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ABSTRACT

Although network intrusion detection systems (IDSs) have
been studied for several years, their operators are still over-
whelmed by a large number of false-positive alerts. In this
work we study the following problem: from a large archive of
intrusion alerts collected in a production network, we want
to detect with a small number of false positives hosts within
the network that have been infected by malware. Solving
this problem is essential not only for reducing the false-
positive rate of IDSs, but also for labeling traces collected
in the wild with information about validated security inci-
dents. We use a 9-month long dataset of IDS alerts and
we first build a novel heuristic to detect infected hosts from
the on average 3 million alerts we observe per day. Our
heuristic uses a statistical measure to find hosts that exhibit
a repeated multi-stage malicious footprint involving specific
classes of alerts. A significant part of our work is devoted
to the validation of our heuristic. We conduct a complex
experiment to assess the security of suspected infected sys-
tems in a production environment using data from several
independent sources, including intrusion alerts, blacklists,
host scanning logs, vulnerability reports, and search engine
queries. We find that the false positive rate of our heuris-
tic is 15% and analyze in-depth the root causes of the false
positives. Having validated our heuristic, we apply it to our
entire trace, and characterize various important properties of
9 thousand infected hosts in total. For example, we find that
among the infected hosts, a small number of heavy hitters
originate most outbound attacks and that future infections
are more likely to occur close to already infected hosts.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: [General
Security and Protection]; C.2.3 [Network Operations]:
[Network Monitoring]
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1. INTRODUCTION
Evaluating and improving network defenses necessitates

the use of realistic traces, like IDS alerts, from production
networks labeled with information about validated security
incidents. Although this is a well-known and long-held prob-
lem, presently the community is largely lacking both real-
world security data and systematic techniques for evaluating
network defenses. Given a database of IDS alerts, it is crit-
ical to find and validate security incidents in order to build
benchmarks for evaluating network defenses. Motivated by
this problem, in this work we introduce a heuristic to detect
and propose an approach to validate active infections in our
infrastructure. An infection is simply a client or a server
with malicious software, which, in our context, leaves a net-
work trace detectable by an IDS sensor. For example, the
malware could be a trojan, worm, spyware, backdoor, etc.

The second problem that motivates our work is IDS false-
positive reduction in the context of extrusion detection. Mod-
ern malware increasingly involve the user in their propaga-
tion by leveraging various social engineering techniques that
bypass intrusion prevention measures. For this reason, se-
curity administrators need tools for detecting hosts within
their network, i.e., extrusion detection, that are already in-
fected by malware. Detecting extrusions from IDS alerts
bears the challenge of reducing the large number of false
positives IDSs are known to generate, e.g., figures of 99%
false positives have been reported in the literature [33].

Our first contribution is a heuristic for finding infected
hosts from IDS alerts. Our heuristic uses an information
theoretic measure, called J-Measure, to identify statistically
significant temporal associations between a selected pool of
alerts. In this manner, it finds hosts that exhibit a recurring
multi-stage alert trace. To validate that hosts with this foot-
print are indeed infected, we conduct a complex experiment:
over a period of approximately one month we remotely as-
sess a number of live suspected infections on unmanaged
hosts within a production environment. Using six inde-
pendent security-related information sources, namely IDS
alerts, blacklists, threat reports, host scanning logs, vulner-
ability reports and search engine queries, we conclude that
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our heuristic reduces the amount of false positives to ap-
proximately 15%. In addition, we analyze the root causes of
the false positives and draw insights for filtering them out.
Then, we apply our heuristic to 832 million alerts collected

over a period of 9 months and identify 12,915 different in-
fections on 9,163 out of the of the 91,512 distinct hosts that
generated IDS alerts. We characterize the extracted infec-
tions and make a number of important observations:

• Out of a total of 91 thousand distinct active hosts we
observed during the 9-month period, approximately
9% exhibited signs of infections at least once during
their lifetime.

• The probability of infection for a server and a client
during a specific day is 0.18% and 0.37%, respectively.

• Infections drastically increase the attractiveness of in-
fected hosts to further inbound attacks.

• A small percentage of hosts are popular sources and
targets of attacks. In particular, 5% of the internal
hosts account for more than 70% of the total recorded
attacks originating from the intranet. In addition,
servers are much more preferable targets than clients.

• Healthy hosts closer in terms of IP address distance to
infected hosts are much more likely to become infected.

• The infection points exhibit diurnal patterns.

• Our time series analysis shows that server infections
are almost independent in time, while client infections
are consistently more bursty and this is more evident
for aggregation time-scales above two minutes.

In summary, in this work we make the following contri-
butions:

1. Detection: We introduce a heuristic for detecting
infections that uses a statistical correlation measure,
namely the J-Measure, to find hosts that produce a
recurring multi-stage alert footprint involving specific
classes of alerts.

2. Validation: We introduce a methodolgy and conduct
a complex experiment to systematically validate sus-
pected live infections on unmanaged hosts within a
production environment. We find that the false posi-
tive rate of our heuristic is 15%.

3. Characterization: We characterize 9,163 infections
over a period of 9 months. To the best of our knowl-
edge, this is the first characterization of a very large
number of infections.

The remainder of this paper is structured as follows. In
Section 2 we describe the IDS alert traces we used in our
experiments. We introduce our heuristic in Section 3 and
describe our validation experiments and results in Section 4.
Then, we characterize a number of interesting properties of
the identified infections in Section 5. Finally, we review
related work in Section 6, we discuss our findings in Section 7
and conclude our paper in Section 8.
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Figure 1: Snort Alert Full Format

2. IDS DATA
Our dataset is comprised of raw IDS alerts triggered in

the main campus of ETH Zurich by a Snort [47] sensor,
which is placed between the edge router of the campus and
the network firewall. The sensor monitors all the upstream
and downstream traffic of the campus. It uses the official
Snort signature ruleset and the Emerging Threats (ET) rule-
set [19], which are the two most commonly-used Snort rule-
sets. As of April 2011 the two rulesets have a total of 37,388
distinct signatures to detect malicious activities.

The collected alerts have the standard full Snort format
shown in Figure 1. For example, the following is an actual
high priority alert (with anonymized IP addresses) about a
suspected MySQL bot:

[**] [1:2001689:7] ET WORM Potential MySQL bot scanning for SQL server [**]

[Classification: A Network Trojan was detected] [Priority: 1]

01/01-22:04:51.319793 aaa.bbb.ccc.ddd:41276 -> xxx.yyy.zzz.hhh:3306

TCP TTL:61 TOS:0x0 ID:14368 IpLen:20 DgmLen:44 DF

******S* Seq: 0xC2A22307 Ack: 0x0 Win: 0x16D0 TcpLen: 24

The fields we use are the unique rule identification num-
ber, the rule description, the timestamp that denotes when
the alert was triggered, the IPs and ports of the communi-
cating hosts, the default rule classification, which indicates
the type of suspected malicious activity, and the rule prior-
ity, which provides a severity rank. The complete raw alerts
as generated by Snort are sent every hour to our collection
and archiving infrastructure.
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Figure 2: Volume of low, medium, and high priority
alerts per hour during a period of a week

The dataset is both large and rich. During the 9 month
period we study, spanning from January 1st 2010 to Septem-
ber 22nd 2010, our monitoring ran on a 24/7 basis with
only minor interruptions (corresponding to approximately
99% availability), capturing more than 832 million alerts
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Table 1: Classtype frequency of rules in sql.rules

# Classification Description

691 misc-activity Miscellaneous activity
293 successful-recon-limited Information leak
52 attempted-admin Attempted administrator privilege gain
22 attempted-user Attempted user privilege gain
4 unsuccessful-user Unsuccessful user privilege gain
3 shellcode-detect Executable code was detected
2 suspicious-login An attempted login using a suspicious username was detected
2 misc-attack Miscellaneous attack

from 91,512 thousand internal IPs. Figure 2 illustrates the
amount of alerts that we collect during a regular week. On
an hourly basis we record on average more than 130 thou-
sand alerts. The vast majority of these alerts have low prior-
ity and usually correspond to policy violations that are not
directly related to security incidents. However, a significant
portion, approximately 6%, consists of high priority alerts.
To identify unique host infections, we restrict our analysis

to hosts with static IP addresses and exclude alerts from dy-
namic IP address ranges. We distinguish between dynamic
and static subnets using a catalog maintained by our net-
work administrators that documents each campus subnet.
Additionally, this information enables us to find whether a
subnet accommodates server or client machines. The ex-
cluded alerts originating from dynamic IP address ranges,
correspond to less than 17% of the total active internal IPs
in our data. The fact that most hosts use static IP addresses
is important as it enables us to track and characterize their
behavior over time.

3. METHODOLOGY

3.1 Alert Bundling
The first challenge that we need to deal with is that se-

curity events often trigger spurts of very similar alerts. For
example, certain types of port scanning targeting a range
of destination ports will generate a large number of almost
identical alerts that only differ in the destination port and
timestamp fields. Besides, malware often change slightly
their behavior in order to evade detection. Snort rulesets
often include different signatures for each different malware
version. When the malicious behavior is manifested, mul-
tiple versions of the same signature may be triggered in a
very short time window. For example, we observe spurts of
the alert ”ET DROP Known Bot C&C Server Traffic group
(X)” that only differ in the version number X. Such spurts of
almost identical alerts are not desirable, since they defuse a
single event into multiple segments. Alert bundling groups
spurts of very similar alerts into a single aggregate alert.
Compared to different forms of alerts aggregation, which
have been studied in the literature [51], alert bundling aims
at aggregating spurts of almost identical alerts instead of
creating groups of much more diverse alerts that correspond
to the same aggregate multi-stage incident. Alert bundling
is useful as it reduces the amount of alerts that need to be
processed and facilitates the statistical analysis of different
events.
We perform alert bundling over three fields, source/de-

stination ports and alert ID. We generalize the port fields
from a numerical value to {privileged,ephemeral}, based on

whether the port number is below or above 1024, respec-
tively. We also generalize alert IDs that correspond to dif-
ferent flavors of the same malware into a single alert ID by
ignoring the version number. We then merge alerts trig-
gered within a short time window into a single generalized
alert. We preserve the timestamp of the first alert of the
merged sequence. We select an aggregation window of 5
seconds. Our calibration showed that this is sufficient to
substantially reduce the number of alerts, while further in-
creasing this window had a negligible effect on the volume
of alerts. Alert bundling reduced the total number of alerts
in our data by 19%.

3.2 Alert Classification
Our dataset includes alerts triggered from 37,388 thou-

sand unique rules. Snort rules are mainly community-contributed
and follow a loose two-level classification scheme. Each rule
is part of a ruleset, which groups related rules. For exam-
ple, the ruleset imap.rules groups rules associated with the
IMAP protocol. The second level of classification is based on
the class field that is contained within each rule. The class
field associates each rule with a unique class that provides
information regarding the intended goal of an intrusion.

For our purposes, we find the default two-level classifica-
tion scheme insufficient to extract alerts that relate to at-
tacks and compromised hosts, which are the types of alerts
we are interested in. The first shortcoming is that rules are
grouped into rulesets based on different criteria. For exam-
ple, some rulesets, like imap.rules and voip.rules, group
rules based on the protocol or the application that is tar-
geted, while some other rulesets, like ddos.rules, groups
rules based on the type of the intrusion. A second prob-
lem is that rulesets often contain very diverse rules. For
example sql.rules contains rules that range from access-
ing a database, which could correspond to benign behavior,
to SQL worm propagation, which could indicate an infected
host. Moreover, the classes associated with the classtype
field are scarcely documented and in some cases ambiguous.
In Table 1 we list the classes for alerts in the sql.rules

file and provide the official documentation for each class.
Some classes are quite intuitive, for example Attempted ad-
ministrator privilege gain denotes that a privilege escalation
attack took place. However, some other classes, like Mis-
cellaneous activity, are quite cryptic and can result in loose
classifications.

To address this problem, we use a hierarchical approach
to classify the rules included in our data into three classes,
namely Attacks, Compromised hosts, and Policy violations
(similarly to [30]). In the first step, we manually examined
all the rulesets and identified the ones that clearly character-
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Table 2: Rulesets and classtypes assigned to the Compromise class
Rulesets Description

attack-responses.rules Privilege escalation attempts
backdoor.rules Trojan activity operating as Backdoor

ddos.rules Bot initiating a DDoS attack
virus.rules Malicious code attempting to propagate

emerging-botcc.rules Bot-related trojan activity
emerging-compromised.rules Attacks from blacklisted IPs
emerging-user agents.rules Data stealing malware

emerging-virus.rules Malicious code attempting to propagate

Classtypes Description

trojan-activity A network Trojan was detected

ize an attack or a compromised host. With this step we were
able to classify 72.5% of the total number of rules. For the
remaining set of rules, we used the classtype field and iden-
tified 16 classes that can be clearly associated with attacks
or compromised host activity. Finally, for the remaining
681 rules, we manually classified them by examining the de-
tails of the signature, the assigned default priority level, the
exact byte sequence, and when possible we validated our
results with information provided in security archives and
bulletins [47, 20]. In Table 2 we summarize the rulesets and
classtypes we used for our Compromise class.
Finally, the alerts that are not classified as attacks or com-

promised hosts, mostly occur when a user does not comply
with a specific policy. Typically these alerts correspond to
P2P, VoIP, and chat related rules. We discard these rules
since they do not provide any useful information about infec-
tions. For the remaining sections, we only work with alerts
of the Attack and Compromise class.

3.3 Identifying Infections
A naive approach in identifying infections of internal hosts

is to rely on occurrences of Attack and Compromise related
alerts. However, the excessive amount of false positives,
makes it very hard to have any level of confidence that we
can infer an actual infection using a single alert.
We build our heuristic to extract infections based on the

following design goals.

• Keep it simple: We opt to keep our heuristic sim-
ple as parsimony provides a number of advantages: 1)
inferences are interpretable and easier to trace and val-
idate both for a scientist and an IDS operator; and 2)
the heuristic can efficiently analyze large archives of
millions of IDS alerts.

• Reduce false positives: The number of false posi-
tives is involved in a fundamental trade-off with the
sensitivity of the detector. Presently, IDSs suffer from
a very large number of false positives. In this trade-
off, we opt to make our heuristic conservative, i.e., less
sensitive, so that the inferences it produces include a
small number of false positives. This also means that
we may incur some false negatives, which we prefer
than triggering a large number of false positives. In
order to reduce the number of false positives, we engi-
neer our heuristic to combine multiple evidence.

• Detect recurring multi-stage behavior: Pre-sently,
malware developers bundle a plethora of features and

capabilities to make their product more attractive. For
example, malware attempt to redirect users to mali-
cious websites and download additional trojans; they
update, receive instructions, share confidential data,
and participate in (D)DoS attacks or spamming cam-
paigns; they attempt to propagate by scanning for
exposed nodes and by exploiting vulnerabilities, etc.
This means that most modern malware exhibit a multi-
stage network footprint. Additionally, the multi-stage
behavior is typically recurring. For example, a host in-
fected with an SQL worm, will scan for vulnerable ma-
chines running an unpatched version of the Microsoft
SQL server. Every time a target is found, the infected
host will initiate a buffer overflow attack in order to
exploit the vulnerability and eventually infect the vic-
tim. A Zeus trojan will attempt to inject fake HTML
code every time the user visits an online bank page,
in order to steal confidential data. The collected de-
tails will be then delivered to databases residing in a
remote site. Based on these observations, our heuristic
attempts to reduce the number of IDS false positives
by searching for malware that exhibit a recurring mul-
tistage behavior.

• Focus on extrusion detection: Our heuristic aims
at detecting hosts within an organization that are al-
ready infected. It does not try to proactively prevent
an infection.

Detection Heuristic: Our approach aims at detecting a
recurring multi-stage footprint generated by infected hosts.
In the simplest case, a multi-stage footprint resolves into
tuples of strongly correlated alerts. Such tuples capture dif-
ferent actions undertaken by an infected host that occur
frequently and consistently over time, increasing our cer-
tainty that an actual infection has indeed occured. We use
an entropy-based information-theoretic criterion to detect
significant tuples of alerts.

Our input data is a time series of alerts, where each alert
is identified by the following five fields: <ID; SrcIP; DstIP;
SrcPort; DstPort>. We examine each internal host sepa-
rately, discretize its sequence of alerts into time windows of
length T , and mine for tuples of the type: if alert X occurs,
then alert Y occurs within the time window T . We denote
the above tuple with X ⇒ Y . Each tuple is associated with
a frequency and a confidence, where the frequency is the
normalized number of occurrences of the first alert X and
the confidence is the fraction of occurrences that alert X
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is followed by alert Y within T . A well-known measure of
tuple significance that combines these two basic metrics and
enables to rank tuples is the J-Measure [46] (for an overview
of tuple ranking methods refer to [40]):

J-Measure(Y ;X) = P (X)(P (Y |X)log(
P (Y |X)

P (Y )
)+

P (Ȳ |X)log(
P (Ȳ |X)

P (Ȳ )
)),

where P (X) is the probability that alert X occurs; P (Y ) is
the probability of at least one Y occurring at a randomly
chosen window; P (Y |X) is the probability that alert X is
followed by at least one alert Y within T ; and Ȳ denotes the
event that Y does not occur. Intuitively, the first term P (X)
captures the frequency of X, while the second term is the
well-known cross-entropy and captures the average mutual
information between the random variables X and Y . In this
way, the J-Measure ranks tuples in a way that balances the
trade-off between frequency and confidence.
The cross-entropy between X and Y drops when the two

events tend to occur together. In particular, there are two
cases when the corresponding entropy of Y drops. When X

happens, Y always happens, or it doesn’t ever happen. Clearly,
the first case is of interest to us, since it reflects the probabil-
ity of the two alerts co-occurring in a specific time window
T . The second case is irrelevant since there will always be
numerous alerts that do not occur when a specific alert hap-
pens, resulting in an inflated J-Measure value. Therefore,
we only keep the left term of the cross-entropy to evaluate
the significance of a tuple.
One desirable characteristic of the J-Measure is its limit-

ing properties. Its value ranges from 0, when random vari-
ables X and Y are independent, to 1

P (Y )
, when they are

completely dependent, which facilitates the process of defin-
ing a threshold above which tuples are considered significant.
An internal host that produces at least one significant tuple
is considered infected. We fine-tune the threshold to 0.85

P (Y )
as

described in Section 4.4 using validated infections from our
most reliable source, which is security tickets about infected
and remediated systems by our security group. From the
set of significant tuples we can easily extract the infection
timestamps. For each tuple X ⇒ Y , if there is no other tu-
ple Z ⇒ W involving the same internal host within a time
window Tinf , then this is a new infection at the timestamp
of alert X. Otherwise, this is an ongoing infection and we
ignore the corresponding tuple.
In Algorithm 1 we show the pseudo-code of our heuristic.

Its complexity is O(n2), where n is the number of unique
alerts triggered by an internal node during T . In our experi-
ments n is quite low and on average equal to 3.1. To run our
heuristic on one day of data takes on average 19.3 minutes
on a system running Debian Etch with a 2GHz Quad-Core
AMD Opteron.
Parameter Tuning: For the window size T we conserva-

tively select one hour, since most alerts related to the same
infection in our data occur within minutes. Selecting a larger
window has negligible impact on the results. Moreover, we
consider that a host is re-infected if the host is active in our
dataset, but for a period of Tinf it is not detected as infected
by our heuristic. We set the Tinf threshold to two weeks.
We select this value in a conservative way based on two ob-
servations. Incidents identified and investigated in the past

Algorithm 1 Pseudo-code of our heuristic for detecting in-
fections
Require: Set L of alerts triggered by internal hosts
Ensure: Significant tuples Si for internal node i

for all internal nodes i do
for all hourly timebins Tk do

for all tuples (Ai, Bi) in L, triggered in Tk, where
Ai 6= Bi do

if Ai ⇒ Bi in candidate tuple set Ri then
Ri.UpdateTupleStats(Ai ⇒ Bi)

else
Ri.AddTuple(Ai ⇒ Bi)

end if
end for

end for
for all tuples Mi ⇒ Ni in Ri do

if J-Measure(Mi ⇒ Ni) > Jthresh then
Si.AddTuple( Mi ⇒ Ni )

end if
end for

end for

in our infrastructure suggest that the worst case delay re-
quired by our security group to fix a reported problem is
approximately one week. This time frame covers the stages
of threat identification, threat assessment, and remediation
of the host either by completely removing the malware or
by rebuilding the entire system. On the other hand it is
known, that some malware infections stay dormant for pre-
defined time periods or wait for an external command to
trigger their behavior [4]. In this case, the host will be re-
ported as benign by our heuristic, since no network trace
of malicious activity is being generated. However, after the
initial stimulus and assuming that the malicious behavior
has been manifested, it is highly unlikely that the malware
will fall again into idle mode for a time period longer than
Tinf [44]. Out of the total infections we find in our charac-
terization, 4.9% are re-infections.

4. VALIDATING INFECTIONS
In this section we present the process we follow to validate

inferred infections and to assess the false positive rate of our
heuristic. Remotely validating several suspected infections
on unmanaged hosts within a production infrastructure is
a very challenging problem that to the best of our knowl-
edge has not been previously addressed in the literature. A
first challenge is that typically no single tool or information
source provides sufficient evidence that an actual security
incident has occurred. A second challenge is that the types
of malicious behaviors we examine are diverse, ranging from
multi-stage attacks and worm propagation events to com-
plex trojan and malware communication patterns.

Our validation follows a three step process as shown in
Figure 3. Given a suspected infection, we first extract useful
information from six security-related independent informa-
tion sources about the infected host and the remote hosts it
communicates. We refer to this information as evidence. A
collection of evidence about suspected infections is passed
in real-time (e.g., within a day of the first time an infection
was detected) to a security expert. The expert correlates
the expected behavior of the malware with the collected ev-
idence. If all the evidence agree with the expected behavior,
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then a positive assessment is made about the suspected in-
fection, otherwise it is concluded that the infection could
not be validated, i.e., it is unknown if the suspected host is
indeed infected or not. We conservatively consider the latter
a false positive.

IDS Data

Repository

Blacklists

Database

Retrieve alerts related  to infection

Are involved IPs blacklisted?

[**] ET DROP Known Bot C&C Server Traffic

[Classification: Network Trojan detected]  

129.132.128.XXX:18859 -> 204.74.YYY.YY:53

Query Google for information

regarding involved hosts

What is the reputation of 

contacted domains?

spamhaus.org       204.74.YYY.YY    MISS

urlblacklist.com    204.74.YYY.YY   HIT

204.74.YYY.YY   Frequent Tags

‘botnet’,’irc server’,’trojan’,’malicious’

Validated 

Infections

ThreatExpert record 204.74.YYY.YY

IRC channel used by Mal/VB-G trojan

Active scanning and

vulnerability enumeration

DCOM RPC running , vulnerability MS03-026

Figure 3: Validation Process

This process is very demanding and time consuming for
the analyst, therefore, we limit ourselves to a subset of the
reported infections. Specifically, we analyze 200 consecutive
incidents that were reported by our heuristic and validate
the existence or absence of a variety of malware types. Al-
though, this sample of infections is rather small compared
to the total number of infections we report, the analyzed
nodes are diverse spanning from servers, to desktop PCs in
offices and wireless guests in labs and social areas. Also, the
malicious software we investigate is quite diverse and can be
categorized based on its goals and propagation methods into
the following classes [37]:

• backdoors/bots allow an external entity to remotely
control an infected machine.

• trojans masquerade as benign programs, but clandes-
tinely perform illegal actions, such as information leak-
age and url-redirection.

• worms are self-replicating and propagating programs
that attach themselves to processes or files making
them carriers of a malicious behavior.

• spyware are useful pieces of software that are bundled
with some hidden fraudulent activity.

4.1 Information Sources
IDS Alerts: For infected nodes we examine the relevant

IDS alerts we have collected. We focus on alerts that are
triggered in temporal proximity to the infection incident.
We evaluate the quality of the alerts based on the follow-
ing assumption: we consider that oversimplified signatures
will tend to generate too many false positives, since it is
very likely that they get triggered by benign traffic. On the
other hand complex signatures are much more reliable. In
order to evaluate the complexity of a signature we check if
specific byte sequences within a packet are checked, if the
rule specifies the ports, packet size and TCP/IP flags, if pre-
vious packets of the same flow are taken into account, and
if regular expressions are being used.

Blacklists: We use independent blacklists in order to
characterize a suspected host and its communicating remote
hosts. We use information provided by five publicly avail-
able blacklists [22, 23, 28, 15, 17] and by one commercial
blacklist [27]. We then inspect if an internal node is listed
in any of these blacklists within the analyzed tracing pe-
riod, and if we get a hit we tag the node based on the type
of blacklist that generated the hit, e.g., spam or botnet list.
Note that due to the rather high percentage of false posi-
tives [45] in most reputation-based blacklists, a blacklist hit
is insufficient evidence to confirm a suspected infection. It
is though a useful indicator that needs to be correlated with
additional observations. Moreover, we perform the same
blacklist search for external hosts that the analyzed internal
machine communicated with. For example communication
with hosts within the Russian Business Network, a network
providing hosting services to cyber-criminals, could signify
that the user visits some dangerous websites or that he is
redirected to these URLs by an active clickbot [11] or spy-
ware.

Threat Reports: Threat reports are publicly available
security logs provided by automated systems [14] or security
companies [29, 18] that analyze the behavioral patterns and
common actions of a wide range of security threats including
worms, trojans, and spyware. They provide a security rep-
utation value for domains based on their observed activity
during a specific interval. By investigating threat reports
we can identify if a suspected host is contacting URLs that
correspond to botnet rendez-vous points or malware land-
ing pages to receive instructions, perform updates or share
stolen confidential data.

Web-based Host Profiling: Apart from relying on net-
work traces and threat analysis reports to build a security
profile for a suspected host, we also use publicly available
data residing on the web, which often provide useful infor-
mation about the role (type of server, etc.) and involve-
ment of hosts in security incidents [50]. This information
originates from several diverse sources such as DNS-lists,
website access logs, proxy logs, P2P tracker lists, forums,
bulletins, banlists, IRC-lists, etc. In order to retrieve this
information we query the Google search engine using as in-
put string the IP of the analyzed host and the respective
domain name we get using a reverse-DNS lookup. In an
semi-automated fashion we search for tags that reveal pos-
sible roles or actions of the host such as ’trojan’, ’botnet’,
’spam’,’irc server’, ’adserver’, ’pop3’ and ’webserver’.

Reconaissance and Vulnerability Reports: Analyz-
ing network based data provides us with rich information
regarding the behavioral patterns exhibited by a monitored
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host. However, we do not get any information about the
running services, the patching level of critical components,
and the existence or absence of vulnerabilities. Naturally,
this type of information can be used to validate if an in-
vestigated node is susceptible to a specific type of infection
or if the set of alerts used to infer the infection correspond
to false positives, since they are not relevant to the build
and operation of the specific node. Our network security
assessment process consists of the following steps:

1. Host Enumeration and Basic Reconnaissance. In this
step we use basic reconnaissance techniques such as
IP sweeps, NIC whois querying, and TCP/UDP port-
scanning in order to identify if a host is reachable and
exposed to external attacks. In addition, we determine
its role within the infrastructure, such as web, mail, or
DNS server.

2. Network Scanning and Probing. In this step we per-
form targeted network scanning using nmap in order to
retrieve detailed information regarding the TCP and
UDP network services running on suspicious hosts, de-
tails about the OS type and version, and information
regarding the types of ICMP messages a host responds
to, which reveals its filtering policies and firewall effec-
tiveness.

3. Investigation of Vulnerabilities. After having detected
the accessible network services, we investigate the cor-
responding host for known vulnerabilities. We use
publicly available sources [16, 24, 21] to identify the
existence of exploitable bugs on running services. We
augment this assessment with complementary infor-
mation provided from vulnerability scanners, namely
Nessus [25] and OpenVas [26], in order to build a com-
prehensive profile regarding the vulnerability status of
a node.

4.2 Security Assessment
To better understand the security assessment process, in

the following, we outline a set of frequent infection cases we
established during our validation. For each case, we mapped
the collected evidence into the behavior that was manifested
by a specific malware. The four cases correspond to the
four main types of malware we found in our infrastructure,
namely backdoors, spyware, worms, and trojans1.
Case 1: Backdoor infection. W32/SdBot is a typi-

cal family of IRC-controlled trojans with more than 4,000
known variants. It is used by cybercriminals as backdoor in
order to gain unauthorized access to a target machine and
perform unsolicited actions such as stealing private informa-
tion or launching active attacks. The typical vulnerabilities
we search for when we investigate an SdBot-related infection
are the MS-LSASS buffer overflow, the MS-RPC malformed
message buffer overflow, and the MS-WebDav vulnerabili-
ties. These are related to the MS network shares services,
which are exploited by the trojan to propagate. Regarding

1We note that this is not a unique malware taxonomy.
Putting malware into a taxonomy is challenging as most mal-
ware today have a complex behavior, usually incorporating
multiple components allowing them to propagate, communi-
cate with remote hosts to receive commands, and automati-
cally update or initiate the download of additional malicious
software.

its command and control (C&C) activity, an infected host
will attempt to use IRC to contact the adversary in order
to receive instructions. This communication will typically
trigger alerts with ID within the ranges [2500000:2500500]
and [9000077:9000113]. The communicated C&C is typically
present in our blacklst or/and profiling data. Additionally,
the malware might try to propagate to other subnets. In this
case we expect to see extensive scanning activity (mostly
on port 445). If a vulnerable host is found and exploited
successfully, then the trojan will either attempt to down-
load a version of itself or other additional malware (typically
W32/Koobface and Trojan.FakeAV) via ftp.

Case 2: Spyware Infection. The Win32/Hotbar type
of malware is the most widespread infection in our infras-
tructure. Most variants appear as a web-browser add-on
that provides a seemingly legitimate functionality. However,
this malware will clandestinely steal and report user confi-
dential data, like banking information, passwords, browsing
habits, etc. For this type of infection, we find IDS alerts with
IDs in the range [2003305:2003500]. We trust these alerts as
the signatures are quite complex and the malware does not
put any effort in disguising. Moreover, the malware operates
as clickbot, changing results displayed by search engines and
generating pop-ups to redirect the user to potentially mali-
cious websites. These domains are likely to appear in our
blacklists or/and web profiling data, usually with tags like
’malware-hosting’, ’fraudulent’, and ’phishing’.

Case 3: Worm Infection. W32/Palevo is the most
common malware type found in the rather short list of worm-
related infections detected in our infrastructure. It usu-
ally spreads automatically using P2P file sharing or Instant
Messaging (IM) spam. When investigating this type of in-
fection we expect to see IDS alerts with IDs in the range
[2801347:2801349], which are worm specific, or more generic
alerts related to activities complying with a P2P or IM
protocol (typically IDs in the ranges [2451:2461], [549:565]
and [2008581:2008585]). The worm will attempt to directly
contact C&C nodes, without hiding the communication in
an IRC channel, using an ephemeral set of port numbers.
Commonly, the remote hosts irc.ekizmedia.com, story.
dnsentrymx.com, and irc.snahosting.net are contacted.
These malicious domains usually appear both in our black-
list data and in our profiling information with tags including
’botnet’, ’C&C’, ’Rimecud’, and ’Mariposa’.

Case 4: Trojan infection. Win32/Monkif is a typi-
cal trojan that will attempt to fetch and install malicious
software on a victim host. This type of malware is usually
bundled with pirated software or is pushed to the victim
by using phishing or social engineering attacks. When we
investigate this family of infections we expect the host to
connect to specific domains (including www.clicksend.biz

and stats.woodmedia.biz) in order to download malicious
binaries. These domains are likely to appear in our threat
reports as malware hosting and generate tags as ’trojan’,
’botnet’, ’malware’ and ’downloader’ in our host profiling
results.

The manual security assessment lasted for approximately
one month. On a daily basis a security expert was given
a list of suspected infections produced by our heuristic for
the previous day along with a pool of evidence that were
extracted in a semi-automated way. The expert thoroughly
investigated in total 200 infections. During the first week
of the validation process, two experts assessed indepedently
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the same suspected infections and then compared, discussed
and converged on their assessments.

4.3 Validation Results
In Table 3 we summarize the number of suspected and

verified infections along with the corresponding false posi-
tive rate for the four types of infections. We first note that
the overall false positive rate is approximately 15%, which
is remarkable. Recall that in our input data, we observe on
average 3 million alerts per day, which we believe include a
large number of false positives. By reversing our bundling
procedure we find that only 0.6% of our input alerts of the
class Attack and Compromise are associated with an infec-
tion. Our heuristic helps focus the attention of administra-
tors to a small number of actionable cases that include sub-
stantially fewer false positives. The false positive rate for
trojans, spyware, worms, and backdoors is 12.3%, 10.6%,
11%, and 35%, respectively.

Table 3: Validated infections for different infection
types

Reported Validated False Positive
Incidents Incidents Rate (%)

Trojans 97 85 12.3
Spyware 66 59 10.6
Worms 9 8 11.0

Backdoors 28 18 35.0

Moreover, to understand better the strengths and limita-
tions of our heuristic, we investigate the root causes of the
observed false positives. The following cases were the source
of most false positives.
DNS Servers. First, we find that DNS servers within our

infrastructure frequently trigger signatures from the Com-
promise class. The reason is that they often attempt to
resolve domains that are considered malicious. These DNS
requests trigger signatures that check the destination IP ad-
dress and compare it against a list of known compromised
hosts. An alert will be raised in this case, typically with IDs
in the range [2500000:2500941], which corresponds to back-
door related activity. DNS related false positives are mainly
responsible for the inflated value regarding backdoors false
positive rate shown in Table 3. However, a network admin-
istrator should be able to easily identify that these incidents
do not constitute actual infections, and filter them out.
Skype Supernodes. Second, Skype supernodes within

our network generate alerts with IDs in the ranges [2406000:
2406966] and [2500433:2500447]. Skype supernodes connect
Skype clients by creating the Skype P2P overlay network.
However, if it happens that a remote Skype user connecting
to a local supernode is blacklisted, then Snort will trigger
an alert identifying this system as malicious. This commu-
nication is persistent and frequent since whenever a Skype
client attempts to initiate a communication, it will access a
distributed database provided by supernodes in order to get
the details of the contacted peer.
Antivirus. Third, a specific antivirus program generates

IDS alerts of the class Compromise while updating. The
triggered signatures check for known patterns of malicious
activity found on the payload of the transmitted packets. It
appears that the updates of this antivirus contain the actual
pattern that it attempts to detect in plain format.

Online Games. Finally, we have observed that certain
types of online games generate Snort alerts with IDs in the
ranges [2003355:2003626] and [2510000:2510447]. In the case
of browser-based games the triggered signatures suggest that
there is an ongoing spyware-related activity. The reason is
that the corresponding websites exhibit a behavior that is
very similar to clickbots, attempting to redirect the player
to 3rd party, potentially malicious, websites for profit. In
the case of standalone gaming applications, we observe that
the client will tend to preserve multiple concurrent connec-
tions with several other players. Often a small set of these
remote IPs originate from domains which are blacklisted,
and therefore an alert is raised.

4.4 Fine-tuning the Heuristic
As discussed in Section 3.3 an important parameter of

our heuristic is the J-Measure threshold that determines if
a specific tuple will be tagged as an active infection. In
order to adjust this threshold we performed the discussed
validation process on an additional small set of nodes in the
local subnet of our institute. The duration of this training
phase was two weeks and occurred chronologically before the
main validation. During this period we run our heuristic
using variable J-Measure threshold values and evaluated its
inference results.

For the local subnet of our institute we were able to use
very reliable information sources to validate a small number
of detected infections. In particular, for a set of nodes we
physically visited their owners and verified an infection ei-
ther by performing an on the spot assessment of a system or
by receiving a confirmation from an owner aware that her
system was indeed infected. Secondly, our second very reli-
able information source for our local subnet is security tick-
ets of our IT team. These are logged events about security
incidents that have been detected, assessed, and remediated.

Using information for 28 systems we adjusted the J-Measure
threshold in a conservative manner, i.e., aiming at keeping
the false positives as low as possible, but without increas-
ing the false negatives significantly. Selecting a threshold
of 0.85

P (Y )
achieved a good tradeoff, limiting the false positive

rate to below 10% and the false negative rate to below 23%.
For threshold values below 0.80

P (Y )
the corresponding false pos-

itive rate increases above 24%, whereas for threshold values
above 0.90

P (Y )
we miss more than 32% of active infections.

5. CHARACTERIZING INFECTIONS
Volume and Types of Infections: The first interest-

ing finding, illustrated in Figure 4, is that on a daily basis
from an average of 11,850 active2 hosts, we detect on average
50 new infections. The vast majority of the infected hosts
correspond to client machines. Specifically 97% of the to-
tal reported incidents occur in end-host systems whereas we
only see on average 10 infections per week on servers. If we
normalize these numbers based on the total number of ac-
tive servers and clients in our infrastructure, we see that the
probability of infection for a server system during a specific
day is 0.18%, whereas the corresponding value for clients is
0.37%.

The relatively small number of server infections can be
attributed to two causes. Firstly, these systems are heavily

2An active host generates at least one IDS alert during an
indicated period
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Figure 4: Active clients and new infections time-
series

managed, closely monitored, and often have their OS hard-
ened, meaning that unnecessary and potentially vulnerable
services are disabled. Secondly, as we saw in Section 4 most
of the malware that we observe propagate using indirect
methods (e.g. drive-by-downloads, phishing) that involve
the user and exploit his negligence, rather than initiating
direct attacks, like scanning or buffer overflow attacks.
Moreover, out of a total of 91 thousand distinct active

hosts we observed during the 9-month period, approximately
9% exhibited signs of infections at least once during their
lifetime, whereas the total number of infections (including
nodes that were re-infected) was 12,915. The number of
nodes exhibiting re-infections was 675, corresponding to less
than 1% of the entire active population. The majority of
these nodes were connected to highly dynamic subnets in
our network, corresponding to student labs and recreation
areas, which are not heavily monitored. These are mostly
private laptops without administrative restrictions on the
installed applications and services. Therefore, the attack
vector of these machines is broader, which is reflected on
the increased probability of reinfection.
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Figure 5: Infection impact on the number of in-
bound attacks

Infections Impact: Figure 5 illustrates the impact of
an infection on the number of monitored inbound attacks.
We count the average number of alerts classified as attacks
targeting hosts in our intranet in an hourly basis, for all

healthy hosts, for infected hosts prior to their infection, and
infected hosts after their infection. Note, that based on our
heuristic the infection time is estimated only after the actual
infection manifests. If a node is infected but the correspond-
ing malware remains dormant, it will not generate a mali-
cious footprint on the network, and thus we cannot detect
it. Therefore, in Figure 5, this type of nodes are considered
to be in the pre-infection phase.

In the median case, healthy nodes and nodes in the pre-
infection phase appear to be targets of approximately 3 at-
tacks per hour on average. These are mostly reconnaissance
attacks, such as scanning, that could be precursors of a more
serious attack. The corresponding number of inbound at-
tacks in the case of infected hosts is more than double and
equal to 7. However, if we observe the tails of the distri-
butions we see a much more sharp change. For the top 5%
targets of external attacks we see that in the case of healthy
nodes and nodes in the pre-infection phase we record at least
5 and 9 inbound attacks per hour on average respectively.
However, in the case of infected hosts this number rises to
more than 50 inbound attacks per hour.

We learn that infections drastically increase the attrac-
tiveness of infected hosts to further inbound attacks. We
speculate that this is because most malware also operate as
backdoors, allowing the installation of additional malicious
code. In this way they increase the attack vector of the in-
fected host making it a much more attractive target. This
is especially true for servers, which dominate the tail of the
distributions shown in Figure 5.
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Figure 6: Distribution of alert sources and destina-
tions for outbound traffic

Heavy Hitters: From the large pool of active clients, a
small percentage of hosts are popular sources and targets of
attacks, as shown in Figure 6. Regarding the attack popular-
ity distribution we see that the median number of recorded
inbound attacks is equal to 60 per hour. However, this num-
ber increases significantly for a small set of internal nodes
that are targets to up to 970 attacks per hour. Almost, all
the servers in our infrastructure are within this highly ex-
posed set. This indicates that servers are much more prefer-
able targets than clients. The reason is that most malicious
pieces of self-spreading software have an initial hit-list of
possibly vulnerable hosts. These hit-lists are generated us-
ing either scanning or by employing web-spiders and DNS-
searches [49]. The inclusion of the public servers in our
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infrastructure in such hit-lists might have increased the vol-
ume of inbound attacks.
The same skewed behavior is observed in the case of the

attack source distribution. We observe that approximately
5% of the internal hosts account for more than 70% of the
total recorded attacks originating from the intranet. These
are highly suspicious nodes that require additional investi-
gation. Blocking or better defending against these systems
can significantly reduce the number of recorded extrusions,
safeguarding at the same time exposed internal nodes. The
outbound attack count could act as a crude indicator of
possible malicious activity and combined with our heuris-
tic it can facilitate administrators in focusing their efforts
and identifying top offenders within their premises.
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Figure 7: Infections spatial correlation

Spatial Correlations: The infections we observe exhibit
strong spatial correlation. We define IP distance as the ab-
solute difference between the integer representation of two
IP addresses. For each host that remains healthy through-
out the tracing period, we measure its IP distance to the
closest infected host. For each host that becomes infected,
we measure its IP distance to the nearest infected host at
the time of infection. In Figure 7, we plot the Cumulative
Distribution Function (CDF) of the IP distance for healthy
and infected hosts. Note that in our infrastructure we use
two large blocks of IP addresses, which explains the sharp
increase we see for IP distance values above 2,600.
We observe that infected hosts are consistently in very

close proximity with other infected hosts. 80% of these hosts
have at least one other infected host in an IP distance which
is less than 200, meaning that they are likely located in
the same subnet. The corresponding percentage for healthy
hosts considering the same IP distance value is significantly
lower, equal to 15%.
The presence of strong spatial correlations indicates that

certain subnets within a network are weak links. Hosts close
to existing infections are much more likely to become infected
in the future. Observing clusters of infections should guide
administrators to review and revise the deployed baseline
defenses and security policies.
Correlations Across Time: The infection points exhibit

diurnal patterns as illustrated in Figure 8 where it is shown
that most of the infections occur during working hours. This
is due to the fact that client nodes, which dominate the
infections set, exhibit strong diurnal patterns. This effect

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

Hour of Day

A
v
e

ra
g

e
 v

o
lu

m
e

 o
f 

n
e

w
 i
n

fe
c
ti
o

n
s

Figure 8: Distribution of infections for different
hours of day

related to human behavior is reflected on the infections time
series.
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Figure 9: Infections burstiness for clients and
servers

Another interesting aspect of the extracted infection time
series that we study is burstiness across different time scales.
To quantify burstiness, we compute the Allan deviation [2]
of the infection time series at different scales. The Allan
deviation is given by the following equation:

σ
2
x(τ) =

1

2
〈(∆x)2〉

The time series is discretized into time intervals of length τ

and each interval yields a sample xi of the number of infec-
tions that occurred within it. The equation measures the
difference between successive samples xi for different inter-
val lengths τ .

In Figure 9, the bold line in the bottom shows the min-
imum possible deviation which occurs when all infections
have independent time arrivals. Intuitively, the Allan devi-
ation should diverge from this reference significantly in time
scales where the signal exhibits high burstiness. Figure 9
shows that server infections in low time-scales are almost
independent, however, this changes if we look at time scales
above one hour. This non-burstiness of server infections in
low time scales suggests that measuring the infections over
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hourly intervals can provide a useful long-term average of the
expected infections. This observation can be used to build
a predictor of near-future infection incidents using simple
linear time series models that capture short-range depen-
dences, like ARIMA. On the other hand, client infections
are consistently more bursty and this is more evident for
time-scales above two minutes.

6. RELATEDWORK
IDS Evaluation: The DARPA dataset [35] remains to-

day one of the best options, although it dates back to 1999
and has several well-known shortcomings [1, 3]. Another
well-known dataset, the DARPA Cyber Panel Correlation
Technology Validation [31] was created in 2002 but unfortu-
nately is not anymore available. These datasets were created
in testbeds under controlled experiments. A lot of research
has focused on generating synthetic traffic. More related to
our work, MACE [48] is an environment for generating ma-
licious packets for evaluating IDSs in testbeds. In addition
to testbed experiments, in this work we stress the need to
use and label and use traces collected in the wild.
Intrusion Measurements: Large traces of intrusion

data, like IDS alerts and firewall logs collected by DShield [17],
have been analyzed in previous studies. In particular, Yeg-
neswaran et al. [52] made a number of observations regarding
the distribution, types, and prevalence of intrusions. In ad-
dition, they projected the global volume of intrusions and
estimated the potential of collaboration in intrusion detec-
tion. Kati et al. [34] analyzed a large trace of IDS alerts,
reported characteristics of correlated attacks, and investi-
gated how to effectively collaborate in intrusion detection.
In this work we provide a number of further insights about
intrusions focusing specifically on infections, which have not
been studied as a separate class in the past.
Besides, a number of previous studies have focused on

IDS alert correlation and aggregation. These studies evalu-
ate proposed solutions on a small number of testbed-based
benchmarks, like the DARPA dataset, and are tailored for
general-purpose alert analysis rather than for extrusion de-
tection. In our work, we highlight the need for using and
analyzing measurements from real networks in addition to
testbed-based evaluation methods. In particular, related
work on alert correlation and aggregation can be classified
in three categories.
Statistical/temporal Alert Correlation: A group of

studies explores statistical [41, 36] or temporal [42] alert cor-
relations to identify causality relationships between alerts.
Statistical correlation methods estimate the association be-
tween different alerts by measuring the co-occurrence and
frequency of alert pairs within a specific time frame. Qin [41]
introduced a Bayesian network to model the causality rela-
tionship between alert pairs, while Ren et al. [43] proposed
an online system to construct attack scenarios based on
historic alert information. Temporal-based correlation ap-
proaches perform time series analysis on the alert stream
to compute the dependence between different alerts. Qun
and Lee [42] generate time series variables on the number of
recorded alerts per time unit and use the Granger causality
test to identify causal relationships. We also use a statisti-
cal alert correlation test in our heuristic and show how alert
correlation can be useful specifically for extrusion detection.
Scenario- and Rule-based Alert Correlation: On

the other hand, a number of studies hardcode details about

attack steps into full scenarios [38, 12] or into rules [39,
6, 5], which are used to identify, summarize, and annotate
alert groups. Scenario-based correlation approaches try to
identify causal relationships between alerts in order to re-
construct high-level multi-stage events. Most approaches
rely on attack scenarios specified by human analysts using
an attack language [7, 13]. Deriving attack scenarios for
all observed attacks requires significant technical expertise,
prior knowledge, and time. In order to automate the sce-
nario derivation process, machine learning techniques have
been used [8]. Rule-based approaches are based on the ob-
servation that attacks can be usually subdivided into stages.
These methods attempt to match specific alerts to the pre-
requisites and consequences of an active attack stage. The
idea is to correlate alerts if the precondition of the current
alert stream is satisfied by the postcondition of alerts that
were analyzed earlier in time. A main limitation of scenario-
and rule-based approaches is that the detection effectiveness
is limited to attacks known a priori to the analyst or learned
during the training phase. Therefore, they are not useful
against novel attacks that have not been encountered in the
past.

Alert Aggregation: The goal of alert aggregation is to
group alerts into meaningful groups based on similarity cri-
teria, making them manageable for a human analyst and
amenable for subsequent statistical analysis. Each new alert
is compared against all active alert sequences and is asso-
ciated with the most relevant one. The set of attributes
used to compute the corresponding similarity measure are
diverse spanning from inherent alert features such as IP ad-
dresses, port numbers, and alert signatures, to topological
and contextual information about the monitored network,
such as the role and operation of nodes that triggered the
alert or the deployed operating system and services. The
work by Valdes et al. [51] represents each alert as a vector
of attributes and groups alerts based on the weighted sum
of the similarity of different attributes. The weight of an
attribute is heuristically computed. Dain et al. [10, 9] pro-
pose a system that associates incoming alerts to groups in an
online fashion. Julisch [32] proposes a clustering technique
that aims at grouping alerts sharing the same root-causes,
based on attribute-oriented induction. To address the prob-
lem that prior knowledge regarding how the alerts should be
aggregated might not be available, machine learning tech-
niques have been used. Zhu et al. [53] propose a supervised
learning approach based on neural networks. Compared to
these studies, we also use a simple form of alert aggregation
in our heuristic, which we call alert bundling, that groups
spurts of almost identical alerts for further statistical anal-
ysis rather than potentially diverse alerts based on complex
similarity functions.

7. DISCUSSION
False Negatives: We opt to design our heuristic to pro-

duce a small number of false positives. This is one of our
main goals as the excessive amount of false positives is an
important limiting factor for IDSs. This means that in the
trade-off between false positives and negatives we prefer to
incur more false negatives in order to reduce the amount
of false positives. Quantifying the false negative rate in a
production environment is not possible. However, to assess
false-negative rates one can use synthetic or testbed-based
evaluation traces, as discussed in Section 6, where security
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incidents are known and controlled. Our work is comple-
mentary to such approaches and establishes techniques to
find and validate security incidents in traces from produc-
tion environments.
Academic Infrastructure: Our characterization results

in Section 5 are based on data from an academic infrastruc-
ture and should only be carefully generalized, when possible,
to other types of networks. For example, we expect that sim-
ilar qualitative findings about the impact of infections and
the presence of heavy hitters hold in networks of different
type. In contrast, we expect that the volume of infections
will be lower in more tightly managed environments.

8. CONCLUSIONS
In this paper, we present a novel approach to identify

active infections in a large population of hosts, using IDS
logs. We tailor our heuristic based on the observation that
alerts with high mutual information are very likely to be
correlated. Correlated alerts of specific types reveal that
an actual infection has occurred. By applying this heuristic
to a large dataset of collected alerts, we find infections for
a population of more than 91 thousand unique hosts. We
perform an extensive validation study in order to assess the
effectiveness of our method, and show that it manages to
reduce the false-positive rate of the raw IDS alerts to only
15%. Our characterization suggests that infections exhibit
high spatial correlations, and that the existing infections
open a wide attack vector for inbound attacks. Moreover,
we investigate attack heavy hitters and show that client in-
fections are significantly more bursty compared to server
infections. We believe that our results are useful in several
diverse fields, such as evaluating network defenses, extrusion
detection, IDS false positive reduction, and network foren-
sics.
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Reviewer #1 
Strengths:	 This problem is very important and the authors 
present a nice solution validated using real ground truth. Well 
written paper with good evaluation using a lot of real data.  

Weaknesses: The paper focuses on a rather narrow set of attacks. 
System description needs to be clearer. 

Comments to Authors: The way I understood the paper is that, 
the J-measure heuristic first groups together alerts that are 
correlated somehow. Then it looks at all the alerts that are 
correlated for a given machine and then uses the composite 
signature to classify whether the infection is a backdoor infection 
or spyware or worm or trojan. So far it is clear, but I am not sure 
how the mapping is done. The whole section 4.2 gives a vague 
description of the different types of attacks, but does not precisely 
define how the matching process is done. This is a key piece 
missing from the paper.  

Further, the system descriptions are very vague; how does one use 
the system in practice. What constitutes the system itself is 
unclear. There is a lot of manual effort, it seems, in classifying the 
alert groups and annotating them. There is a lot of vagueness in 
the description unfortunately for me to understand the exact 
components of the system. The output of the system is also 
unclear. Does it output the set of alerts that correspond to XYZ 
worm, XYZ trojan or it just says worm and trojan. I suspect 
different worms or trojans have different signatures. So, does one 
need to build different signatures for each of these separately in 
advance?  

If the only output is broad classes of infection, I am not sure what 
the advantage of this system is compared to just combining the 
alerts that are for a given host. Yes, the alert group will be big, 
but would’nt an expert just look at the types of alerts and quickly 
figure out what type of an attack is ? What additional advantage 
one has in using the J-measure.  

There is another component of the paper that involves 
characterizing the attacks observed in their campus trace data. 
This study is kind of orthogonal to the other parts of the paper. 
This study is also not easily generalizable to other networks. I did 
not know what to interpret and take out of those findings. 

 
Reviewer #2 
Strengths: Well written and evaluation; quite an important 
problem, relieving network administrators of the false alert 
overload would be quite beneficial. 

Weaknesses: Its not clear to me what is automated, and what is 
not. In other words, how much reduction in human effort could 
one expect by deploying this system. 

Comments to Authors: The paper argues that by grouping alerts 
together for a host or for some other metric, one can identify the 
likelihood of an infection as well as the type of infection. But how 
is this final step done. Does the system present these clusters to 
the administrator and he determines whether there is an infection? 
I guess I am asking how does this system exactly reduce the large 
fraction of useless IDS alerts. Is it mainly by grouping similar 
alerts into one? But if that’s the case, wont a simple grouping 
based on some IDS alert type as well as IP be sufficient? The 
administrator could then quickly decide what to do from this 
smaller set of data. 

 

Reviewer #3 
Strengths: Important and challenging problem (reducing the 
false-positive rate of intrusion-detection systems). Interesting idea 
(to use the cross entropy of alerts to detect recurring multi-stage 
behavior). Impressive validation effort (to manually validate each 
reported infection against multiple sources). 

Weaknesses: The algorithm is not well defined or explained (I 
*think* I got it after reading the relevant section three times). It is 
based on manually set parameters, and it is not clear how these 
should be set or how they affect accuracy (although, to be fair, I 
have not heard of any IDS system that does not rely on manual 
calibration). The evaluation of the algorithm could be (easily) 
improved. 

Comments to Authors: The main weakness of the paper is that it 
does not clearly describe the proposed algorithm. The second half 
of Section 3.3 (which is meant to describe the algorithm) is really 
hard to follow. Here is my understanding of what it says: (i) the 
ideal goal is to detect recurring multi-stage behavior, i.e., detect 
sequences of alerts that occur multiple times; (ii) a simplified 
version of this goal is to detect sequences of 2 alerts that occur 
multiple times (call these “significant sequences”); (iii) to do that, 
the algorithm computes the cross-entropy of each sequence of 2 
alerts -- low cross-entropy means that the sequence does occur; 
(iv) each significant sequence that is time-wise separated (by 
more than some threshold) from the other significant sequences is 
reported as an infection incident. If this is what the algorithm 
does, there are two ways to make it clearer: One is to explicitly 
state steps (i) and (ii), which are currently missing. The other is to 
*not* use the term “rule” to refer to sequences of alerts. When 
reading an IDS paper, the term “rule” makes the reader think of 
an IDS rule, i.e., a criterion applied to a packet to determine 
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whether an alert should be raised. I strongly recommend using 
some other term -- “alert sequence” or something like that.  

Another weakness is the use of manually set parameters (the J-
Measure threshold, the time window, and the infection threshold). 
I am not sure that manual calibration is avoidable in IDS systems. 
However, the paper could at least provide some evidence that the 
proposed algorithm is not significantly sensitive to its parameters. 
In particular, the authors could vary the values of the parameters 
and show how that affects the false-positive rate of their 
algorithm.  

In Section 4.4, it would be nice to see some discussion on the 
false negatives -- what kind of incidents were not detected the 
algorithm? In line with the previous comment, how does the false 
negative/positive rate of the algorithm (applied on the 28-system 
dataset) change as a function of the parameters of the algorithm?  

Other (minor) things that I did not understand about the 
algorithm: What is the complexity of the algorithm? Does it 
compute the cross-entropy of all possible pairs of alerts within 
each time window? In Section 3.2, I did not get which steps of the 
classification are manual and which ones are automated (is the 
second step automated?) Also, how do the first and third steps 
differ? The first step “manually examined all rulesets and 
identified groups that clearly characterize an attack or a 
compromised host.” The third step “manually classified [the 
remaining rules] by examining the details of the signature, ...” 
They both sound to me like manual examination. 

 

Reviewer #4 
Strengths: There is an interesting observation on the locality of 
infected nodes. 

Weaknesses: It is not clear what are the contributions of the 
paper. The methodology used is a compilation of previously 
proposed techniques to infer specific attacks. It is not clear how 
general is the proposed methodology. J-measure that is used has 
not been formally introduced and motivated. Despite the fact that 
the authors claim that their methodology is general they only 
address well known infections. You repeatedly mention that 
intrusion detection systems generate a large number of false 
positive rates (99%), but you do not provide any reference on this. 
It is not clear what is the trade-off between low rate of false 
positives and false negatives. 

Comments to Authors: Section 3.3: The use of the J-Measure is 
not well motivated. J-Measure is used throughout the paper. You 
have to provide enough justification on why this is the right 
metric. As you mentioned there are other metrics have also been 
proposed in the literature. Thus, you have to evaluate them in 
your dataset. 

Sections 4.2 and 4.3: Despite the fact that you claim that your 
framework is very general when you dive into the analysis and 
evaluation you attack only a few cases (some of them are well 
addressed in the literature). Please elaborate more on the 
generality and applicability of your method. You should also 
clearly state your contributions. 

You should provide a reference that shows that off-the-shelf 
intrusion detection tools generate a large number of false positive 
rates, close to 99% as you mentioned; you have to apply these 

tools in your traces and then show how your proposed system 
reduces the false positive rate. 

Section 6: The related work is too lengthy (more than two pages) 
and does not contribute much to the understanding of the related 
body of work, not it puts your contributions into context. 

Your methodology identifies 9000 infected machine in the 
campus. It is not clear how you validated that all these machines 
are infected; is there a ground truth that you rely on for your 
statistics. 

You claim that the false positive rate is low. How about the false 
negative -- is it high in your study? Is there a fundamental trade-
off between low false positive and false negative rate? 

 

Reviewer #5 
Strengths: A working method deployed at a real-world, large-
scale site. I like the balance of methodology, validation, and 
findings. The paper’s dataset is great and I actually find it 
refreshing to see work that names the actual site at which traces 
are collected. The paper is nicely executed and structured, and 
mostly well-written. 

Weaknesses: The novelty of this paper is very small. IDS alert 
aggregation has been studied in depth in the past, and the findings 
in the paper are mostly confirmations of known effects. The 
reduction of false positives is good, but the resulting false 
positives of 16% are still far from great. 

Comments to Authors: In the abstract you say you “assess the 
security of [...] live infections”. What is the security of an 
infection supposed to be?  

The idea of malware tending to co-locate in “bad” networks is not 
novel, see for example Sinha & Bailey’s “Improving spam 
blacklisting through dynamic thresholding and speculative 
aggregation”.  

Despite the high number of false positives it seems you make no 
attempts of tuning your signature set -- why? I can see practical 
reasons for doing so, including easy of rules updates, but 
unfortunately even 16% false positives, viewed in isolation, is a 
lousy result. I personally know of large-scale sites who use other 
intrusion detection approaches than Snort that fare far, far better.  

I struggled with 3.3. You start out saying you want to identify real 
infections, and then present causality inference rules of the form 
“if A then B follows in time window T”, but you never say *why* 
you do that. I suspect you mean that the fact that two alerts (can 
there be more than two kinds?) occurring in sequence increases 
confidence in a particular attack being present. It would help to be 
clearer here.  

I could have done without 4.2, given how tightly you’ve packed 
the paper. Then again, I suspect readers of different backgrounds 
may find it more valuable to have. 4.3, on the other hand, I found 
quite informative. In that section, you also say you believe your 
unaggregated alerts to consist virtually completely of false 
positives. Can’t you put a precise number to it by reversing your 
bundling procedure?  

I can confirm your hypothesis in the “Infections Impact” section. 
The pay-per-install approach to malware distribution means that 
initial infections can trigger entire cascades of additional malware 
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ending up on a system. However, I’m not sure I follow how this 
explains increase in *inbound* attacks on these systems.  

It would be nice to see a “step back” section in the paper. For 
example, given you experience, is signature-based misuse 
detection the way to go? Would there be point in actively 
maintaining the signature set instead of accepting the crud that 
Snort’s default ruleset with Emerging Threats spews into your 
logs?  

 

Response from the Authors 

We made several changes to the paper to address the comments of 
the reviewers. Most reviewers noted that the description of the 
heuristic in Section 3.3 was not very clear. A major change was 
that we substantially clarified Section 3.3. 
 
Answers to specific questions (in the beginning we mark the 
reviewer number): 
R1: Our heuristic builds on attacks detectable by snort, which 
provides a rather rich set of signatures for detecting attacks of 
various types. 
R1, R2: We clarified that our heuristic does not classify the type 
of a detected infection; it solely detects an infection.  
R2: We made more clear what it automated. The detection 
process of our heuristic is entirely automated. It uses an 
assignment of snort rules into three classes, which classification 
we derived manually. 
R2: Trivially combining alerts from a host and passing them to an 
administrator would not work because it results in a prohibitively 

large number of suspected systems an administrator needs to 
manually inspect. 
R3: Using a set of detection parameters is common in most 
detection studies. We have used security tickets for re-mediated 
incidents and have physically visited the owners of infected 
systems to derive a reliable ground truth for fine-tuning the 
detection threshold of our heuristic. In addition, we extended 
Section 4.4 to report how the number of false positives/negatives 
changes with the detection threshold. 
R3: We discuss in detail the root-causes of the main types of false 
positives in Section 4.3. 
R4: We provide a reference for the 99% false-positives figure in 
the introduction. In addition, we confirmed this figure with our 
data too based on the suggestion of reviewer 5. 
R4: We extended Section 4.4 to report how the false-
positive/negative rate changes for different thresholds. 
R5: Although alert correlation has been studied extensively in the 
past, compared to previous studies the main novelty in our work 
is the characterization of 9 thousand infected hosts in a production 
network. 
R5: The authors agree that the false positive rate could be further 
reduced. Some hints for improving it are given in the discussion 
of the root-causes of false positives in Section 4.3. This could be 
interesting future work. 
R5: We liked the suggestion of reversing the bundling process to 
compute the initial false positive rate. We followed this 
suggestion and found 99.4% false-positive un-aggregated alerts 
(excluding policy alerts). This confirms our expectation. 
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