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ABSTRACT

We investigate how consumers view content using Video on
Demand (VoD) in the context of an IP-based video distri-
bution environment. Users today can use interactive stream
control functions such as skip, replay, fast-forward, pause,
and rewind to control their viewing. The use of these func-
tions can place additional demands on the distribution in-
frastructure (servers, network, and set top boxes) and can
be challenging to manage with a large subscriber base. A
model of user interaction provides insight into the impact of
stream control on server and bandwidth requirements, client
responsiveness, etc.

We capture the activity users in a natural setting, view-
ing video at home. We first develop a model for the ar-
rival process of requests for content. We then develop two
stream control models that accurately capture user interac-
tion. We show that stream control events can be charac-
terized by a finite state machine and a sojourn time model,
parametrized for major periods of usage (weekend and week-
day). Our semi-Markov (SM) model for the sojourn time in
each stream control state uses a novel technique based on a
polynomial fit to the logarithm of the Inverse CDF. A sec-
ond constrained model (CM) uses a stick-breaking approach
familiar in machine learning to model the individual state
sojourn time distributions. The SM model seeks to preserve
the sojourn time distribution for each state while the CM
model puts a greater emphasis on preserving the overall ses-
sion duration distribution. Using traces across a period of 2
years from a large-scale operational IPTV environment, we
validate the proposed model and show that we are able to
faithfully predict the workload presented to a video server.
We also provide a synthetic trace developed from the model
enabling researchers to also study other problems of inter-
est. We also use the techniques to model consumer viewing
of video content recorded on their personal Digital Video
Recorder (DVR).
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1. INTRODUCTION
Viewers are increasingly watching stored video, delivered

over IP networks, in preference to broadcast television. The
new modes of viewing content offer greater interactive con-
trol; at the same time, they place additional demands on
the distribution infrastructure (servers, network, and set top
boxes), which can be challenging to manage with a large
subscriber base. In addition to video quality, a consumer’s
viewing experience is determined by the system’s responsive-
ness to stream control operations (e.g., pause, fast-forward,
rewind). A poorly engineered and unresponsive system leads
to confusion for the user about whether a stream control
event was registered by the system, generates unnecessary
additional requests, and ultimately leads to decreased user
satisfaction. A provider’s infrastructure must be able to pro-
vide a minimum level of responsiveness despite the demands
that user interactions place on the set-top box, the network,
and the server.

Knowing how consumers use stream control features al-
lows the provider to optimize the delivery system and make
it responsive. This includes provisioning the system with the
requisite number of servers, network bandwidth, and set-top
box processing, identifying the right delivery mechanisms
(unicast, multicast or P2P), choosing the right method for
serving functions such as fast-forward and rewind, and fine-
tuning timers and buffering. In order to correctly engi-
neer the servers and network to support such interaction,
providers need to have a good understanding of users’ inter-
active behavior.

This paper provides a comprehensive model of a large pop-
ulation of consumers downloading and interactively viewing
Video-on-Demand (VoD) content. Our overall model con-
sists of two main components: an arrival process model and
a stream control usage model. We model the arrival process
for VoD requests, with the objective of capturing the distinc-
tive diurnal pattern and having a traffic intensity that can
be scaled as a function of the number of users provisioned

225



in a VoD system. Our model for stream control usage en-
ables us to get a better understanding of the usage of these
functions than ever before.

Previous studies of user interactivity have either been
based on a small set of users under laboratory conditions [3]
or with P2P users [22]. With the former, users are not in
their natural environment and are aware of being monitored.
With the latter, responsiveness can be dramatically affected
by peer bandwidth and latency and users tend to adapt their
behavior to the system’s responsiveness. As a result, infer-
ence based on these approaches can lead to biased results.

In contrast, to develop our model, we use comprehensive
data collected over a long period of time from a nationally
deployed IPTV service. Our data includes users requesting
VoD content and all the stream control requests generated.
The data is obtained from a large population of users view-
ing television programs and videos over a long period in a
natural setting – in their own homes. Our data spans a pe-
riod of two years, capturing two representative weeks from
each of the four different seasons. We used this large data set
to understand the variability in VoD viewing that may be
influenced by seasonal patterns in television programming
and human behavior. We also use this data to characterize
the user’s interaction with their DVR for viewing recorded
content.

To characterize the arrival process of user requests for VoD
content, we have examined a total of 120 days of data col-
lected from nine metropolitan areas, all of which has been
used for characterizing the arrival process. The average
number of set-top boxes provisioned was approximately 3
million over this period.

We characterize a user’s stream control interactions for
both VoD and DVR based on analyzing detailed traces of
all interactions generated by a more limited population of
about 300K users over a period of 9 days from 10 metropoli-
tan areas (to capture both weekend and weekday behav-
ior), while viewing either videos from the provider’s VoD
library or recordings on their in-home DVR. Even though
the stream control modeling work reported here is based on
traces covering the 9 day period, we have verified the valid-
ity of our model structure using the traces from the longer
2-week periods spanning the 2 year interval.

As a preview of one of the main results in the paper, we
show the state transitions that model the stream control
operations performed by a typical user (our typical couch
potato) in Fig. 1. As an example of the information the fig-
ure conveys, note that while viewing VoD (and thus in the
play state), the most common action a viewer initiates is
FastForward (FF), followed by Pause and Rewind. We
provide the details of the model, its derivation and the so-
journ times in each state later in this paper. As will be
evident, our typical couch potato is an active participant in
interactive viewing of on-demand content. This has implica-
tions on the system design, especially as on-demand viewing
grows.

The contributions of this paper are as follows.

1. Arrival Process model: We develop a VoD request ar-
rival process model based on data from two years.
The arrival process is parametrized by a set of K Fast
Fourier Transform coefficients which can be inverted to
generate arrival counts by the second for a given week-
day or weekend. This enables us to generate an aggre-
gate stream control arrival process at a VoD server.
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Figure 1: The weekend version of our synthetic
couch potato for VoD.

Each arrival of a request translates to a session that
contains multiple stream control events.

2. Stream control model: We develop two stream control
models. Each model uses a common finite state ma-
chine (FSM) in order to model the sequence of stream
control events in a given session. A state in the FSM is
a particular type of stream control event (e.g. Rewind

or play). The models differ in the methods by which
the state sojourn times are generated. In the first
model, state sojourn times are assumed to be inde-
pendent and are fitted using a polynomial function of
the CDF on a logarithmic scale. This sojourn-time
model is referred to as the independent sojourn time
model (IS). Thus, the first model is a conventional
semi-Markov model (SM = FSM + IS) and will be
referred to as such. In our second model, we constrain
the state sojourn times in order to preserve the ag-
gregate session duration distribution. The approach
follows the well-known stick-breaking (SB) paradigm,
as it is commonly referred to in the statistical litera-
ture [14]. We call the second model the constrained

model (CM = FSM + SB). We use these techniques
to also model stream control events for a user viewing
recorded content on the in-home DVR.

3. Validation: We provide extensive validation of our model
by using a simulator to compare the server load and
interruptions to the user viewing the content (because
of the under-run of the client playout buffer) from a
purely synthetically generated workload with that of a
real trace, and showing a good match on other signifi-
cant statistics as well.

4. Public data: We provide synthetic traces of stream
control events that researchers can use to validate other
algorithms [9].

The main body of the paper is devoted to describing the
modeling process. Although we recognize that it would be
ideal to provide a real trace (or traces) to readers so as to
enable them to arrive at their own models as well as use it
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to study other problems of interest, we are limited by pri-
vacy agreements and legal constraints. However, we provide
the ‘next best’ thing, a synthetic trace for a weekday and
weekend day that we believe would serve the same purpose.
In addition, we believe the complete model parameters that
we provide in [9] will enable readers to generate their own
synthetic trace for a given population of users.

2. RELATED WORK
Modeling interactive behavior is important in designing

any networked system which offers interactive usage, such
as Web browser navigation and IPTV systems, and a va-
riety of data mining techniques have been used to analyze
such data (e.g., click stream modeling [1, 17]). User behav-
ior is typically modeled using Markov processes [3]. Such
modeling work often focuses on predicting individual user
behavior in order to provide personalized services, but our
interest is in global behavior so that we can characterize the
workload of a centralized VoD server.

Branch et al. [3] report on the statistics of user behavior
for a VoD based system of 63 viewing sessions conducted
in a controlled setting. They report that lognormal sojourn
time distributions are good approximations for all the states
of the Markov state machine. In addition to the potential
limitations of characterizing user behavior in a controlled
setting, we find that a lognormal distribution does not ad-
equately capture the complete statistics (mean, variance,
third moment and median). Furthermore, this study also
lacked stream control functions for discontinuous viewing,
such as “skip” and “replay”.

Mongy et al. [18] investigate user behavior by clustering
video sessions to measure similarity between session groups.
From the standpoint of clustering user behavior, we identi-
fied that weekday and weekend sessions are sufficiently dif-
ferent in their VoD server requirements that they must be
modeled separately.

There have also been several studies on modeling access
patterns for Web-based streaming video systems. Cha et
al. [4] have investigated how users access videos in YouTube.
Guo et al. [11] compared access patterns for live streaming,
Web, P2P and VoD. They do not specifically model the in-
dividual stream control operations. We believe that stream
control operations have a significant impact on the server
load and it is therefore important to understand and model
these operations.

Several other studies have sought to characterize P2P-
TV and P2P-VoD traffic on the Internet [13]. [15] and [21]
describe designs for peer-assisted VoD solutions that offer
capabilities such as fast forward and seek to random play
points. Our work on a system to cooperatively use peer as-
sists and multicast [8] also seeks to provide a complete suite
of stream control operations for VoD usage in a large-scale
IPTV distribution environment. Such designs could benefit
from a comprehensive model for stream control operations
that a typical VoD user would generate. We believe our pro-
posed model can guide the design of such P2P-VoD systems.

More recently, Qiu et al. [20] and Cha et al. [5] have in-
vestigated modeling the user activities for an IPTV system
but have primarily focused on LiveTV sessions. Their model
captured events related to channel switching and STB power
on/off events. A synthetic workload generator is proposed to
estimate the load on a server due to channel change events,
taking as input the arrival process of an aggregate set of
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Figure 2: Architecture of a typical IPTV network

users. We believe that for VoD it is equally important to
model the individual stream control events as these have a
direct impact on the VoD server. Yin et al. [23] present a
data characterization study of a live Internet VoD system for
the Beijing Olympics. They study how presentation models
(e.g., instant messaging and advertising) impact user be-
havior. To the best of our knowledge, ours is the first study
of user stream control operations based on a commercially
deployed IPTV system at national scale.

3. VOD USAGE
In this section, we describe a typical IPTV network, de-

scribe the data we use in this paper, and finally present the
characteristics of stream control events.

3.1 System Architecture
Fig. 2 shows the typical architecture used for IPTV deliv-

ery. These networks consist of a set of interconnected Video
Hub Offices (VHO), each of which serves one or more metro
areas. All the customers in a metro area connect to a Video
Hub Office (VHO) and receive content from the VoD servers
in that VHO using unicast [8]. When a customer watching
a video performs a stream control event that can not be sat-
isfied using the local buffer, a request is transferred to the
server to execute the appropriate action. DVR use, on the
other hand, does not place that sort of demand on the server.
The broadcast content recorded on the customer’s DVR is
delivered using IP-multicast, after which every action per-
formed as part of DVR viewing is local to the customer.
In both cases, stream control events, like all other events
performed using the remote control, are logged and the logs
are uploaded to the VHO. Understanding these events would
help in the design of VoD delivery, as well as DVR solutions,
as they evolve.

3.2 Data used
Table 1 shows the different snapshots of data that we have

used throughout the paper. We have used multiple data sets
spanning over two years and covering a large subscriber foot-
print. DS1 is used for the modeling of the arrival process,
DS2 for the stream control finite state machine character-
ization, and DS3 for characterizing the evolution of video
popularity.

We briefly describe the different stream control operations
that are available to users; from those operations, we con-
struct the finite state machine (FSM) shown in Fig. 1 and
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Data Duration # of # of Time
set (days) VHOs STBs 2009/2010
DS1 120 days 9 3M Jan/Apr/July/Nov
DS2 9 days 10 300K Jan
DS3 60 days 10 300K Jan/Feb

Table 1: Data description

develop it further in subsequent sections. When users select
a video, they enter the start state. The video begins play-
ing (equivalent to being in the play state). At that point
there is a set of stream control operations that a VoD user
has access to: play, FastForward, Rewind, Skip, Re-

play, Pause, and stop. Users who do not use any stream
control operations in a session transition directly from start

to exit (users exit when they watch the video until the end
or explicitly exit before the end).

While most of these operations are self-explanatory, it is
important to distinguish between start and play. Users
enter the start state when they first start the video; they
enter play when they resume playing the video after another
stream control operation (e.g., Pause or FastForward).
Finally, when they end the session, users enter the exit

state.

3.3 Stream Control Usage Characterization
Understanding the intensity of stream control operations

and their breakdown, as well as the influence of the length
of the video, is useful and motivates our modeling work.
We briefly describe relevant VoD usage characteristics and
refer the reader to a short paper [10] for further details. We
have observed that the number of stream control events per
session is higher during weekdays than weekends.

For this study, we used the nine days of trace data col-
lected at ten VHOs. The data was anonymized to protect
the identity of the users. It contained over two million re-
quests for videos from ∼300K users. The data included in-
formation about the videos requested by the users, the set
of stream control operations performed, and when they were
performed. The library contains a large number of videos of
different genres and lengths.

Video length Weekend Weekday
(in min) Mean 95% Mean 95%

0-10 4.8 13 4.8 13
10-30 8.9 32 8.9 32
30-60 13.2 46 15.2 54
60-120 9.7 39 13.3 54
120- 8.8 33 10.7 41

Table 2: Statistics of the number of events per view-
ing session by video length.

We first look at the the statistics for stream control events
based on the content length (referred to as video length).
The statistics are provided for five ranges of video lengths in
Table 2. We notice that the mean and 95th percentile attain
peak values for video lengths in the range 30–60 mins. This
indicates that there is a correlation between the number of
stream control events and the length of the video, which
is expected. We also looked at the the number of stream
control events based on video genre, and cost (i.e., paid vs.
free videos). We did not find significant differences in the
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Figure 4: Breakup of DVR stream control events

average number of stream control events in either of the two
cases.

Fig. 4 and Fig. 3 show the relative proportion of the var-
ious stream control operations. The sum of FastForward

(FF), play, and Replay comprise 45% of the total. Skip is
also frequent; FastForward is very common in DVR view-
ing (presumably to skip over commercials).

3.4 VoD Content Length and Popularity
We next look at the distribution of the video lengths. Fig-

ure 5 shows the video length distributions. We observe that
a significant fraction are short videos, and there are about
5 clusters of video lengths.

We also characterize the popularity-rank distribution of
the VoD library. Fig. 6 shows the logarithm of video pop-
ularity (number of times each video was requested) against
the logarithm of the video’s rank for one representative day;
the dotted reference line has a slope of -1, characteristic of
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Figure 5: Video length distribution
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the Zipf distribution, similar to observations made by others
(e.g., [4]). This plot is based on all the videos requested by
all subscribers over one 24-hour period; we chose a day that
falls within our primary 9 day study period. We observe
that this popularity distribution is similar to what has been
reported in other studies.

In addition to the popularity, we believe it is also use-
ful to understand the evolution over time of the popularity
of a particular video. Figure 7 starts on that same day as
in the previous plot, and we chose the 300 (or 100) most
popular videos as an initial list. For the next 60 days, we
counted how many of those popular videos remained among
the top 300 (or 100) most popular. We chose a window of
60 days because some videos in the library get aged out and
are replaced by new content. We note the rapid drop-off in
the popularity of both the top 100 as well as the top 300
videos. Furthermore, there is a periodicity associated with
this change, indicating that some videos are more popular
during the week and others on weekends. This has implica-
tions for several system design issues, such as managing the
VoD library, caching, etc.

We utilize the characterization of the video length in our
synthetic trace generation. We could potentially use the
video popularity in the synthetic trace generation as well.

3.5 Quantifying the Impact of Stream Control
To motivate our study of stream control operations, we

examined the impact of these operations using a discrete
event simulator that faithfully emulates the interactions be-
tween clients and the video server in the IPTV environment.
Our primary metric for evaluation is the peak server band-
width, as it serves up the video requests and processes all
the stream control operations of the corresponding video.

Figure 8 shows the peak server bandwidth required over
a particular 24-hour day based on the actual trace, first ac-
counting only for the video requests (and ignoring all the
stream control operations). Second, for the same trace, all
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Figure 8: Impact of Stream Control Operations

the stream control operations are also properly accounted
for. We observe that server bandwidth increases from about
17 Gbps to about 20 Gbps at the peak when stream con-
trol operations are accounted for, a reasonably significant
increase. We use this to motivate the need to both model
the stream control operations and understand their impact.

4. MODELING ARRIVAL AND STREAM

CONTROL PROCESSES
Our objective is to construct a statistical model for the

video request arrival process and for a sequence of stream
control requests, as seen by a server complex of a large IPTV
VOD system. The instantaneous load on a server at a given
time, especially for video stream delivery, is determined by
the number of concurrent sessions at that time. We de-
fine concurrent sessions as all those sessions whose state lies
between start and exit at a given time. The number of
concurrent sessions is determined by the instantaneous ar-
rival rate and instantaneous session duration. Our over-
all model is thus made up of two components, an arrival
(or session-start) process model that mimics the arrivals of
new sessions into the system and a stream control model.
The stream control model consists of a finite state machine
(FSM) that models the detailed stream-control characteris-
tics of a typical customer (the hop sequence from individ-
ual state to state), and a model for the sojourn times for
each state of the FSM. The arrival process is described in
Sec. 4.1, the finite state model in Sec. 4.2 and the sojourn
time models in Sec. 4.3. Fig. 9 depicts the overall mod-
eling and validation process. We first generate a sequence
of session starts, hereafter referred to as arrivals. Each ar-
rival results in a selection of a video according to the video
length distribution described in Sec. 3.4, and spawns a sep-
arate state machine which generates a sequence of stream
control events. The server sees the aggregate of the arrivals
and their stream-control requests generated by each state
machine. Our model thus requires that we characterize the
arrival process and the state machine with sufficient accu-
racy.

4.1 Arrival Process Modeling
We first model the arrival process for VoD traffic. Our

objective is to retain the shape of the daily profiles (diurnal
pattern). The intensity of the profile is however scaled as a
function of the number of users provisioned in the system.
We noticed that there is a marked increase in the number
of arrivals for the weekends compared to the weekdays. For
modeling the arrival process, we look at the traces from the
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150 days across 2 years, which includes all 4 seasons of the
TV programming cycle.

The arrival process is characterized by the arrival time tn

of the nth customer and the inter-arrival time τn = tn−tn−1

between the nth and n − 1th customer. If all inter-arrival
times are i.i.d random variables with cumulative distribution
function (CDF) FA(t), then P (τn ≤ t) = FA(t). We asso-
ciate a counting process N(t), t ≥ 0 to the arrival process
tn, t ≥ 0 by the equivalence of N(t) ≥ n ⇐⇒ tn ≤ t. Thus
N(t) is a renewal process with inter-arrival time CDF FA(t).

Algorithm 1 Arrival process estimation for each day

Require: Input: tn, D days, S = # of provisioned STBs;
Output: FFT coefficients, Fdk.

1: for d ∈ D do
2: /* Binning each second and normalize counts */ Nd

= histogram(tn,86400)/S
3: end for
4: /* Average Nd over all days */ N̄d = Nd/D
5: /* Perform FFT for average day */ Fd = FFT(N̄d)
6: /* Save top K FFT coefficients */ Fdk = Fd(topK)

7: /* Regenerate arrival counts with inverse FFT */ N̂d =
IFFT(Fdk)

For each day of the week we provide parameters that can
be used to regenerate a representative synthetic arrival pro-
cess. To model a particular day of the week (e.g. Saturday)
we pooled data for 16 Saturdays over a two year period at
different times of the year (January, April, July, and Decem-
ber). The following procedure was then used in Algorithm 1.
Arrivals were binned by the second and then normalized by
the total number of STBs. This was necessary since the
number of subscribers was increasing over the two years. We
then computed the average daily profile and its Fast Fourier
Transform (FFT). The top-K FFT coefficients were then
stored. Through experimentation, we determined that only
the top 10 coefficients are required to to regenerate the ar-
rival process with a reasonable accuracy. The mean squared
error (MSE) is shown in Table 3 which indicates that the
error decreases as the number of FFT coefficients increases.
Figures 10, 11, and 12 also show the regenerated arrival
process for a varying number of FFT coefficients. Note that
the regenerated process matches the diurnal pattern of the

trace. In addition, we are also faithful in reproducing the
spikes that occur every 30 minutes. These spikes probably
occur as a result of users tuning into the VoD catalog after
watching a broadcast program.

# of Coeff. 50 25 10
MSE 0.011065 0.011357 0.011549

Table 3: MSE for different FFT coefficients

4.2 Finite State Machine for Stream Control
Events

For the purpose of modeling the stream control events, we
initially investigated a discrete-time first-order finite state
Markov process. A first-order Markov chain is entirely de-
fined by the transition probabilities and an initial state dis-
tribution. Comparison with a real trace revealed a poor fit
especially in terms of the session durations. To be specific,
the session durations (sojourn times) for a Markov chain
are geometrically distributed [16], whereas session durations
in our traces are not. We first address the state transition
probability estimation. The sojourn time estimation is then
addressed in Section 4.3. The state transition probability
matrix (P ) is determined by counting the number of transi-
tion events from each state (e.g., play to FastForward or
play to exit). We found that a single transition probability
matrix does not adequately cover all scenarios. An exami-
nation of the state transition probabilities for weekdays and
weekends found them to be sufficiently different to warrant
separate transition probability matrices. We also examined
transition probabilities for specific time-of-day effects (e.g.,
the busiest viewing period, typically called “prime time,” is
between 7 P.M. and 10 P.M.) but found that the variation
was not large enough to warrant the additional complexity.
We have thus chosen, in the interests of simplicity, to retain
here only weekday and weekend models.

We observed that the primary determinant was the traf-
fic intensity, rather than the transition probabilities for the
stream control events over the busy hour. Although we could
consider the effects of content genre and other environmental
dependencies, we believe these have a second-order impact
on the model.

An example of the estimated Markov chain is shown in
Fig. 1. When users begin a VoD session by selecting a VoD
video, the video starts to play automatically, initiating the
start state. From this state, users may move to the other
stream control states. For example, in Fig. 1, the user may
go to FastForward with a probability of 0.23 or to Pause

with a probability of 0.10. When they resume playing the
video, they enter play. While the state transition diagram
has transitions from every one of the eight primary states to
every other state, we only show the transitions with tran-
sition probability of 3% or more in Fig. 1. We refer the
reader to the tables in [9] for the transition probability ma-
trices for all the eight states obtained for both weekdays and
weekends.

4.3 Modeling Sojourn Time Distributions
We consider two approaches for modeling sojourn time

distributions. The first approach (SM), using a semi-Markov
model, assumes that the event sojourn times are indepen-
dent and focuses on fitting the sojourn time distributions for
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Figure 10: 10 coefficients
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Figure 11: 25 coefficients
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Figure 12: 50 coefficients

Figure 13: Play duration vs video length

each state of the FSM. In practice since the actual state so-
journ times may not be independent, it may not match the
distribution of the session durations. The second approach
(CM) is a constrained model, the stick-breaking approach,
and it imposes the session duration constraint.

4.3.1 Independent Sojourn Time Models (SM)

As motivated in the previous subsection we investigate the
use of a semi-Markov model, where the sojourn time distri-
butions can be freely chosen [6]. A semi-Markov model con-
sists of an embedded discrete parameter Markov chain with
a corresponding transition probability matrix and a set of
conditional sojourn time distribution functions. In its most
general form, the sojourn time distributions in state s are
dependent on the next state to be visited. We begin with a
restricted semi-Markov model, where the sojourn time dis-
tributions depend on the current state alone. After some
experimentation (taking into account time of day and video
length), we opted to normalize sojourn times with respect
to video length and to create two separate models; one each
for a typical weekend and weekday. Fig. 13 plots play dura-
tion against video length. There are some play events that
persist longer than the video length (shown by the red line).
This is an artifact of the IPTV system, which generates an
automatic time-out after ten minutes when a viewer fails to
exit after the video has ended, thus releasing this user from
the VoD server and conserving resources. From Fig. 13 we
observe that the play duration (the dominant event) is seen
to be proportional to the length of the video. This justifies
normalization of the play duration by the video length. For

the sake of simplicity, we chose to normalize the sojourn
times in the other states by the video length as well.We
found that after normalization by the video length, the so-
journ time in each state exhibited a weak day-of-week effect,
adding further justification of our choice to normalize by the
video length. (see Figure 14).

Weekend Weekday
Operation Mean Variance Mean Variance

Skip 53.56 1.48e5 39.29 9.53e4
FastForward 8.08 113.18 8.53 121.68

play 305.22 8.37e5 195.32 4.92e5
Replay 66.61 1.53e5 54.80 1.147e5
Rewind 5.39 52.43 5.62 46.10
stop 28.44 7.47e3 23.24 6.01e3
Pause 55.03 1.44e4 40.27 1.09e4
start 763.19 2.70e6 610.97 2.06e6

Table 4: Statistics of stream control durations (in
seconds), for VoD.

We now examine the day-of-week effect on sojourn time.
The mean values of the states play and start are far greater
than those of any other state; this is where viewers spend
most of their time. Most of other states have much smaller
means, indicating that users tend to switch out of them
quickly. Table 4 shows the mean duration for each state.
Note that the mean play duration is smaller on weekdays
than weekends (a 32% reduction). A smaller reduction of
19% is seen between weekend days and weekdays for the
normalized play durations. See Figure 14).

Thus, we have now reduced the problem to that of model-
ing the CDFs of the normalized sojourn times. Let {Ts(n), n =
0, 1, 2 . . .} be the sequence of sojourn times in state s for a
given user and let random variable Ts denote a generic so-
journ time duration. Our objective is to model the CDF
Fs(τ) := Pr(Ts ≤ τ).

Two commonly used models for characterizing heavy tailed
distributions (HTDs) are the generalized Pareto and Weibull
distributions. The maximum likelihood parameters for the
Generalized Pareto function for shape and scale are a =
2.174 and b = 0.0012 respectively. Similarly, for the Weibull
function they are a = 0.0108 and b = 0.3391. Fig. 14 and
Fig. 15 shows that these standard HTDs are not a very close
fit to the observed data.

To investigate further, we examine empirical CDFs (i.e.,
CDFs computed from data) for different states s in Fig. 16.
In this figure, log(τ) is plotted against F (τ) for each state Fs
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Figure 14: CDF of normalized play durations for
VoD, different days and different distribution fits
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Figure 15: QQ plots for Pareto and Weibull gener-
ated synthetic traces

(in other words, this figure shows Gs, the inverse of the CDF
on a logarithmic scale).1 Fig. 16 suggests that we should try
to represent log Gs(p) as a polynomial function of p.

We thus assume that the inverse CDF can be modeled by
the m + 1-term polynomial log Ĝ(p) =

Pm
i=0 aip

ni for given
ni, i = 0, 1, . . . , m. For a given set of ni’s, we choose the
parameter vector ā = (a0, a1, . . . , am)t so as to minimize the
(N + 1)-point sum squared error (SSE)

SSE(N) =
X

pi

(log G(pi) − log Ĝ(pi))
2,

where pi = i/N, i = 0, 1, . . . , N is a uniformly spaced set
of points in the interval [0, 1] at which the empirical inverse
CDF is sampled. From linear estimation theory, the vector
parameter ā that minimizes the SSE is given by

ā = (U tU)−1U tg, (1)

where U is a (N + 1) × (m + 1) matrix, whose ith column
is (pni

0 , pni

1 , pni

2 , . . . , pni

N )t, i = 0, 1, 2, . . . , m, and g is the
column vector (log G(p0), log G(p1), . . . , log G(pN ))t, which
is obtained from the data.

We experimented with several choices for the basis func-
tions and used the quantile-quantile (QQ) plot as a guide to
the quality of the fit. Our search over ni = ik, k = 1, 2, ..., 6
revealed that k = 3 is optimal, and we provide some evi-

1To work around the problem that Fs will not have an in-
verse when the underlying distribution has nonzero mass at
a point, we define Gs(p) = arg minx{Fs(x) ≥ p}.
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Figure 16: Sojourn time inverse CDFs
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Figure 17: SSE as a function of number of parame-
ters, m, for the Fast-Forward duration CDF.

dence to support this in the QQ plots shown in Fig. 18 and
Fig. 19.
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Figure 18: Various QQ plots. Horiz. axis: ac-
tual data. Vert. axis: synthetic data. Top row:
play; bottom row: Pause. Left to right (m, k) =
(6, 3), (11, 3), (6, 1), respectively.

For ni = i3, the SSE is plotted as a function of m in
Fig. 17. Even though this plot suggests that m = 6 param-
eters are sufficient, the QQ plot suggests that the fit is not
sufficiently linear until m = 11.

We also examined the correlation structure of the collected
data. The first-order correlation coefficient, i.e., the corre-
lation coefficient of successive sojourn times, is shown in
Table 5. The correlation coefficients are seen to be small,
though not insignificant, especially in the play state. While
we could choose to model the sequence of sojourn times as
a correlated autoregressive process, we would have to give
up control over the marginal CDF of the generated pro-
cess. Given the small correlation coefficients, we opted for
simplicity and chose an independent identically distributed
process.

Finally, we remark that constructing a fit for the inverse
CDF, rather than the CDF, has an added advantage that
a random variable T with the desired distribution can be
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Play Pause Replay Rew Skip Start FF
0.21 0.21 0.05 0.10 0.16 0.14 0.09

Table 5: First-order corr. coeff. for the sojourn time
of each state.
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Figure 19: Fitted Distributions, m = 11 parameters.
Top, left to right: play, Pause, Replay, Rewind.
Bottom, left to right: Skip, start, FastForward, stop.

obtained by warping U a random variable uniformly dis-
tributed on [0, 1] using the formula T = exp(

Pm
i=0 aiU

ni).
We computed the mean, variance, third moment, and me-

dian of all state distributions to compare the accuracy of
the various fits. As seen in Table 6, the family of polyno-
mial exponential fitting functions performs better than the
standard HTDs considered here with respect to these met-
rics. Table 6 shows that the polynomial fitted distributions
fit the third moment and the median of the data set better,
unlike the generalized Pareto and Weibull functions. The
polynomial distribution has the closest fit and has an accu-
racy for all metrics to within 1% of the data. Additionally,
Fig. 14 shows the closeness of the polynomial fit when com-
pared to the real trace’s normalized CDF.

Trace Pareto Weibull Polynomial
E[X] 0.0499 0.0269 0.0324 0.0498

Var[X] 0.0220 0.0090 0.0068 0.0224
E[X3] 0.0137 0.0051 0.0030 0.0143
Median 0.0019 0.0018 0.0043 0.0019

Table 6: Comparison of statistics of trace data and
fitted distributions for play state.

The state transition matrices and polynomial coefficients
are tabulated in [9]. Fig. 20 shows the Q-Q plots for the
synthetically generated data and the normalized trace data
for the sojourn times for each of the VoD stream control
states. All the state durations are close to the reference
line, indicating a good match between the observed and the
modeled data.

4.3.2 Stick-Breaking Sojourn-Time Models (CM)

The modeling approach in Sec. 4.3.1 assumes indepen-
dent sojourn times for each stream control event. In reality,
event sojourn times are not independent—e.g., a Rewind

event cannot have a duration that exceeds the total sum of
the preceding play events. A problem with the indepen-
dence assumption is that the session duration distribution
for the synthetic trace would be a sum of independent ran-
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Figure 20: Q-Q plots, weekend (normalized)
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Figure 21: CDF of session duration for real- and
SM-based trace on a weekday and weekend.

dom variables and this is in general different from the actual
session duration distribution. We show in Fig. 21 the cumu-
lative distribution of session durations observed on a week-
day and a weekend in real traces and through the approaches
in Sec. 4.3.1. It is clear from the figure that the FSM ap-
proach generates a considerable number of short sessions and
compensates by generating a few very long sessions.

To rectify this situation, we present an approach that pre-
serves the overall session duration distribution. The main
idea is to model the fraction of the session duration taken
up by the sojourn time in each state, as well as the overall
session duration. Since the state sojourn times must add up
to the overall session duration they cannot be independent,
so this model does capture some of the subtle dependen-
cies between the state sojourn times. Later in this section,
we address the issue of joining together the FSM and state
sojourn time models.

Models for non-negative random variables with a speci-
fied sum have been studied in the probability theory liter-
ature [14] and more recently have found application in ma-
chine learning and pattern recognition. If the sum of the
random variables is unity, then a probabilistic model for the
random variables is equivalent to constructing a measure
on the space of probability distributions. In the machine
learning literature, the reason for the interest in such ran-
dom measures comes from a desire to determine a maximum
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likelihood estimate of the prior distribution given a set of ob-
servations, see e.g., [2] for an estimation problem related to
Gaussian mixture models.

The approach that we take here is to model the fraction
of the residual session duration that is occupied by each
state. This approach, referred to as the stick-breaking ap-
proach [14], goes back at least as far back as [12]. Let Ts

denote the random session duration, and let Ti denote the
random duration of the ith event, i = 1, 2, . . . , K (K = 7
in this case). Thus Ts = T1 + T2 + . . . + TK , where K is
the number of distinct types of stream control events. We
model the distributions of the random variables X1 = T1/Ts,

X2 = T2/(Ts − T1), and in general Xi = Ti/(Ts −
Pi−1

j=1 Ti),
i = 1, 2, . . . , K. Thus Xi is the fraction of the ‘remaining’
session duration occupied by the ith event, and XK = 1.
We also model the distribution of Ts. Let pi be the mod-
eled pdf of Xi and let ps be the modeled pdf for Ts. An
individual session is then generated by picking the fraction
Xi independently and according to pi, i = 1, 2, . . . , K − 1,
XK = 1 −

PK−1
i=1 Xi and Ts according to ps. The individ-

ual session durations are then given by T1 = X1Ts, T2 =
X2(Ts − T1), and in general Ti = X1(Ts −

Pi−1
j=1 Tj). This

approach preserves both the total session duration as well
as the fraction of a residual session occupied by each event.
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Figure 22: The pdf of Xi for different values of the
shape parameter for the underlying Weibull distri-
bution. Heavy tails lead to cup shaped distributions.

We have thus reduced the problem of modeling the state
sojourn durations to that of modeling the fractions Xi, i =
1, 2, . . . , K. In most machine learning applications, the ob-
served data comes from a Bernoulli process or Bernoulli
scheme, and the estimation problem is to determine the most
likely prior probability distribution, given the observed data.
The beta distribution is a natural class of prior distributions
in this setting [14]. The beta distribution is a parametric
family of distributions on the open unit interval given by

p(x) =
Γ(a + b)

Γ(a)Γ(b)
xa−1(1 − x)b−1. (2)

which are well suited to modeling the Xi’s. The mean and
variance of the beta distribution is given by a/(a + b) and
ab/(a+ b)2(a+ b+1), respectively, and the distributions are
cup-shaped for a, b in the interval (0, 1).

Compared to the standard machine learning setting, our
fractions Xi arise from competing sojourn times and it is
not obvious that beta random variables will be useful. Some
insight into the modeling of the random variables Xi can be
obtained from the following toy example. Consider a pair
(T1, T2), of independent identically distributed sojourn times

with the Weibull distribution,

p(x) =
k

λ

“x

λ

”k−1

e−(x/λ)k

U(x) (3)

where U(x) is the unit step function. Let X1 = T1/(T1+T2).
The pdf of X1 is plotted in Fig. 22 for different values of the
shape parameter k. It is surprising that the observed pdf’s
are close in distribution to beta distributions. More interest-
ing is the fact that heavy tails for the Weibull distribution,
k < 1, lead to cup shaped distributions for the Xi’s. In
other words, heavy tails lead to extreme ratios.
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Figure 23: Empirical and fitted beta distributions
for X1 (left) and X2 (right).

While the above toy example was based on the Weibull
distribution for state sojourn durations, it is seen in Fig. 23
that the Xi’s obtained from the trace data are also well
modeled by the beta distribution, and in fact have the dis-
tinctive cup shape that we observed when the Weibull dis-
tribution has heavy tails. We also show in Fig. 23 the fitted
beta distributions in which the parameters a and b are es-
timated so as to match the empirical mean and variance of
X1, i = 1, 2, . . . , K −1. Thus, estimated parameters â and b̂

are given by â = µγ, b̂ = (1−µ)γ, with γ = µ(1−µ)

σ2 −1. The
matching between the empirical and fitted distributions is
seen to be quite good.

We now address the problem of joining the stick-breaking
sojourn times with the FSM model. There are two issues
to be addressed: (i) the FSM might visit a state several
times, while the stick-model produces a single number for
the aggregate time spent in that state, and (ii) a sample
path through the FSM might exclude some states for which
the stick-breaking model generates a positive fraction Xi.
Setting this Xi to zero will perturb the resulting session
duration distribution.

To address (i) the fraction Xi is divided equally by the
number times the FSM visits state i. To address (ii) we
generate a number of FSM sample paths, as well as a num-
ber of sample fractions using the stick breaking model. A
matching algorithm is then used to match FSM sample paths
and the stick-breaking outcomes, to yield the CM model.

4.4 DVR Model: Highlights
Much of the DVR modeling issues are similar to those

encountered while modeling VoD. For example, the DVR
arrival process is quite similar to the VoD arrival process –
a superposition of a bursty and a smooth component with
a well-defined diurnal variation. Hence, we only emphasize
the key differences in this section. Figs. 24 and 25 show
the normalized sojourn time for VoD and DVR respectively
for a weekend day. The estimated state transition matrix
for the DVR state machine revealed a few important differ-
ences compared to the VoD state machine. The transition
probabilities from the start to exit states are 46% and
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Figure 24: All stream control CDFs, weekend (nor-
malized) for VoD
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Figure 25: All stream control CDFs, weekend (nor-
malized) for DVR

17% for VoD and DVR respectively, indicating less use of
stream control during VoD viewing. Second, the transition
probabilities from play to FastForward are 41% and 55%
for VoD and DVR respectively. The higher probablility of
FastForward in the DVR model is probably explained by
the efforts of viewers to avoid the advertising that forms such
a large part of broadcast television programming. Similarly,
Skip has a higher probability in the DVR model, presum-
ably also due to users’ efforts to avoid ads.

We have also developed DVR stream control models for
both the weekend and weekday. We refer the reader to our
technical report for the detailed model parameters [9].

5. EXPERIMENTAL RESULTS
One of the goals of our work is provide the ability to gener-

ate synthetic traces that effectively capture users’ behavior
in a large-scale VoD system. In this section we validate the
accuracy of our models by generating completely synthetic
traces and comparing it to real traces using a custom event-
driven simulator. Stream control events affect how much of
a video is watched. This directly translates into how much
load each session places on the server. As a result, we use
server load as our primary metric of comparison. We use the
simulator to accurately capture the effects of stream control
events on server load. However, we also examine the gener-
ated traces for other attributes and show that our models are
able to successfully capture the important aspects of users’
VoD viewing sessions.

5.1 Synthetic Trace Generation
We used our models to generate completely synthetic traces

for a given subscriber population. The process starts with

the generation of a stream of session start requests. There is
variability in the number of arrivals, both on week days and
weekends, even for the same number of subscribers over the
2 year period. This may be due to a variety of societal fac-
tors (seasonal viewing patterns, TV programming and new
content generation cycles etc.) As a result, we compute the
mean of all traces (normalized by their respective number
of subscribers for those days). We use the process described
in Section 4.1 to generate a synthetic trace, and scale our
modeled arrival process for a given subscriber population.

Once we have the arrivals, we then model the session be-
havior using either the SM or the CM model. In the case of
SM, for each session, we used the stream control model to
generate a sequence of stream control events and their so-
journ times. Since each FSM produces events whose lengths
are normalized by movie length, the individual state sojourn
time durations generated by each FSM are then scaled by
the movie length. The movie length is drawn from a dis-
tribution fitted (using the Kaplan-Meier technique) to the
empirical movie length distribution shown in Figure 5.

In the case of CM, given a realization of Xi, the fraction of
the remaining session duration occupied by the ith event, we
generate independent sequences of stream control events by
using the FSM. The output of the FSM gives us a sequence of
events in a particular order from the Start state to the Exit

state. We divide the Xi’s equally by the number of events
for state i to allocate the individual time spent per state.
Finally, for a randomly chosen session duration (obtained
from an appropriate session duration distribution), the Xi’s
are rescaled by the session duration. This allows us to retro-
fit the session durations from the stick-breaking model to the
sojourn times with the FSM.

5.2 Experiment Setup
We validated the accuracy of our models, by running the

synthetic and actual traces through the simulator. Our sim-
ulator faithfully models the message exchanges between a
client (i.e., set top box) and a video server with an abstract
model of the network between the client and the server.

Modeling Videos. We model videos as consisting of a se-
quence of 2-second chunks. In the absence of stream control
events, these chunks are requested and played out in se-
quence. This is similar to the techniques used in many P2P
systems [8, 15] and in some centralized approaches (e.g.,
HTTP Live Streaming [19]). With stream control, clients
jump to different parts of the video depending on the event,
and then request the chunks sequentially from that point
on. We assume that FastForward and Rewind are imple-
mented using “trick streams”. Trick streams essentially are
alternate video files that encode only certain key frames of
the video and provide the impression that the video is being
played faster.

Client modeling. Clients initiate requests for videos based
on the input file. On receiving a play request, the client
sequentially requests one chunk at a time until it executes
a stream control event. We assume that a Skip takes the
viewer 30 seconds into the video, while a Replay results
in a 7-second jump backwards. When clients execute one
of these operations, the existing transfer is aborted and a
request is sent out to the server for the new chunk or a trick
stream.
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Figure 26: Peak server load generated by two dif-
ferent real traces and the pure synthetic trace, for a
commensurate number of subscribers.

Each client is assumed to have a local disk which it uses
to store the data being transferred by the server for the
duration of the video (after which it is deleted). The client
waits for four seconds of data in its playout buffer before
starting to play the video. Thus, when a client performs a
Skip or a Replay, the client waits until sufficient data is
buffered before continuing to play. Finally, the client tries
to follow the state transitions faithfully and ignores events
that it encounters in the trace that cannot be executed in
its current state.

Server Modeling. The server in our simulator responds to
requests for chunks and trick streams by delivering them
as a unicast stream. The server keeps track of the existing
transfer for each client. Note that the server only gets chunk
requests and is oblivious to the specific stream control op-
eration performed. This behavior is not very different from
what many commercial VoD systems implement [7]. If it
receives a request for a new chunk or trick stream before
the end of an existing transfer, the server aborts the exist-
ing transfer, and starts serving the new request. We assume
that all video streams and trick streams are encoded at 2
Mbps and that the server transfers the video 10% faster (2.1
Mbps) than the playout rate to accommodate for transient
network conditions.

5.3 Server Load: Synthetic vs. Real Traces
For our main result, we compare the load at the server

due to real and synthetic traces. Nominally, we generated
a synthetic trace for a weekday using a subscriber base of
∼3 million. We compare this to the server load due to real
traces with a commensurate number of subscribers.

We present the result in Figure 26. The plot shows the
peak server bandwidth (measured every minute) over time
for the two real traces and the purely synthetic trace. There
are a few observations we make. First, the synthetic trace
nicely captures the diurnal changes in load and resembles
the pattern observed in the real traces. Next, for the same
number of subscribers and on the same day of the week, the
real traces can actually generate significantly different load.
This is because the number of concurrently active users is
different at these different times. Finally, we see that the
load due to the synthetic trace falls between the two real
traces. This is not unexpected because we model the session
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Figure 27: # of concurrent sessions (all Tuesday
traces and synthetic trace) scaled for a population
of 500K

arrivals to be an average of the arrivals across the different
days (refer Section 5.1). We validate this next.

5.4 Accuracy of Session Arrival Model
In the first result, we attributed the difference in server

load between the synthetic trace and real traces to the vari-
ability in load even in the real traces. To validate this, we
plot the number of concurrent sessions for all the 16 Tues-
days (spanning 2 years, with varying number of subscribers)
in our DS1 data set. To remove the inherent scaling issues
with a growing subscriber base, we rescaled each trace in-
dividually to a population of 500K subscribers. We show
the number of concurrent sessions for the 16 Tuesdays in
Figure 27.

The peak number of concurrent sessions varies widely from
1200 to 2700 during the busy hour. We did not observe any
distinctive correlation (e.g., based on seasons) between the
different Tuesdays. We also plot the concurrent sessions for
the purely synthetic trace in the plot using the thick red line.
The synthetic trace matches the diurnal variation of the em-
pirical traces. We also observe that the synthetic trace falls
within the upper and lower bounds of the number of con-
current sessions. This is important: given the variability,
we cannot exactly match the session arrivals, but this result
shows that model is able to generate a representative set of
session arrivals. In addition to the number of provisioned
subscribers, we also examined the variability if we normal-
ize by just the number of active subscribers (i.e., makes at
least one request on a given day). Our results (not shown)
indicate very similar variability across the 16 days.

5.5 Comparison of Stream Control Models
In this experiment we study the accuracy of the two stream

control models we have proposed. We generate a semi-
synthetic traces using each of the two stream control model
approaches (SM, CM), for both a weekday and a weekend
and compare them against the representative real traces. In
order to eliminate any effects of the session arrival genera-
tion process, we use the arrivals from the real traces, but
only generate the stream control events and their durations
using the stream control models (this is the reason we say
these are a semi-synthetic traces). We present the results
both for a weekday and a weekend day in Figures 28 and 29
respectively.
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Figure 28: Peak server load on Friday generated by
real and synthetic (SM and CM) traces.
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Figure 29: Peak server load on Saturday generated
by real and synthetic traces (SM and CM).

The plots shows that our modeling of stream control func-
tions accurately captures the load at the server. In particu-
lar the plots show that the SM-based model almost matches
the load at the server at all times indicating that it is able to
accurately capture the effects of stream control. The stick
breaking (CM-model) approach, while performing well, over-
estimates the load at the server. This result goes to show
that it is not only important to generate accurate session du-
rations; it is also important to get the number and sequence
of stream control events correct.

5.6 Stream Control Events in a Session
We then compare the number of stream control events

observed in the real trace to that generated in the synthetic
traces. Specifically we compare the average number and
average duration of stream control events per session for
both a weekend day and weekday. We report the results in
Table 7.

The SM-based approach, on average, generates a similar
number of stream control events and durations compared to
the CM approach. In particular, we see that the CM ap-
proach overestimates the Rewind and FastForward dura-
tions, which adds load to the server. On the other hand, it
underestimates the Pause duration which reduces load on
the server. This explains the difference in the peak server
bandwidth observed in Figures 28 and 29 between the SM
and CM approaches. The reason for the inaccuracies in
event durations generated by the CM model is because of
error accumulation in the regenaration process, where beta

random variables are successively subtracted off to gener-
ate the time intervals associated with each event. For this
reason, we believe it is better to estimate the beta random
variables in an increasing order of the mean value of the
event durations and then reconstruct the sojourn times for
each of the states from these generated beta random vari-
ables.

It is observed that the SM approach results in very high
variability in the session durations, while the trace using
CM does not. For example, consider the total time spent
by the user in the play state. The real trace had a stan-
dard deviation of 1856.46 for the weekday and 1940.22 on
the weekend day. The SM model had 2928.95 and 2892.78
for the weekday and weekend respectively. But, the CM
model had 1744.70 and 1748.08 for the weekday and week-
end, matching the real trace more closely. Thus, while the
SM model captures the average durations nicely, CM cap-
tures the variability better.

5.7 Client Session Interruptions
As clients perform stream control operations, they may

experience interruptions in their viewing of the video until
enough data is buffered in the play-out buffer. In this ex-
periment we characterize the interruptions experienced by
clients in the real trace in comparison to the synthetic trace.
Note that the exact number of interruptions and their du-
ration depends on the specific client implementation, the
chunk size used, etc. Our goal here is to compare the viewer
experience with the real trace and the synthetic traces with
one example implementation.

For each stream control operation, we identify if that por-
tion of the video needed is locally available in the client
buffer. If not, we request for that portion from the server.
We assume that a minimum of 4 seconds of video has to
be buffered before the video can be displayed. If the de-
sired portion is not available, we count it as an interruption
and measure the time that the viewer has to wait before the
video starts playing again.

Data % of interr. Avg. interr. Avg. Duration
sessions per session of interr.

Syn. CM 41.31 3.17 4.98
Syn. SM 38.11 2.51 4.76

Real Trace 37.45 3.47 5.17

Table 8: Session interruption statistics

Table 8 presents the statistics related to interrupted ses-
sions for the real trace as well as the synthetic traces gener-
ated using the two alternate models (the CM model and the
SM model). The results show that the fraction of sessions
experiencing interruptions with the synthetic traces is com-
parable to that with the real trace, with the SM model doing
slightly better than the CM model. However, among the in-
terrupted sessions, the CM model more accurately captures
the average number of interruptions per session (3.17 for
CM model vs. 3.47 for the real trace) than the SM model
(2.51 interruptions per session). The CM model also cap-
tures the average duration of interruptions better than the
SM model. However, the differences between the two mod-
els, for this metric, are not statistically significant enough
to advocate one model over the other.
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Weekend Weekday
Avg. Count Avg.Duration Avg.Count Avg.Duration

State Real SM CM Real SM CM Real SM CM Real SM CM
Play 3.13 3.62 4.73 1163.24 1108.06 1120.03 2.89 3.31 4.61 1232.31 1178.51 1120.75
FastForward 1.93 2.31 3.02 15.78 38.98 90.48 1.55 1.80 2.60 12.38 34.78 89.16
Rewind 0.49 0.63 1.17 2.56 9.89 68.42 0.50 0.64 1.20 2.56 9.89 68.42
Pause 0.71 0.89 1.27 63.44 84.65 37.92 0.70 0.90 1.38 61.16 94.21 37.42
Skip 1.61 1.90 2.82 76.21 138.90 37.38 1.32 1.49 2.50 69.60 129.28 38.47
Replay 1.06 1.39 2.28 62.63 128.92 17.31 0.95 1.19 2.20 62.07 126.68 17.69

Table 7: Breakup of stream control events on weekdays and weekends.

6. CONCLUSIONS
We set out to understand and model interactive user be-

havior in an IPTV environment, particularly its impact on
system resources. We modeled user interactivity based on
traces of user actions captured from a nationally deployed,
operational system. We developed a video request arrival
process model and two comprehensive stream control mod-
els. The frequency domain (FFT) based arrival process
model faithfully captures the diurnal pattern while also pre-
serving the periodic bursty nature of the traffic with only a
few parameters. The stream control model consists of a fi-
nite state machine and two alternative models for determin-
ing the state sojourn times. The first alternative (SM model)
seeks to preserve the sojourn time distribution for each state.
The second alternative (CM model) puts a greater emphasis
on preserving the overall session duration distribution.

To establish the validity of our overall models for user
interaction, we generated completely synthetic traces of user
interactions and fed both the synthetic trace and the real
trace to a simulator of the IPTV VoD system. We compared
the resulting bandwidth requirement on the VoD server and
showed that the synthetic load from our model achieves a
very good match to the load imposed by the real traces.

When a comparison is made based on the peak server
bandwidth, the SM model provides a closer match to the
empirically observed peak server bandwidth as compared
to the CM model. However, the CM model captures the
standard deviation of the session durations more accurately.
We feel that while both alternatives are valid the SM model
gives us a better estimate for provisioning capacity, a task
of interest to providers.
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paragraph in page 2 where the authors describe what is the input 
data to derive and validate the model. 
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there of the same population level? Does time zone or population 
have any effect on the model? 
 

Response from the Authors 
 
We would like to thank the reviewers for their insightful 
comments. We have taken careful consideration of all their 
comments. One reviewer has raised the point that more complex 
metrics, in addition to the VoD server bandwidth for a complete 
understanding of user behavior modeling. The computational 
overhead at the server is proportional to the number of stream 
control operations. To this end, we have provided in a companion 
paper [1], where a we did a careful micro- benchmarking of a 
VoD server by loading it with requests performing various stream 
control operations. We found that while the overheads are 
somewhat dependent on the type of operation, for the most part it 
is important to characterize correctly the number of operations, 
which we have done in this paper. With regards to aborted 
sessions and client interruption/rebuffering, our simulator 
faithfully captures the number of sessions that are aborted and the 
metric of client starvation. We note that this is very dependent on 
client implementation. We have added a plot on client starvation 
in the revised paper to address this comment.  
 
Another suggestion from reviewers was to clarify the various data 
sets that we have used. We have used multiple data sets spanning 
over two years and a very large subscriber footprint. Specifically, 
our data sets include: 1) Data Set 1 (DS1) – for 120 days, from 9 
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VHOs, 3 Million STBs, from Jan/Apr/July/Nov 2009-2010, which 
we have used for the arrival process modeling; 2) Data Set 2 
(DS2) – over 9 days, from 10 VHOs, 300K users, Jan. 9-17, 2010 
used for characterization of the stream control FSM;  3) Data Set 
3 (DS3) – for 60 days, from 10 VHOs, 300K users, in 2009, for 
studying the evolution of popularity. We have included a table in 
the paper to make this clear.  
 
Finally, in response to the reviewer’s request to better understand 
the independence between the training data and validation data, 
we note that in all cases the training and validation data were 
separate and independent. For modeling the arrival process of a 

particular day (e.g., Saturday), we pooled data from 16 Saturdays 
across a 2 year period (DS1) and validation is based on a 
randomly chosen weekday and weekend day from DS2. The DS1 
and DS2 datasets are also from different days. Similarly, the finite 
state machine model was also trained and validated using 
different data sets.   
 
[1] Pat Diminico, Vijay Gopalakrishnan, Rittwik Jana, Kadangode 
Ramakrishnan, Deborah Swayne, Vinay Vaishampayan, 
“Capacity Requirements for On-Demand IPTV Services”, in Proc. 
of the third International Conference on COMmunication Systems 
and NETworkS (COMSNETS 2011), Bangalore, 2011. 

 

241




