
distribution of incoming video-requests to its data centers
based on the “size” or the “resources” available at those data
centers. Since we do not have any access to internal system
design of each YouTube data center, we use the number of
IP addresses seen at each location as the rough estimate of

the size of a data center. We plot the fraction of traffic re-
ceived by each YouTube data center along with the fraction
of IP addresses seen from different data centers in Fig. 8(a).
As we see in this figure, the amount of traffic received by
each data center is directly proportional to number of IP ad-
dresses seen at that location. Furthermore, Fig. 8(b) shows
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Figure 8: Distribution of traffic between clients and

YouTube data centers.

that fraction of traffic sent by different YouTube data cen-
ters to ISP-X PoPs, is proportional to the fraction of total
number of IP addresses seen at the corresponding data cen-
ter. It shows that YouTube performs load-sharing among its
data centers based on their “size”, not location.
Extracting proportions using SVD: Next, we use the
rank-1 approximation using SVD4 [15] to estimate the pro-
4Albeit the proportionality can also be verified directly, the
SVD automatically yields the proportionality (or a rank-1
matrix approximation) that best fits the data.
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Figure 7: Traffic distribution from video servers to various client PoPs.
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Figure 9: Traffic proportions extracted using SVD.

portions used to distribute the traffic among different data
centers. For this analysis, we construct the traffic matrices
C and S for client-to-YouTube and YouTubeto-client traf-
fic respectively. Here Cij is the traffic originating from ith
/24 IP prefixes which is destined to jth data center, and
Sij is the traffic received by ith prefix from jth data cen-
ter. It is possible that some IP prefixes may not be using
ISP-Xnetwork to reach all the data centers and vice versa,
therefore, for the unbiased estimate of proportions, we ig-
nore the /24 IP prefixes which do not send data to all the
data centers for the traffic matrix C, and prefixes which do
not receive data from all the data centers for the traffic ma-
trix S. Since we do not see traffic coming from YouTube
Miami data center, we ignore it in this analysis so that we
can compare the proportions seen in both directions of the
traffic. We construct a large set of matrices c and s by ran-
domly selecting 1000 rows from matrices C and S respec-
tively to verify if the proportions hold for all the prefixes
for different random selection of IP prefixes. We perform
the SVD based rank-1 approximation on matrices c and s.
Fig. 9 shows the proportions estimated for both client-to-
YouTube and YouTube-to-client traffic using matrices c and
s. In this figure, black horizontals line on top of each bar
show the 95% confidence interval for the mean values shown
in the figure. As seen in this figure, traffic is distributed
in the same proportions for both matrices, with very little
variances.

4.5 Traffic Volume Asymmetry
As we have already observed, the amount of client-to-

YouTube flows is much smaller compared to YouTube-to-
client flows(see Sec. 3). In this section we further analyze
the YouTube-to-client and client-to-YouTube traffic ratios to

get a better insights of the YouTube traffic. For this analysis,
we define“two-way traffic pairs”as 〈c2s(p, dc), s2c(p, dc)〉 for
different /24 IP prefixes p and YouTube data centers dc. We
use term c2s(p, dc) to represent the traffic sent by IP prefix
p to dc data center of YouTube. Here we are interested in

learning how the ratios r(p, dc) = s2c(p,dc)
c2s(p,dc)

are distributed.

Due to asymmetric routing in Internet some of the two-
way traffic pairs may contain zero values. Therefore we
only consider the pairs with non-zero values in our analy-
sis. Fig. 10(a) shows the distribution of r(p, dc) for all such
two-way traffic pairs for the number of bytes exchanged be-
tween IP prefix p and data center dc, and Fig. 10(b) shows
the distribution of r(p, dc) using number of flows. As seen
in this figure, the ratio of the bytes exchanged between IP
prefixes and data centers stays between values 40 and 80
for more than 80% of the pairs, on the other hand the ratio
of the flows exchanged is most of the times close to 2. It
demonstrates that traffic exchanged between IP prefixes and
data centers is fairly consistent, and can be used for esti-
mating the YouTube traffic that is not seen in the ISP-X
network. (See Sec. 6).
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Figure 10: Distribution of ratios for the traffic ex-

changed between IP prefixes and YouTube data cen-

ters.

5. POP-LEVEL YOUTUBE TRAFFIC MA-

TRICES
In Section 4, we made the observation that the YouTube

traffic from clients at all locations are divided in a fixed pro-
portion irrespective of whether a data-center is nearer to
a client or very far from it. We also saw that the traffic
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from the data-centers to the clients also follow similar pro-
portional distribution. This behavior of end-to-end traffic
matrices naturally raises the question of whether the traffic
also gets divided in a similar way inside the ISP-Xbackbone.
In this section we look at the entry PoP to exit PoP traffic-
matrix from the perspective of ISP-Xwith the objective to
better understand how the traffic enters ISP-Xnetwork and
gets divided to different exit PoPs.

To study this interaction, we generate entry-exit traffic
matrices based on the entry and exit PoPs for the YouTube
traffic from the perspective of ISP-X. We have following two
entry-exit matrices based on the direction: (i) from clients to
YouTube servers, and (ii) from YouTube servers to clients.

5.1 Single Preferred Exit in Client to YouTube
Traffic

Source PoP
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Figure 11: Entry PoPs to exit PoPs traffic distribu-

tion from client to YouTube traffic

For the clients to YouTube servers traffic we look at how
much traffic enters from an ISP-X PoP and which PoP it
exits from. We see that the traffic exits from only 7 of the
ISP-X PoPs where YouTube is present. We also see that
for each of the 44 PoPs from which the client to YouTube
traffic enters ISP-X, all of the traffic from that PoP exits
ISP-X from exactly one of the 7 exit PoPs. If we represent
the entry PoPs as columns of the traffic matrix and exit
PoPs as the rows, we see that each column has exactly one
non-zero entry. A closer inspection of this matrix reveals
that for any PoP P , it has a single exit-pop EP such that
EP is the geographically closest ISP-X PoP where YouTube
is present. Clearly, for the seven PoPs where YouTube data
centers are present, P = EP .

Next, we compare this entry-exit traffic matrix with the
“end-to-end traffic demand and supply”matrices from YouTube’s
perspective seen in Sec. 4. We see that they are significantly
different. For instance, the end-to-end traffic matrix which
shows how the total traffic to YouTube video-servers are di-
vided among different data centers, is a rank-one matrix,
and follows the gravity model [10]. On the other hand the
entry-exit traffic matrix seen by ISP-X is a full-rank sparse
matrix where each column has exactly one non-zero row.
From the point of view of ISP-X, traffic flows do not seem
to be getting divided to different locations.

To understand the reason behind this difference between
the two traffic matrices, we examined BGP routing infor-
mation. From the BGP data, we see that YouTube ag-
gregates all of its IP addresses in all the data centers in
only 3 IP prefixes: 64.15.112.0/20, 208.65.152.0/22, and
208.117.224.0/19. All of these three prefixes are then an-
nounced to ISP-X at each of the 7 PoPs where YouTube
is present. This allows ISP-X to do an early exit (or hot-
potato) routing [13]. Since all the YouTube prefixes are

announced from each of the locations where YouTube is
present, ISP-X can transfer the YouTube-bound traffic at
the exit PoP that is nearest to the source PoP irrespective
of the final destination data center for the traffic.

Fig. 11 shows how the traffic entering from different ISP-
X PoPs exits the ISP network. As we can see PoPs 1 to 9
send all of their YouTube-bound traffic towards Washington
DC PoP. Similarly, there are 20 PoPs for which New York is
the nearest exit PoP to reach YouTube. It shows that each
ISP-X PoP has exactly one preferred exit PoP for all the
YouTube traffic, irrespective of the final destination data
center. We use this mapping of source PoPs to their nearest
exit-PoP in Sec. 7 for some of the “what if” analysis.
Traffic carried by YouTube: The early-exit routing em-
ployed by ISP-X has another implication in terms of how the
traffic reaches the final destination data center. Since ISP-
X hands over all the YouTube-bound traffic to YouTube at
local PoPs, YouTube has to deliver this traffic to the final
destinations using its own “internal” network.

To estimate the amount of client to YouTube traffic that
YouTube has to deliver to its different data centers, we look
at how much traffic ISP-X hands over to YouTube at each
location and how much of it is destined to the local YouTube
data center. For instance, from all the clients in nearby
PoPs, if ISP-X hands over 100 units of traffic to YouTube at
New York PoP, then 7%, 7%, 17%, 7%, 18%, 16% and 17%
of it are destined to New York, Miami, Los Angeles, Dallas,
Chicago, Ashburn and San Jose data centers respectively.
We see that only 7 units of traffic is actually delivered locally
to New York data center, while remaining 93 units of the
traffic still has to be carried somehow to other data centers.
Overall, we see that only ∼10% of the total traffic remains
local, while remaining ∼90% of the client to YouTube traffic
is delivered to the final destination data centers by YouTube
using its “internal” network.

5.2 High Locality-bias in YouTube to Client
Direction
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Figure 12: YouTube servers to exit-PoP traffic dis-

tribution

Although YouTube uses a proximity-agnostic mechanism
to load balance the traffic between YouTube servers and
client, the entry-exit traffic matrix at PoP level shows strong
locality bias. In Fig. 12, each row represents the distribution
of traffic originating from a YouTube data center, which
enters the ISP-X network through the corresponding local
PoP, to all the PoPs as a fraction of the total traffic coming
from that data center. Also, in this figure first 6 destination
PoP are the ones where the six data centers connect to the
ISP in the same order as YouTube data centers shown in y-
axis. This figure shows from each PoP from which YouTube
to client traffic enters ISP-X, about 40% to 60% of the traffic
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exits ISP-X network from the local PoP itself, and only the
remaining traffic enters the ISP-X backbone.

Not surprisingly, early-exit routing is again the reason
behind high locality bias in the YouTube to client traffic.
When we look at the BGP information available in the flows,
a very large number of prefixes are announced from multi-
ple ISP-X PoPs. Therefore, in many cases ISP-X selects
an exit PoP from a list of PoPs where the destination pre-
fix is announced and in general it prefers the PoP that is
geographically closest to the entry PoP.

These results show that even when the content-providers
do not do geography-aware load balancing, large ISPs still
can still employ early-exit routing and carry less traffic in
their backbone.

6. ESTIMATING UNSEEN TRAFFIC
As seen in Sec. 4, the proportionality of traffic split across

YouTube data centers (as seen by the ISP) holds at various
levels such as over different time intervals or at individual
AS or IP prefix level. Furthermore, we showed that ra-
tio of the traffic exchanged between YouTube data centers
and individual client prefixes is fairly stable (See Fig. 10).
These observations led us to develop a method to estimate
the unseen and partially seen YouTube traffic – namely the
(portion of) traffic carried by other ISPs – and “complete”
the traffic matrix between YouTube data centers and users
from the customer ASes of the ISP.

Basically we have two ways of estimating the unseen traf-
fic: a) based upon the proportional distribution among data-
centers, and b) based upon the ratio of client-to-YouTube
and YouTube-to-client traffic. These approaches have dif-
ferent error characteristics. The proportions at which the
traffic gets distributed to (and from) different data-centers
have very small variations compared to the ratio of traffic
in two direction (see Figures 9 and 10). Therefore, we try
to use the proportionality of traffic distribution to do the
estimate as much as possible. Only when its not possible to
use that piece of information (such as when we see no client
to YouTube data at all), we make use of the ratio of traffic
in different directions.
• Formulating a matrix completion problem: To fa-
cilitate the discussion in this section, we represent the client-
to-YouTube traffic matrix by C, where Ci,j = Total bytes
from ith IP prefix to jth data center, and the YouTube-to-
client matrix by S, where Si,j = Total bytes to ith IP prefix
from jth data center. Both C and S have unknown en-
tries representing the traffic carried between corresponding
client prefix and YouTube data center. To get a complete
picture of how much traffic is actually exchanged between
an IP prefix and and a YouTube data center including the
traffic not carried by ISP-X, we need to estimate all such
unknown values. The problem therefore can be viewed as
a matrix completion problem where some entries are known
and some unknown and we use the known entries to compute
the values of the unknown entries.
• Estimation using proportional distribution: For our
matrix completion problem, we first use the proportions at
which the YouTube traffic is divided among its 7 data cen-
ters. First, we divide the rows of the matrices C and S to
form three sub-matrices each: Cf and Sf which consist of
all the rows for which all the column entries are known, Cp

and Sp which consist of all the rows for which at least one

column entry is known, and C0 and S0 which consist of all
the rows for which none of the column entries are known.

Next we use the proportion x1 : x2 : x3 : x4 : x5 :
x6 : x7 (extracted in Sec. 4) to fill the missing entries of
Cp as follows. For each row, we first get the known val-
ues, say C

p
i,j1

, C
p
i,j2

, . . . , C
p
i,jm

where 1 ≤ m ≤ 7. Each of
the unknown entry C

p

i,k in that row can be estimated as
(C

p
i,j1

+C
p
i,j2

+...+C
p
i,jm

)×xk

(xj1
+xj2

+...+xjm
)

. We apply the same mechanism

to fill the missing entries in Sp by using the proportions.
For filling the values in C0 and S0 we use a slightly dif-

ferent approach. Since we do not have any known entries in
any of the rows, we exploit the mean ratio between client-
to-YouTube and YouTube-to-client traffic to estimate one
entry per row for C0 using the corresponding non-zero value
from Sp or Sf . Since all of the IP prefixes in C and S must
have either sent or received traffic from YouTube data cen-
ters through ISP-X, for each completely unknown row in C,
the corresponding row in S must have at least one known
entry. For each row in C0, we pick one known field from the
corresponding row in S and divide it by the mean ratio to
get the corresponding column in C0 and vice versa for S0.
Finally we combine the rows of Cf , Cp and C0 to get the
completed matrix C′ for C, and S′ by combining Sf , Sp and
S0 for in-complete initial traffic matrix S.
• Results: For the estimate of “unseen” traffic, we first ex-
tracted all the IP prefixes from the Netflow data, which were
seen either in client-to-YouTube traffic or YouTubeto-client
traffic or both. There are around 150,000 such IP prefixes in
our Netflow data. Using these prefixes we prepared matrices
C and S by extracting the total number of bytes exchanged
by these prefixes with different YouTube data centers.
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Figure 13: Distribution of IP prefixes on the basis

of total number of YouTube data centers reached by

them using ISP-X

Fig. 13 shows the distribution of IP prefixes seen in the
YouTube traffic going through the ISP-X ’s network, on the
basis of the total number of YouTube data centers reached
by them using ISP-X. In Fig. 13(a) we see that more than
50% prefixes use ISP-X to reach all 7 YouTube data centers,
on the other hand less than 50% prefixes received traffic from
6 YouTube data centers through ISP-X. These figures show
that there is a large amount of unseen traffic for these IP
prefixes which is delivered through other ISPs.

We show the distribution of estimated unseen traffic for
IP prefixes using our methodology in Fig. 14. In this fig-
ure, x-axis shows the IP prefixes and y-axis shows the corre-
sponding unseen traffic as a fraction of total traffic received
or sent by these prefixes to all the YouTube data centers.
Moreover, for the client-to-YouTube data centers traffic we
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Figure 14: Distribution of estimated unseen traffic

for IP prefixes

Table 3: Summary of traffic estimation. (We hide

the original unit here due to the anonymity reasons.)

to YouTube from YouTube

Total seen traffic 0.59 39.7

Estimated unseen traffic 0.34 20.4

see that 36.5% of the estimated total traffic is not seen by
ISP-X. Similarly, for the YouTube-to-client traffic 34% of
the estimated total traffic is unseen. Overall the percentage
of unseen traffic is 34.1% of the estimated total traffic. We
summarize these results in Table 3.

We conclude from above that ISP-X does not see a huge
portion of the traffic exchanged by its customer ASes with
YouTube. Therefore, any changes in the routing policy used
by its customer ASes and YouTube can have significant im-
pact on the ISP-X ’s network. Furthermore, this estimation
of the unseen traffic can now enable the ISP-X to estimate
the “new” traffic demand and prepare for the potential im-
pact on its network, when routing changes lead to YouTube
to re-route unseen traffic through the ISP instead.

7. “WHAT IF” ANALYSIS
In Section 4, we observed that YouTube does a location-

agnostic proportional load-balancing. We also saw in Sec-
tion 5 that YouTube announces all-inclusive large prefixes
from all the locations where it peers with ISP-X. Finally,
we were able to estimate some of the traffic that is ex-
changed between clients and YouTube that ISP-X does not
see. These results give us insights on what is happening now.
However, since the dynamics of the network change over
time, it is natural to ask what happens if things change. In
this section we use the insights gained about YouTube and
its traffic characteristics with respect to ISP-X to investi-
gate some of the “what if” scenarios to examine the pros
and cons of different load-balancing strategies and routing
policies, and the impact of the resulting traffic dynamics on
both YouTube and the ISP.
• Scenario 1: What if YouTube employs a location

aware load balancing among its data centers?

We investigate the scenario when instead of being location-
agnostic, YouTube employs a “location based” load balanc-
ing scheme. One way YouTube can achieve this is by config-
uring its front-end web servers in such a way that they direct
the clients’ video requests to a data center that is nearest to
the location of the requesting client.

We already know when the client to YouTube traffic en-
ters ISP-X network from a PoP it exits from exactly one exit
PoP where YouTube is attached. We will use this informa-
tion to assign each PoP to its nearest YouTube data-center.
For instance, YouTube data center near the New York PoP
will be the only data center that will deliver video traffic
to all the PoPs that use New York PoP as the exit PoP
for YouTube bound traffic. We then evaluate how it af-
fects the ISP-X ’s traffic matrix and also the load at different
YouTube data centers.
Effect on the ISP traffic matrix: Since all the client
PoPs will fetch videos from the nearby YouTube data cen-
ter in this scenario, the traffic that is carried in the ISP
backbone will be reduced significantly. For instance, when
we computed the amount of traffic that remains local at the
source PoP under this approach, we see that about 44.5%
of overall YouTube to client traffic does not even enter the
ISP backbone compared to the same number for location-
agnostic load balancing. Moreover, it eliminates most of the
“long-distance”communication for the ISP. For example, Los
Angeles data center will never have YouTube to client traffic
going to Chicago PoP under the location based load balanc-
ing. Hence, location based load balancing will have a positive
impact on ISP-X’s PoP level traffic matrix, since it reduces
the traffic on ISP-X’s backbone network significantly.
Poor resource utilization under geographical load-

balancing. Although geographical load-balancing helps in
reducing the amount of traffic carried in the ISP-X ’s back-
bone, it results in poorer resource utilization and increased
peak load at each data center.

To analyze the impact of location based load balancing
on YouTube data centers, we compute the amount of video
requests served by each data center during different time of
the day. We estimate the amount of video requests served by
each data center by rearranging the client to YouTube data
center matrix on the basis of nearest PoP. In Fig. 15, we
compare the loads at six data centers under location based
and resource based load balancing schemes. In each figure
here, x-axis represents the time and y-axis represents the
total number of flows received by the corresponding data
center at different time. We observe that the load on New
York and Dallas data center increases significantly as they
are the nearest data centers for a large number of ISP-X
PoPs.

Furthermore, let us assume that the maximum number
of flows each data center receives in any hour indicates the
load at that data center. Let L

j
i indicate the number of

flows received by data center i in hour j, then we define the
load Lmax(i), i = 1, 2, . . . , 6 as, Lmax(i) = maxj=1 to 72 L

j
i .

Under these assumptions, the sum of peak load at each data
center (ML =

P6
i=1 Lmax(i)) will represent the amount of

computing resources needed during the peak load time to
serve all the client requests. If we compare MLs under the
two schemes, we see that the total units of resources that
are needed in case of location based load balancing is about
30% higher than that of the current resource based load
balancing.

The reason for this increase is the following. Since the
peak load time for client requests coming from different PoP
is different, the peak load at one of the PoPs of ISP-X is
proportionally shared by all the data centers in the location
agnostic load balancing. However, in case of location based
load balancing it does not allow the distribution of peak
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Figure 15: Comparison of traffic at different YouTube data centers for resource based and location based

traffic distribution schemes.

load, and all the load accumulates at the nearest YouTube
data center.

In summary, we see that while location based load bal-
ancing may reduce the load on ISP-X ’s backbone network,
it results in the poor resource utilization and creates more
“hot-spots” for YouTube by increasing the load on the indi-
vidual data centers during the peak load hours.
• Scenario 2: What if YouTube only announces IP

prefixes specific to each data center at the corre-

sponding location where it exchanges traffic with

ISP-X?

Since YouTube announces larger all-inclusive prefixes at each
location where it exchanges the traffic with ISP-X, the ISP
can do early exit routing and dump all YouTube-bound traf-
fic to YouTube at the nearest exit (see Sec. 5). This forces
YouTube to carry that traffic internally to its different data
centers. In this section, we investigate how traffic matrices
will change if YouTube only announces specific prefixes from
each of its location.

To see how the traffic matrix for ISP-X changes if YouTube
starts announcing only the specific local prefixes at each lo-
cation, we divided YouTube IP addresses in smaller prefixes
so that each prefix has IP addresses belonging to only one
YouTube data center. We combined smaller prefixes to form
larger prefixes as long as the larger prefixes included IP ad-
dresses from a single data center. From the three large pre-
fixes we obtained 2 /25s, 9 /24s and 5 /23s where each of
the prefixes belonged to exactly one data center.

If YouTube announces only the specific prefixes from each
location corresponding to the local data center, then ISP-X
will have to carry the traffic corresponding to each YouTube
prefix to the data center where it is present. This means
most of client to YouTube server traffic will be carried in
the ISP backbone.

However, as we have already seen in Sec. 4.5, the ratio
between client-to-YouTube and YouTube to client traffic is
approximately 1 : 59, the additional volume of traffic that is
carried in ISP-X backbone will only increase by 2% for the
total YouTube traffic.
• Scenario 3: What if due to BGP routing changes

the number of prefixes YouTube reaches using ISP-

X increases?

As seen in the Sec. 6, a significant portion of the traffic the
customers of ISP-X exchange with YouTube is not visible to
ISP-X. They are likely being carried by some other ISPs. If
YouTube changes its routing policy and decides to send all
that traffic through ISP-X, the amount of YouTube to client
traffic handled by ISP-X would increase significantly: by
about 50% of the current YouTube to client traffic volume.
This might also happen if YouTube experiences routing fail-
ures in its other providers’ network. Since YouTubetraffic
amounts for about 5.8%, this results in about 2.9% increase
in the total traffic carried by the ISP. On the other hand,
being able to estimate this unseen traffic accurately, ISP-X
can prepare and plan for such scenarios in advance.

8. CONCLUSIONS
In this paper, we presented the first extensive study of

traffic exchanged between YouTube data centers and users,
as seen from the perspective of a large tier-1 ISP. Using our
trace-driven analysis of the interaction between YouTube
and one of its large transit-providers, we inferred and ana-
lyzed the load balancing scheme employed by YouTube and
how these choices affect the traffic dynamics across a large
content provider and a tier-1 ISP. We further formulated
and solved unseen traffic estimation problem that ISPs can
use to get an estimate of the “new” traffic demand and pre-
pare for the potential impact on its network, when routing
changes lead their to re-route unseen traffic through the ISP
instead. We also conducted several “what if” analysis to un-
derstand how the load balancing strategies chosen by content
providers and routing policies used by the ISPs affect each
other.

Although this paper focuses primarily on the traffic char-
acteristics of YouTube, the methods used have general ap-
plicability. In fact, similar experiments can be easily carried
out for any other content-providers to understand how their
load-balancing and routing choices affect their and their
ISPs routing matrices.
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APPENDIX

A. CHANGESAFTERWECOLLECTEDTHE

DATA
After this data was collected in Spring 2008, we have ob-

served several ways in which YouTube video delivery has
changed. Most importantly, we have seen that YouTube
video delivery system now uses IPs that belong to Google
(AS15169) and even the DNS names for the video hosting
servers are using google.com domain. For example,
www.youtube.com now has a CNAME record mapping it to
youtube-ui.l.google.com which is then mapped to differ-
ent IP addresses when accessed from different geographic
locations. Since we do not have access to any new Netflow
data, we did some active measurements. We tried to access
www.youtube.com from hundreds of Planet-Lab nodes and
based upon ICMP ping latency and traceroutes to the IPs
the DNS servers return for www.youtube.com, we learned
that IPs mapping to www.youtube.com are part of differ-
ent geographic locations. Therefore, we conjecture that the
traffic to the YouTube front-end servers is most likely being
served by a data-center which is geographically closer to the
user. We do not have any new information regarding the
video traffic, other than the facts that (a) the video servers
IPs have changed and most of video server IPs are coming
from IP prefixes belonging to Google and (b) the packet size
distribution shown in Fig. 2 still holds true.
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