





Figure 1: YouTube video download mechanisms.
Example of possible evolution when accessing to
youtube.com from a PC (top) and m.youtube.com
from a smartphone (bottom).

that the browser needs to fetch to properly display the page.
Among the different objects, a Javascript function triggers
a generate204 request sent to the video server that is sup-
posed to serve the video. This starts the video prefetch
(2), which has two main goals: first, it forces the client to
perform the DNS resolution of the video server hostname.
Second, it forces the client to open a TCP connection to-
ward the video server. Both help to speed-up the video
download phase. In addition, the generate204 request has
exactly the same format and options of the real video down-
load request, so that the video server is eventually warned
that a client will possibly download that video very soon.
Note that the video server replies with a ‘204 No Content’
response, as implied by the command name, and no video
content is downloaded so far.

At this point, the browser handles the control to the Flash
player which will manage the actual video download (3).
The player sends a HTTP videoplayback request to get
the video. Note that the same TCP connection previously
opened during (2) can be used if HT'TP persistent capabil-
ity is supported between the browser and the Flash plugin.
Because of server congestion or lack of content, the server
can redirect the client to other servers [13]. In this case,
the video server replies with a HT'TP €302 Found’ response
which specifies the hostname of another video server to con-
tact. The player then resolves the hostname, and sends a
new videoplayback request. This process can repeat un-
til a valid video server is found. The final video server of
the chain replies with the usual HTTP ‘200 0K’ response,
which initiates the stream of video data to the client.

We highlight that the generate204 request is a specific op-
timization that is found only when accessing a video through
www.youtube.com. YouTube videos embedded in regular
HTML pages do not exploit this, so the player have to re-

solve the video server hostname yet before sending the first
videoplayback request.

2.2 Mobile-player

Mobile devices use a different protocol as shown in bottom
part of Fig. 1. First, no prefetch message is sent in the con-
tent look-up phase. Second, differently from the PC-player
case, the video content is downloaded in “chunks”, each one
requested in a separate TCP connection, using the HTTP
Range header field to specify the requested portion of the
video. The video server then replies with a ‘206 Partial
Content’ response.

This mechanism is possibly the result of a design choice
that tries to cope with the tighter constraints in terms of
storage availability for mobile devices. In fact, the mobile
devices can hardly buffer the entire video so the player pro-
gressively requests portions according to the evolution of the
playback.

In the following sections we will investigate the impact of
the different mechanisms both on the user experience and
on the system infrastructure.

3. DATA COLLECTION

In this section we first introduce the tool we use to collect
the traffic, giving a high level description of the algorithms
employed to classify the YouTube traffic. Then, we present
the collected data sets that we used for the analysis.

3.1 Collection tool

To inspect the network traffic we relied on Tstat [5, 14],
an Open Source packet sniffer with Deep Packet Inspec-
tion (DPI) capabilities, which implements both traffic clas-
sifiers and fine-grained flow-level statistics. Tstat is able to
rebuild TCP flows by monitoring packets that are sent and
received by clients. Leveraging on this, we improved Tstat so
as to identify and we distinguish all possible HT'TP messages
that can be observed when a client downloads a YouTube
video. In this paper, we focus only on the videoplayback
and generate204 requests from the client, and distinguish
among all possible server replies (HTTP 200, 204, 206, 302
responses). By parsing the URL of the HT'TP messages,
we can identify PC-player and Mobile-player accesses® and
extract specific video information, such as the videoID and
the video format. We also extract other video related infor-
mation from the video header, such as the resolution, total
duration and size of the video.

In addition to the video properties, we also collect several
TCP flow-level statistics, such as the total number of packets
and bytes transmitted and received, the total flow duration
and the average RTT®. Further information on Tstat capa-
bilities as well as the source code can be obtained from [5,
14].

3.2 Data sets

We collected data sets at five vantage points spread across
three countries including both Points-of-Presence (PoP) in
nation-wide ISPs and University campuses. These data sets

1URL requests from mobile devices contain
app=youtube_gdata or app=youtube_mobile. We do
not make any further distinction on the type of browser or
mobile device used.

5F%TT is estimated by leveraging TCP acknowledgements [5,
14



Name Type Flows | Vol.[GB] | SrcIP | Videos
US-Campus | Campus | 2,172,250 | 10,898 | 20,455 | 446,870
EU1-Campus | Campus | 173,024 714| 1,203 50,205
EU1-ADSL Home| 740,330| 2,615| 8,154 189,788
EUI-FTTH Home | 135,907 480 | 1,136 33,762
EU2-ADSL Home| 830,476|  3,688| 5,826 205,802

Table 1: Data sets collected.
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Figure 2: Distribution of the TCP flow size.

represent a unique heterogeneous mix of users and technolo-
gies. At each vantage point, we installed a probe consisting
of a high-end PC running Tstat and monitoring all traffic
generated by local clients.

This paper focuses on one-week long traces, collected si-
multaneously at the five locations, starting at 12:00 AM (lo-
cal time) on February 25th, 2011. Table 1 summarizes the
data sets reporting the name, the type of customers, the to-
tal number of YouTube video flows and the corresponding
volume of bytes, the number of distinct client IP addresses
and the number of videos downloaded. Overall, the data sets
account for more than 16 TB of traffic, more than 900,000
videos, and more than 35,000 different client IP addresses.

The Home data sets have been collected from nation-wide
ISPs of two different European countries. EU1-ADSL and
EU1-FTTH correspond to two different PoPs within the
same ISP aggregating users with ADSL and Fiber-To-The-
Home (FTTH) access technology. The campus data sets are
collected in two different University campus networks, one in
the United Stated and the other in Europe. To confirm the
popularity of YouTube service, we observe that in all moni-
tored networks the volume of traffic generated by YouTube
videos accounts for more than 25% of the total traffic dur-
ing peak time. Finally, note that the mobile traffic collected
in our data sets refers to devices accessing the Internet via
WiFi access networks and not via 3G/4G ISPs.

4. FLOW AND VIDEO CHARACTERISTICS

We begin our analysis by giving an overview of the traffic
generated by PC-player and Mobile-player clients. Fig. 2 re-

Name %Flows %Bytes
US-Campus 32.5 3.5
EU1-Campus 15.6 2.8
EU1-ADSL 27.2 3.9
EUI-FTTH 42.2 6.6
EU2-ADSL 4.2 1.6

Table 2: Fraction of flows and bytes due to mobile
terminals.

ports the Cumulative Distribution Function (CDF) of TCP
flow sizes, i.e., number of bytes (B) received by the client
in a flow. Let us focus on the PC-player traffic (top plot).
Steps in the CDF clearly show the presence of flows of typi-
cal size corresponding to specific HT'TP messages: ‘204 No
Content’ flows are about 120 B long, ‘302 Found’ flows are
in the [800-1000] B range, while flows containing the 200 0K
responses are typically longer than 80 kB since they con-
tain the actual video data. Interestingly, the initial part of
the distribution is different for different probes, with EU1-
Campus and EU2-ADSL suffering a higher fraction of redi-
rections (302 Found’) messages. However, the tail of the
distribution looks rather similar, suggesting that the size of
videos downloaded in the networks monitored is similar. We
will detail this better in Sec. 5.

Looking at results for Mobile-player (bottom plot), we
observe that the flow size is similar across data sets, with
EU1-Campus and EU2-ADSL still exhibiting higher frac-
tion of redirection messages. However, comparing PC-player
and Mobile-player we observe interesting differences: (i) the
absence of the prefetching phase causes the ‘204 No Con-
tent’ responses, of size 120B, to disappear in Mobile-player;
(i) the abundant presence of the HT'TP requests using the
Range header field causes the flows carrying the video data to
be one order of magnitude shorter than in PC-player. This
is a direct artifact of the video chunking mechanisms and
not a difference in the actual video duration and size (see
Fig. 3 and Fig. 4). Interestingly, the 500B long flows are due
to ‘206 Partial Content’ replies to the first videoplay-
back request using the ‘Range: bytes 0-1’ header which
Mobile-player uses to discover the actual video size from the
HTTP response field (see Sec. 2.2).

The effect of the chunking mechanism adopted by Mobile-
player has clearly an impact on the number of flows gener-
ated by mobile devices to download the content. Table 2
quantifies this by reporting the fraction of flows and bytes
that are due to Mobile-player for the different data sets. We
can notice that, while Mobile-player traffic is a small fraction
of the total volume, it accounts for a much larger fraction
of flows. This might pose performance issues on flow-based
devices, like NAT boxes or full-state firewalls which keep
per-flow state.

Consider now the volume of bytes. Unexpectedly, only less
than 6% of YouTube traffic is due to users from mobile de-
vices. The networks we consider offer both wired and WiFi
access with large penetration of smartphones, especially in
the campus networks. Therefore, one would expect that a
large fraction of YouTube accesses is done from such termi-
nals. Our measurements contrast this intuition. Moreover,
some recent studies [6, 9] show that multimedia content is re-
sponsible for more than 40% of the total volume due to wire-
less terminals, with YouTube as the main contributor. Our
results show that this traffic is little compared to the volume
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4.1 Video content duration and size

Fig. 3 reports the duration, in time, of videos for both
PC-player (left) and Mobile-player (right). Note that this
corresponds to the duration of the complete video and not
to the portion of video watched by the user®. Considering
the PC-player scenario, and comparing the measurements
from the different data sets, we notice that there is great
similarity across vantage points so that it is impossible to
distinguish among them. For example, in all vantage points,
40% of the videos last less than 3 min, and less than 5% of
the videos last more than 10 min.

Consider now the Mobile-player case. We observe a slightly
moderate difference among the video duration accessed from
different probes (notice the log-scale on the x-axis). Still, 40-
50% of all videos accessed from mobile terminals are shorter
than 3 minutes, and 5% of videos last more than 10 minutes.
Indeed, the Mobile-player and the PC-player CDFs are very
similar among them too.

This result shows that people with very different cultural
bias (e.g., Europeans vs Americans, students vs residen-
tial users), using very different terminals (smartphones vs
PCs) and with different Internet access bandwidth (ADSL
vs FTTH vs WiFi vs Ethernet) produce and consume the
same type of content: short videos which can be quickly
watched from YouTube. At the aggregation level that we

5This information is extracted from the video metadata.
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Figure 5: Fraction of videos for popular video for-
mat.

study, this reflect the distribution of video duration of the
YouTube service.

Fig. 4 reports the total video size in bytes of the videos
that have been seen in our data sets. We find very similar
results across traces and devices. This is counterintuitive,
since we would expect the distribution to be more variable,
e.g., due to the availability of videos with different reso-
lutions, and different encoding formats. In addition, intu-
ition would suggest that the video size would be larger for
PC-player than for Mobile-player, to better accommodate
the limited resources of smartphones. But this is also not
clear in the graph. To understand this better, in the next
section we dig into the impact of video codecs and resolu-
tions.

4.2 Video format characterization

A “video” is a complex object that multiplexes encoded
video and audio streams. Encoding is done according to
different algorithms, and the result is then organized into a
container of different type. The combination of the encoding
algorithm, video resolution, and the type of container defines



the video format. A plethora of video formats are available,
some of which are proprietary while others are standard.

YouTube supports the formats listed in Table 3. Each for-
mat is identified by a unique ID corresponding to the itag
parameter in the video request. Each ID corresponds to a
unique combination of video codec, audio codec, container
and resolution. The last column shows the naming conven-
tion we used in this paper to identify each format. A marker
highlights the YouTube default video format.

The variety of formats reflects the evolution of the system
and technology over the last years. In the early days, only
Flash Video (FLV) content was supported only at 240p res-
olution. In 2007 the MP4 container was introduced along
with resolution 360p. This switch was driven by the intro-
duction of new devices that did not support FLV videos (e.g.,
Apple iOS devices). There are also 3GP formats, which are
specific for mobile devices, and the more recent WebM for-
mats [15], which are part of the HTML5 specifications. As of
today, H.264 video codec is the most widely adopted stan-
dard. Note that when the user uploads a new video, the
system automatically generates the different video formats
and makes them available to download.

At playback time, the user can eventually choose among
multiple resolutions via the player graphical user interface.
For PCs, the Adobe Flash player presents a menu button
listing the available resolutions, e.g., 240p, 360p and 480p.
Some Mobile-players instead present a toggle button with
the choices of “high” and “low” quality, without explicit in-
dication of the resolutions.

The supported formats do not have the same popularity.
Fig. 5 reports the breakdown of video formats considering
PC-player and Mobile-player data sets on top and bottom
plots, respectively. There is a clear difference respect to
the device used to access the video: Flash based formats
are largely preferred by PC-player, while MP4 is the pre-
ferred container for Mobile-player. This is not surprising
considering that Apple iOS products (e.g., iPhone, iPad,
iPod touch) cannot handle FLV content. The higher frac-
tion for Flash based formats in the Mobile-player data sets
in EU1-Campus and EU2-ADSL may be related to different
popularity of devices among certain users (e.g., students) to
prefer smartphones running the Android operating system
or Windows Mobile which support Flash content.

The default video resolution offered to PC-player is 360p,
while Mobile-players tries to retrieve the best available qual-
ity according to the network/device capabilities. This causes
720p format (also known as High Definition - HD) to be more
popular for Mobile-player than PC-player and this difference
is the result of a system design choice.

The previous findings hold true independent from the van-
tage point, showing the ubiquitousness of the YouTube ser-
vice. We expect this to change in 3G/4G networks, where
the 3GP formats are known to be used and low resolution
videos are offered by default.

4.3 Video encoding bitrate

Given a codec and a video resolution, the video quality
has a strict relation with the video encoding bitrate. 1t is
therefore interesting to observe what is the typical encod-
ing bitrate of YouTube videos. Fig. 6 reports the CDF of
the video encoding bitrate for the most important video for-
mats. FEach curve aggregates statistics from all videos of the
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Figure 6: CDF of video encoding bitrate.

data sets (each single data set presents the same distribu-
tion, being this a system choice). MP4-based formats are
highlighted by line-points patterns. In general, the actual
encoding bitrate is the minimum between the maximum al-
lowed bitrate, and the bitrate that allows to achieve the de-
sired quality. The latter depends on the video content, e.g.,
more static video sequences allow to reach lower encoding bi-
trate. This is reflected in the curves. For example, consider
240p-F1 (FLV) videos. The sharp knee around 300 kbps is
the effect of the maximum bitrate limit, which is reached
by 70% of videos. About 30% of videos are instead quality
limited. Similarly, 360p-Mp (MP4) videos are configured to
not exceed 600 kb /s, with most of the videos being quality
limited. In some cases, the maximum bound of the video
encoding rate can be violated as shown for example for the
10% of 240p-F1 videos. This can be due to a change in the
encoding parameters that happened at some time.

It is known that the higher is the resolution, the higher
is the bitrate. For example, the 360p videos (currently the
default choice) do not exceed 1 Mb/s video rate, while 480p
video bitrate goes up to 1.5 Mb/s. 720p and 1080p require
up to 3 Mb/s and 6 Mb/s respectively. This allows to spec-
ulate on the impact of YouTube switching to higher reso-
lution by default. For example, defaulting to 480p would
correspond to almost double the amount of traffic due to
YouTube, with possibly large impact on both the YouTube
CDN and on ISP networks. Going to 720p as the default
choice would correspond to multiply by a factor of 4 the of-
fered traffic. Given that YouTube already accounts for more
than 20% of Internet traffic and assuming the user demand
remains the same, this would correspond to a critical traffic
surge that might impair the YouTube service itself.

5. USER BEHAVIOR AND IMPLICATIONS

In this section we focus our attention on the way people
watch videos from the YouTube system, observing if they
interact with the GUI, e.g., switching resolution or going
in full screen mode, and which portion of the video peo-
ple actually watches. Both have interesting implication on
the workload the system has to handle and the efficiency it
achieves in serving the requests. We first introduce the con-
cept of video session which is required to characterize the
user’s behavior.

5.1 Methodology

As we have already seen in Sec. 4, video can be down-
loaded in multiple TCP connections, which is predominantly
the case for Mobile-player. To illustrate this, Fig. 7 shows
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Figure 7: Evolution over time of the download bi-
trate for a video encoded at 540 kb/s.

the bitrate evolution obtained downloading the same video
from a PC (top) and a mobile device (bottom) inside the
EU1-Campus network. In both cases, the server starts send-
ing an initial burst of data at a very fast rate to quickly fill
the play-out buffer at the player. This mechanism is conven-
tionally called “fast-start”. The server then starts shaping
the rate as observed in [2]. Note that this is a server-based
shaping mechanism in which the client has no role (neither
application layer nor TCP flow control messages are sent).
For PC-player, after the initial burst, the download proceeds
within the same single TCP connection, whose throughput
is practically equal to the average video encoding rate (dot-
ted line). Note that the average download rate is computed
discarding the initial burst.

For Mobile-player instead, the bitrate evolution is more
bursty. This is a consequence of leveraging different TCP
connections to download chunks of video. Indeed, from sec-
ond 23 and on, the mobile terminal aborts the ongoing TCP
connection, and starts requesting chunks of video on sepa-
rate TCP connections. They last about 1 second and are
separated in time by about 2 seconds of silence. Since a new
TCP connection is used, the server enters the “fast-start”
phase, which is early interrupted when the client aborts
the underlying TCP connection. We believe this mecha-
nism is due to a client-side buffer management policy which
abruptly interrupts the TCP connection when the play-out
buffer is filled up. The client then re-starts the download
when the buffer depletes below a certain threshold. This
results in an inflation of TCP connections, and a possible
inefficient download.

The early abortion of the TCP connection can be due to
other causes as well. For example, a resolution change or a
fast-forward in the video are handled by aborting the current
download and starting a new one for both PC-player and
Mobile-player. Finally, the initial control messages possibly
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Figure 8: Sensitivity of the number of TCP con-
nections per session for different values of T.
EU1-ADSL data set.

PC-player Mobile-player
Data set 0 1 >1 0 1 >1
US-Campus 95.10 4.60 0.30 | 99.75 0.19 0.05
EUl-Campus | 96.62 3.12 0.27 | 99.28 0.61 0.10
EU1-ADSL 95.27 4.45 0.28 | 99.63 0.28 0.09
EU1-FTTH 95.73 3.99 0.28 | 99.39 0.42 0.19
EU2-ADSL 95.14 440 0.46 | 98.07 1.36 0.57

Table 4: Percentage of resolution switch.

sent on separate TCP connections are also fundamentals to
capture the dynamics of the download.

To capture the variety of behaviors for downloading a
video, we use the concept of “video session”, i.e., a mech-
anism to group all connections related to the download of
the same content. More specifically, a video session cor-
responds to the set of TCP connections that i) share the
same source IP address and videolID and ii) are separated
by a silence period shorter than 7' seconds. For instance,
two connections ¢; and c2 belong to the same session if the
difference in time between the beginning of ¢z (time of the
TCP SYN packet) and the end of ¢1 (time of the last packet
observed) is smaller than 7.

Fig. 8 reports the number of connections per session for
different values of 7. The EU1-ADSL data set is consid-
ered, but other data sets show identical results. The choice
of T is not critical for PC-player, while T" > 5 s is required
to properly aggregate Mobile-player connections. In the fol-
lowing, we set T" = 60 s, a conservative choice to better
capture users actions that could happen after the download
has been completed but while the playback is still running.

Fig. 8 also shows the impact of the Mobile-player mecha-
nisms in the number of connections per session. While for
PC-player, only 2% of the sessions have more than 6 connec-
tions, for Mobile-player more than 4% of the sessions involve
more than 100 connections.

5.2 Resolution switch

Given the above definition of a session, a change of video
resolution is easily detected by observing requests with the
same videolD, but different video format.

Table 4 reports the percentage of sessions involving zero,
one or more than one resolution switch for both PC-player
and Mobile-player. Surprisingly, results show that a resolu-
tion switch happens for less than 5% of PC-player sessions.
This is an example of inertia, where users stick with the de-
fault video format. This also shows that users are possibly



Data set Low-to-High | High-to-Low
US-Campus 95.7 4.3
EU1-Campus 86.1 13.9
EU1-ADSL 93.9 6.1
EUI-FTTH 90.5 9.5
EU2-ADSL 83.6 16.4

Table 5: Percentage of resolution switch breakdown
for PC-player.
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Figure 9: Time at which Low-to-High resolution
switch happens.

not interested in this feature or they are unaware of it. For
Mobile-player the choice of resolution is either hidden or not
available, and a marginal fraction of users exploit it.

We can further classify the resolution changes in “Low-to-
High” and “High-to-Low” considering the involved video res-
olution. Table 5 reports the breakdown. We can see that the
Low-to-High resolution switch is largely predominant, with
more than 80% (for all traces) being a 360p-F1 to 480p-F1
switch. Interestingly, when the full screen playback is en-
abled, the Flash player automatically switches from 360p-Fl1
to 480p-F1 (the converse is not true). Combining Tables 4
and 5, we can conjecture that full screen mode is not popu-
lar, but it is the main cause of resolution switch.

As final note, the largest majority of High-to-Low switch
are 360p-F1 to 240p-F1. This suggests that those are trig-
gered by the user because of bad performance. EU2-ADSL
and EU1-Campus show a slightly larger High-to-Low switch
fraction. As we will see in the following, those are the two
vantage points with slightly worse performance.

To complete the analysis, we investigate when the res-
olution switch is triggered. Fig. 9 shows the CDF of the
time between the session start and Low-to-High resolution
switch. Due to buffering at the player, this is an overesti-
mate of the actual switch time. 50% of these events happens
in the first 10 seconds, while only 10% of users trigger them
after 1 minute. In terms of video size, more than 80% of the
switches happens in the first 20% of the video data download
while only 5% occurs in the second half of the video. The
same consideration holds for High-to-Low changes. Overall
we can conclude that resolution changes are usually per-
formed at the very beginning of the playback.

We find surprising that results are practically identical in
all data sets despite differences in users habits and cultures.

5.3 Fraction of watched video

We now focus our attention on the time a user spends
watching a video. To measure this, we leverage the fact that
the player abruptly aborts the video download if the user
changes the web page on the browser (or custom player).
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Figure 10: CDF of the fraction of downloaded video
bytes. EU1-ADSL data set.
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Figure 11: Fraction of video downloads having n <
0.25 and 1 < 0.50

Let 1 be the fraction of downloaded video within a session
with respect to the actual video size. If 7 < 1, then the user
did not watch the entire video’.

Fig. 10 shows the CDF for n for EUI-ADSL data set.
Two observations hold: i) about 80% of video sessions are
abruptly interrupted; ii) Mobile-player results show that the
player can download more data than the video size (n > 1).
We will investigate this better next.

To better compare results, Fig. 11 details the fraction of
video downloads having 7 < 0.25 and n < 0.5 for different
data sets. Interestingly, results are similar for all vantage
points, with users on Mobile-player consistently aborting
earlier than users on PC-player. Fig. 12 details the abso-
lute and relative time at which the user stops watching the
video on the left and right plots, respectively. It shows that
people tend to abort the playback very soon, with 60% of
videos being watched for less than 20% of their duration.
This can be due to a mismatch between the users’ interests
and the content they find on YouTube. Notice that this
is also an interesting fact that could be exploited to bet-
ter handle the content distribution among the CDN nodes,
e.g., caching only some portion of each video. The impact
of Mobile-player versus PC-player is very limited, testifying

"By checking the Range header field for requests, we filter
out those sessions in which the user fast-forward the play-
back to a position outside the already buffered portion of
the video.
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Figure 13: CDF of ratio between downloaded bytes
and played bytes. EU1-ADSL data set.

that the probability of aborting the playback is not biased
by the device but it is related to users’ habits.

5.4 Impact of buffering policy and user early
abort

Consider now all video data already buffered at the player
at the time the user aborts the playback. That data has been
downloaded in vain. Fig. 13 precisely quantifies this by re-
porting the ratio among downloaded bytes and the amount
of bytes possibly consumed by the player. The latter is eval-
uated as session_duration x average_encoding bitrate, as-
suming that the playout started immediately after the first
byte has been received, and that data is consumed at the
video encoding bitrate. Since the initial buffering is ne-
glected, our estimation can be considered as a lower bound.
Notice also that we cannot evaluate the amount of wasted
data for sessions which already have completed the down-
load.

In spite of this, results are dramatic for PC-player: 40%
of sessions download more than two times the amount of
data that was possibly watched. This is the result of aggres-
sive buffering policies adopted by YouTube servers (recall
that server-side shaping is adopted) [2]. Even worse, the
Mobile-player waste is higher, with 20% of sessions down-
loading more the 5 times the amount of possibly watched
data.

This waste could be reduced by implementing better stream-

ing policies, e.g., the server sends chunks of the video by ex-
plicitly request by the client. Alternatively, a more accurate
prediction of the fraction of the video that a user will watch
can be leveraged to avoid transferring useless data.
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Figure 14: Fraction of sessions downloading more
than the entire video.
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Figure 15: Ratio of downloaded data versus video
size for sessions with n > 1. Mobile-player.

5.5 Sessions downloading more than the video
size

Let us now focus on sessions where n > 1. Intuitively,
those should be very limited, since one would expect that
the player should not download more data than the total
video size. Fig. 14 shows the fraction of sessions for which
this happens. Only sessions with no resolution switch are
considered. For PC-player, less than 2% of sessions show this
phenomenon. We have found that the exceeding amount of
volume is possibly related to users watching the same video
multiple times causing the player to re-download the video.
Overall, this effect is marginal.

For Mobile-player instead we observe that 15-30% of ses-
sions download more than the actual video size. Performing
some active experiments, we have confirmed at least two
causes for this: 1) in case of backward seeks, the player
has to re-download the same content because it has been
already discarded from the player’s local buffer. This does
not happen for PC-player which caches the entire video; 2)
the aggressive chunk-based download mechanism is source of
inefficiency: the Mobile-player often requests chunks bigger
than needed, i.e., requesting from a desired position z up to
the end of the video. The server then sends data from posi-
tion = at a high rate, quickly filling up the Mobile-player
buffer, e.g., up to position y. Being the buffer full, the
player application abruptly closes the underlying TCP con-
nection. However TCP had already received some data at
the transport-layer receiver buffer up to position y’ > y. The
data 3y’ — y is thus discarded. When the application buffer



Data set PC-playerMobile-player
US-Campus 39.17 47.9
EU1-Campus| 36.91 38.1
EU1-ADSL 24.93 38.7
EUL-FTTH 38.43 53.5
EU2-ADSL 29.27 35.6

Table 6: Average percentage of wasted bytes con-
sidering peak hour with respect to useful data.

depletes, the player requests data from position y and not
from position 3’. Considering the download of 3y’ —y, the ag-
gressive server buffering policy coupled with player limited
buffering capabilities is thus origin of inefficiency.

To quantify the waste of traffic due to this, Fig. 15 reports
the CDF of the ratio of downloaded data versus nominal
video size for sessions with 7 > 1. 50% of sessions download
25% more data, and 4% of the sessions downloads more than
the twice of the video size.

5.6 Wasted video data

Table 6 quantifies the overall percentage of wasted bytes
with respect to useful data. It includes both the effect of
aggressive buffer management and of chunk based video re-
trieval mechanisms. Measurements refer to the peak-hour
time, when YouTube traffic peaks to several hundreds of
Mb/s in most vantage points. Results show that the amount
of traffic downloaded by clients but not used by players is
comparable with the useful data traffic. For example, for
US-Campus, the wasted traffic in a single hour amounts to
28.8 GB and 1.5 GB for PC-player and Mobile-player, re-
spectively, corresponding to more than 67 Mb/s of constant
waste. This is a large amount of wasted bandwidth both
from the perspective of the ISP and the YouTube CDN.

We have performed experiments on mobile devices con-
nected to a 3G network using both iOS and Android de-
vices. The problem shows up exactly in the same way, with
clients downloading a lot more data than the video played
and the video size. We did not observe differences among
different devices or operating systems. This is an issue that
might be particularly critical given the increasing popular-
ity of YouTube accesses from mobile devices in 3G/4G net-
works.

6. STREAMING PERFORMANCE

In this section we focus on the streaming performance con-
sidering two metrics that reflect the user experience: startup
latency and bitrate ratio between download rate and video
encoding rate. We then pinpoint possible causes that can
impair them.

6.1 Startup latency

We define the startup latency as the time elapsed between
the first videoplayback request and the first received packet
containing actual video payload. This corresponds to a lower
bound of the delay experienced before the actual video play-
back starts since the initial buffering time at the player is
ignored. The latter indeed is implementation dependent and
hard to know. We prefer thus to focus on a simpler, more
precise and accurate measure.

Fig. 16 reports the fraction of sessions with the startup
latency higher than a certain threshold. Given that we
are interested in studying the user experience, we selected
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Figure 16: Fraction of sessions with high startup
latency. Note the different y-axis across plots.
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Figure 17: Fraction of sessions suffering redirections.
Note the different y-axis across plots

threshold values that can be appreciated by the user, i.e.,
1, 5 and 10 s. Results show that the performance is hetero-
geneous across the data sets, with Mobile-player suffering
larger delays. For example, in the US-Campus less than 5%
of sessions suffer a startup latency higher than 1 s. In the
EU1-Campus instead, more than 10% of sessions start after
1 s with 2% of them suffering a startup latency higher than
5 s.

We found that the delay is due to a combination of causes.
Redirections: Video sessions can suffer from a different
number of redirections. Each redirection involves i) a DNS
query to resolve the hostname of the next video server, ii)
the opening of a new TCP connection, iii) a new video query.
The network distance between the client and the server plays
also a significant role, since YouTube CDN is likely to direct
clients to video servers with the closest RTT. However, in
case of redirections, the final server may not be the closest
one in RTT.

Fig. 17 reports the fraction of sessions affected by redi-
rections. More than 70% of PC-player session does not suf-
fer from redirections in all data sets, while Mobile-player
sessions are more likely to be redirected. Understanding
why this is happening is difficult. A possible cause of redi-
rection is due to cache miss. [13] already showed that a
cache miss at the closest data center, may cause a redirec-
tion to a farther away data center. However, following re-
quests for the same content are directly served by the clos-
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Figure 19: CDF of the video query processing time.
EU1-ADSL data set.

est cache. This hints to a caching mechanism based on pull
schemes. Since Mobile-player videos are less frequently re-
quested than PC-player videos because of the different video
format adopted, a cache miss is possibly more likely to hap-
pen. Thus more redirections can occur.

Fig. 18 depicts the impact of the redirections on the startup

latency. We can see that the higher is the number of redi-
rections in the video session, the higher is the startup delay.
Considering PC-player (left plot), 92% of sessions that do
not suffer redirections exhibit a startup latency smaller than
500 ms. When one redirection is faced, only 50% of sessions
start within 500 ms. If more than 1 redirection is faced,
more than 82% of sessions have a startup latency of at least
500 ms, with 10% of sessions suffering a latency higher than
5 s. Trends are similar for mobile player (right plot) where
in general startup latencies are higher than in the case of
PC-player.
Video request processing time: Another possible cause
of large startup time can be the server processing time, i.e.,
time needed by the video server to process a video request.
To estimate it, we compute the time between the last video-
playback request sent by the client and the first video packet
sent by the server. To eliminate the network delay we sub-
tract the RTT.

Fig. 19 reports the CDF of the estimated processing time
for both PC-player and Mobile-player in the EU1-ADSL
data set. Other data sets show similar trends. We can
see that 50% of the requests are served within < 50 ms.
A sharp knee around 30 ms is present and a heavy tail is
found with processing time growing up to 5 s. The distri-
bution reflects the time required by the cache to retrieve
the requested content from the back-end before serving it.
Very low latencies can be related to the video being already
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Figure 20: Fraction of sessions with bitrate ratio< 1.

cached in the server memory; values in [30,300] ms can be re-
lated to disk access latency; finally values larger than 300 ms
can be due to congestion in the back-end or to packet loss
recovered by lengthy TCP timeout, or to rare content that
has to be fetched from some slower storage system. The
fact that Mobile-player responses require higher processing
time can again be explained by the less frequent requests of
Mobile-player video content. Note also that the prefetching
mechanism implemented by PC-player could also speed-up
the content retrieval (see Sec. 2).

6.2 Bitrate ratio

The download bitrate of the video has a fundamental role
in defining the quality of the video playback. In fact, if data
is not received fast enough, buffer “under-run” events will be
suffered, causing the video playback to pause. To measure
the smoothness of the playback, we define the bitrate ratio
as the ratio between the average session download bitrate
and the video encoding bitrate. The first corresponds to the
total amount of bytes downloaded aggregating flows of the
same video session, divided by the time between the first and
the last video packet. According to this definition, a bitrate
ratio smaller than 1 is a clear sign of impaired performance.

Fig. 20 reports the fraction of sessions with a bitrate ra-
tio lower than one. Some interesting observations hold: first,
the access technology has a clear impact on the performance
with the ADSL networks performing worst for more than
10% of the downloads with respect to the other networks.
For instance, compare EU1-ADSL and EU1-FTTH (the lat-
ter offers 10Mb/s full duplex access capacity). Both re-
fer to customers of the same ISP in the same city. Still,
EU1-ADSL customers suffer worse performance. Unexpect-
edly, EUl-Campus performs also quite bad. Further inves-
tigation revealed that this is the result of a local Univer-
sity network policy that limits the bandwidth of subnets
of some dorms. Most of the sessions having poor perfor-
mance are indeed coming from those subnets. Fig. 20 shows
that Mobile-player presents consistently lower performance
than PC-player. This can be due to the presence of a WiFi
network that is used by Mobile-player devices. The shared
WiFi connection can indeed impair the download through-
put. This is the case for US-Campus.

Other causes of reduced performance can be related to
the YouTube infrastructure performing worst when serving
Mobile-player requests. Consider EU2-ADSL, in which more
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Figure 21: CDF of the fraction of bytes delivered by
each data center. EU2-ADSL data set.

than 32% of Mobile-player sessions are performing poorly
versus less than 13% of PC-player sessions. We pinpoint
that Mobile-player impaired performance is related to the
YouTube system. Consider Fig. 21. It reports the CDF of
the fraction of bytes downloaded by different video servers
respect to the RTT to the EU2-ADSL vantage point. Each
point in the figure aggregates video servers that belong to the
same CDN data center as in [13]. We found that EU2-ADSL
clients can use a data center which is very close to the van-
tage point (RTT < 1 ms). However, it can only serve 35% of
the PC-player sessions. The majority of sessions are indeed
served by a second data center which is 20 ms far from the
vantage point. For PC-player, these two data centers handle
96% of video requests. However, due to the lower popular-
ity of Mobile player accessed content, 35% of Mobile-player
sessions are served by other data centers, 10% of which are
found outside Europe and suffer RT'T > 100 ms. These ses-
sions can be impaired by network congestion and can exhibit
lower download bitrate. Finally, recall the Mobile-player
chunking mechanism. The cost of opening a new TCP con-
nection to request a new chunk becomes significant when
the RTT is in the order of hundreds of ms, impairing the
download bitrate too.

Overall, measurements presented in this section show that
Mobile-player performance result generally less efficient than
PC-player. The intrinsically smaller popularity of Mobile-
player accessed videos poses additional challenges to the
YouTube CDN infrastructure, which results highly optimized
for PC-player as of now.

7. RELATED WORK

We consider three categories of works related to us.

YouTube Videos Characterization: These works have
focused on characterizing various aspects of YouTube videos
as well the usage patterns. On the one hand, [7] and [17]
characterized video popularity, durations, size and playback
bitrate, as well as usage pattern statistics such as day ver-
sus night accesses and volume of traffic considering a cam-
pus network. On the other hand, [3] and [4] crawled the
YouTube site for an extended period of time and performed
video popularity and user behavior analysis. Further, [3]
compares YouTube to other video providers such as Netflix
and [4] investigates social networking in YouTube videos.
In contrast, our work is focused on the comparison between
PC-player and Mobile-player downloads and goes deeper in
the characterization of the content also taking advantage of
the heterogeneous set of users and networks monitored.

YouTube Infrastructure Studies: These works char-
acterize the YouTube video delivery infrastructure [1, 11,
13]. [11] shows that most YouTube videos are distributed
from a single data center in the U.S. [1] shows that a few
data centers in the U.S. were in charge of distributing the
videos around the world. Finally, [13] shows that data cen-
ters spread around the world are in charge of distributing
the video, and that latency between clients and servers plays
a role in content server selection. In contrast, our work is
focused on understanding the difference on video delivery
between mobile devices and PCs. In particular, we show
how mobile devices control the video download rate while
in the case of PC-player, the download rate is controlled by
the server [2].

User Behavior on Mobile Devices: More recently,
there have been several works characterizing high level us-
age patterns of mobile devices [9, 6, 12]. [9] shows that the
number of mobile devices doubled between 2009 and 2010
and that more than 80% of mobile devices traffic is HT'TP,
with multimedia traffic alone accounting for more than 30%
of HTTP. [6] compares the content and flow characteris-
tics of mobile devices and PCs traffic. Using a DPI tool,
the authors are able to show that YouTube alone accounts
for more than 35% of the Internet traffic. In contrast to
these works, we go much deeper into the behavior and per-
formance of users accessing YouTube from mobile devices.
In addition, we highlight problems caused by the YouTube
infrastructure when delivering videos to mobile devices.

8. CONCLUSIONS

Considering a large and heterogeneous data set of YouTube
traces, we have presented our findings about user behavior
when watching videos and how the type of user device and
infrastructure influence the performance of the playback.

Interestingly, users access YouTube in a very similar man-
ner, independent of their location, the device they use, and
the access network that connects them. In addition, they
typically watch only a small portion of the video, and stick
to default player configurations.

While YouTube guarantees very good playback quality by
means of aggressive buffering policies, we pinpointed sources
of unnecessary data transfer, and the potential for future
performance optimization. For example, a less aggressive
buffering mechanism could be used to limit the amount of
unnecessary traffic transferred to users’ devices but never
played back due to early abort by the users. For mobile de-
vices, besides the adoption of the prefetching scheme that is
useful to speed-up the video playback, a more precise control
of the buffering is essential to avoid duplicate transmission
of data. Finally, CDN caching schemes can be improved by
leveraging the fact that only a fraction of videos are actually
watched by users.

As future work, we aim at extending our conclusions by
including traces collected from 3G /4G networks to precisely
quantify the impact of YouTube traffic in such environments.
Indeed, the issues we highlighted observing wireline access
networks could be even more critical for 3G/4G wireless
access networks, where bandwidth is precious. Similarly,
an interesting direction of future research is to extend our
analysis to consider other popular video streaming content
distributors.



Acknowledgments

This work was funded in part by NSE Cybertrust 0715833
and by the European Union through the FIGARO project
(FP7-ICT-258378). We would like to thank the ISPs and
the IT Department of both campuses for their support, and
also the shepherd and the anonymous reviewers for their
constructive comments.

9. REFERENCES

[1] V. K. Adhikari, S. Jain, and Z.-L. Zhang. YouTube
Traffic Dynamics and its Interplay with a Tier-1 ISP:
an ISP Perspective. In IMC ’10: Proceedings of the
10th ACM Internet Measurement Conference, pages
431-443, Melbourne, Australia, 2010.

[2] S. Alcock and R. Nelson. Application Flow Control in
YouTube Video Streams. SIGCOMM Computer
Communication Review, 41:24-30, April 2011.

[3] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and
S. Moon. I Tube, You Tube, Everybody Tubes:
Analyzing The World’s Largest User Generated
Content Video System. In IMC ’07: Proceedings of the
7th ACM Internet Measurement Conference, pages
1-14, San Diego, California, USA, 2007.

[4] X. Cheng, C. Dale, and J. Liu. Statistics and Social
Network of YouTube Videos. In ITWQoS '08: 16th
International Workshop on Quality of Service, pages
229-238, Enschede, The Netherlands, 2008.

[5] A. Finamore, M. Mellia, M. Meo, M. M. Munafo, and
D. Rossi. Experiences of Internet Traffic Monitoring
with Tstat. IEEE Network, 25(3):8-14, 2011.

[6] A. Gember, A. Anand, and A. Akella. A Comparative
Study of Handheld and Non-Handheld Traffic in
Campus Wi-Fi Networks. In PAM ’11: Proceedings of
the 12th International Conference on Passive and
Active Measurement, pages 173-183, Atlanta, Georgia,
USA, 2011.

[7] P. Gill, M. Arlitt, Z. Li, and A. Mahanti. YouTube
Traffic Characterization: A View From The Edge. In
IMC ’07: Proceedings of the 7th ACM Internet
Measurement Conference, pages 15-28, San Diego,
California, USA, 2007.

[8] C. Labovitz, S. Iekel-Johnson, D. McPherson,

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

J. Oberheide, and F. Jahanian. Internet Inter-Domain
Traffic. In SIGCOMM ’10: Proceedings of the ACM
Special Interest Group on Data Communication, pages
75-86, New Delhi, India, 2010.

G. Maier, F. Schneider, and A. Feldmann. A First
Look at Mobile Hand-Held Device Traffic. In

PAM ’10: Proceedings of the 11th International
Conference on Passive and Active Measurement, pages
161-170, Zurich, Switzerland, 2010.

The Mobile Internet Report.
http://www.morganstanley.com/institutional/
techresearch/mobile_internet_report122009.html.
M. Saxena, U. Sharan, and S. Fahmy. Analyzing
Video Services in Web 2.0: a Global Perspective. In
NOSSDAV ’08: Proceedings of the 18th International
Workshop on Network and Operating Systems Support
for Digital Audio and Video, pages 3944,
Braunschweig, Germany, 2008.

M. Z. Shafig, L. Ji, A. X. Liu, and J. Wang.
Characterizing and Modeling Internet Traffic
Dynamics of Cellular Devices. In SIGMETRICS ’11:
Proceedings of the ACM International Conference on
Measurement and Modeling of Computer Systems,
pages 305-316, San Jose, California, USA, 2011.

R. Torres, A. Finamore, J. R. Kim, M. Mellia, M. M.
Munafo, and S. G. Rao. Dissecting Video Server
Selection Strategies in the YouTube CDN. In

ICDCS ’11: Proceedings of the 31th IEEE
International Conference on Distributed Computing
Systems, pages 248-257, Minneapolis, Minnesota,
USA, 2011.

Tstat Home Page. http://tstat.polito.it.
YouTube Blog: Mmm mmm good - YouTube videos
now served in WebM.
http://youtube-global.blogspot.com/2011/04/
mmm-mmm-good-youtube-videos-now-served.html.
YouTube Press Room,
Www.youtube.com/t/press_statistics.

M. Zink, K. Suh, Y. Gu, and J. Kurose.
Characteristics of YouTube Network Traffic at a
Campus Network - Measurements, Models, and
Implications. Computer Networks, 53(4):501-514,
2009.



Summary Review Documentation for

“YouTube Everywhere: Impact of Device and
Infrastructure Synergies on User Experience”

Authors: A. Finamore, M. Mellia, M. Munafo, R. Torres, S. G. Rao

Reviewer #1

Strengths: Well written and clear paper that answers most of the
questions in each areas covered: video content characterization,
user behavior and performance.

Brings attention to a critical point about current waste in bytes
downloaded.

Weaknesses: Three additional points are not covered:

- Behavior on cellular networks

- Differences between devices/clients within a category (e.g.
iPhone vs. Android)

- How is this different from other content providers (e.g. daily
motion)?

Comments to Authors: Great paper! Not only is the paper doing
a good job at characterizing YouTube traffic, I am particularly
pleased to see that attention is brought to the wasted network
resources caused by applications.

As mentioned in the weaknesses, your paper would be stronger, if
you could get your hands on traces from a cellular network to do
a more comprehensive study. A comparison with other similar
content provider would be interesting, but this would be another

paper.

However the point about comparison with different devices or
clients within a category could be covered. You mention at the
beginning are typically similar. But are there any differences? For
instance, regarding the duplicate range request that leads to waste
that might be due to a video buffer size. Do we see the same issue
for Apple and Android smart phones? You might see differences
there and it would be critical to point it out.

Figure 2, flow size: you are saying that PC vs. smartphone is not
an apple to apple comparison because smart phones use range
requests and the video will be split into multiple TCP flows. What
about you stitch together each video and then compare the video
sessions size in bytes?

Resolution switch: you mention users that are not aware of the
feature. I think this is just another example of inertia, people
always use the default settings (similar to the opt in / opt out
results for organ donations).

Resolution switch: you claim that full screen mode is the main
cause of resolution switch. You have not proved that to the reader.
Is this your assumption?

Fraction of video watched: you should also highlight that once a
video is fully downloaded, you assume that it is fully watched,

right? Because at that point, you have no way of knowing what
the user does. If that is the case, your estimates of wasted bytes
are a lower bound. To be fair, you should point out that you
cannot bring the number of wasted bytes down to zero because
you still have to do buffer some of the data.

Video wasted data with duplicate content: FWIW 1 have
personally noticed the same behavior on apple devices on cellular
networks in the US across many providers (not just YouTube).
You might want to make this clearer in Section 5.5 (test it by
yourself), that this is not limited to YouTube.

Reviewer #2

Strengths: The paper does a nice study of YouTube experience
on mobile and PC-based devices. The effort collects data from
multiple vantage points, observes a significant number of flows,
and makes some interesting observations with the data.

Weaknesses: Some of the conclusions appear more conjectures
than reality and are not validated.

Comments to Authors: [ thought the effort to characterize
YouTube performance over different platforms is quite
commendable. The authors did a very nice job of exploring
different aspects of user behavior when watching these videos.
Some of the observations, e.g., wasted bytes, use of default player
configs, etc. are quite nice to learn about.

However, there were also a few observations that seem unclear:

- For instance, the authors point out that mobile devices use more
flows than PC-based devices, and this might lead to poor
performance at NATs or other stateful firewalls. Is this really
true? Is the bulk on mobile device traffic video, and do such
divides really get impacted?

- The authors claim that people from different locations (US and
Europe) and with diverse Internet access speeds like to watch the
same type of video, i.e., short videos. I wonder what is the real
cause and effect. Is it not likely that most of the videos on
YouTube are short videos? I would be careful about the
conclusions being drawn from the data.

- The authors point out that students prefer cheaper phones, e.g.,
Android or Windows based. Are they really much cheaper than
the iOS phones? Is this validated well?

Despite these issues, I thought the paper does make some very
nice observations about video consumption on different platforms.
The issue of resolution switch and the high download of bytes is
interesting and I would encourage the authors to communicate
this to the device vendors or operators involved. If this happens in



cellular networks, it is really an unfortunate waste of resources
and should be fixed.
Overall, a nice paper and an interesting read.

Reviewer #3

Strengths: The authors analyze five very interesting and
appropriate data sets. They identify interesting properties of
YouTube delivery on the two studied platforms. More
importantly, to me, they show that today’s YouTube content
delivery mechanisms are wasteful since in a large number of
cases they lead to the download of more data than the video size
itself. And this waste is more amplified for the mobile player.

Weaknesses: I would have loved to see similar analysis on
mobile platforms - the authors only have a small experiment on
this. Other than that, I think the paper makes a nice contribution.

Comments to Authors: There has been a tremendous amount of
work on the characterization of the YouTube service. As such this
paper falls in a rather well-published area in the measurement
community. However, what this paper does, which has not been
done in the past, is to study how the delivery of the YouTube
service differs depending on the client platform used. And the
authors clearly demonstrate that the YouTube application on
mobile or set top box platforms, and the PC equivalent actually
can lead to some differences in terms of performance.

The findings from the characterization study are not that
impressive, I would say. Yes, the content consumed appears to be
similar, with the exception of the resolution. But, interestingly to
me, the authors clearly demonstrate that the performance DOES
depend on the platform itself. And of course the mobile player
needs to be able to deal with far more variability in the
transmission medium than its PC equivalent.

Even more interestingly, it appears that the selected content
delivery mechanism on mobile player can introduce significant
waste, in some cases leading to the download of twice as much
content as the video size itself!!!! That to me is an important
aspect of YouTube that certainly deserves more attention
especially when we target networks scarce in resources, like
wireless networks.

The one thing I would have liked to see is a similar dataset
collected on 3G/4G phones, but I think the authors have done
enough. And they do have a small experiment on this aspect
anyway.

Finally, I really liked the latency impact studied in the last
subsection of 6.

All in all, I find that this work makes a significant contribution
and I do hope that the authors find a way to reach YouTube and
communicate their findings on the behavior of Mobile Player.

More detailed comments:

- Section 5.2 - the authors have not really proved that the main
cause for resolution switch is full screen. At least not in the first
paragraph after Figure 9. You need to study it in a little more
detail before you can reach such a conclusion.

- In Section 5.6 you introduce y and y’. I would have liked to see
the results on this section based on those metrics y and y’ for a

more precise specification of the quantity under study. For
instance, is the waste of traffic in Fig 15 the sum of y’-y?

Reviewer #4

Strengths: Interesting comparison of PC vs mobile-device
characteristics on Youtube across a number of dimensions. The
paper also exposes how mobile devices are handled by YouTube.

Weaknesses: Unclear whether all mobile devices/applications
behave the same. Some of the main observations claimed by the
authors are probably misguided. The paper presentation and
writing could be better.

Comments to Authors: Overall, 1 believe that this is an
interesting paper that provides evidence on the differences of how
desktop versus mobile devices are handled by YouTube, which is
a significant fraction of traffic.

The paper highlights that a significant fraction of downloaded
bytes may be wasted since many views are aborted before the end
of the video. Further, the paper shows that mobile devices suffer
higher latencies mainly due to redirection, although to me it is
unclear why this is happening - the authors argue that this is due
to the popularity of mobile videos but this is never truly examined
in the paper and does not appear as a convincing argument.

There are a number of things that remain unclear in my opinion:

- You group all mobile devices together, but you never really
examine that all mobile applications or clients do behave in a
similar fashion. You claim in several places within the paper that
indeed this is the case, but this is not truly verified but rather
appears as author intuition.

- Why is the claim that users across institutions and devices do
watch similar type of videos significant? At the aggregation level
that you study the service, this simply reflects the distribution of
video durations and sizes in the YouTube service. It is not a user-
specific property as it is clearly shown by your results. Hence, I
find Section 4 of limited interest.

There are several problems with the paper writing throughout the
paper, especially grammatical and syntax mistakes.

In Section 2, you mention that you observe “no differences”
regarding the second phase. Differences with respect to what?

Section 4.1: There is something wrong with the text here. Figures
do not show differences but the text claims “slightly large
difference”, unless I missed something.

Section 4.3: I find the arguments that the network might not be
able to handle better encodings a bit far-fetched. Please provide
concrete evidence, or tone down the arguments.

Section 5.3: What about stop events without moving to another
web page? Can you observe these?

Section 5.5: I could not really follow your discussion here
towards the end of the second paragraph. It needs re-writing.



Section 5.6: Without concrete evidence on 3G performance it is
hard to follow the argument that performance is the same. Since
you don’t have 3G data I would avoid providing vague arguments
without concrete numbers on what the experiments and results
were.

Section 6.1: How was the RTT measured?

Reviewer #5

Strengths: - There are a couple of interesting observations in this
paper (access of YouTube is independent from the type of device
and access technology, the study of flow control/adaptation
mechanism of YouTube for different devices, the observation that
bulk data is delivered in vain to the end-users). Despite the fact
that there are a couple of anecdotal evidences it is nice to monitor
how YouTube works in a systematic fashion.

- Diverse sets of devices, access technologies and locations of
users and solid measurement methodology.

- A large number of downloads was considered.

Weaknesses: [ like the analysis of the datasets, but there are a
few aspects that have to be considered (please check my
comments to the authors).

Comments to Authors: In the wireless setting, both the
bandwidth and the energy are scarce resources. You may want to
add a few references and comment on this in your study. Here are
a few references that might be of your interest:
“Energy consumption of mobile YouTube: quantitative
measurement and analysis, in Proceedings of the
Second International Conference on Next Generation
Mobile Applications, Services and Technologies”
NGMAST 08.

- “Cellular Data Network Infrastructure Characterization
and Implication on Mobile Content Placement” Proc.
SIGMETRICS 2011.

There are a couple of measurement studies that unveil how
YouTube delivers bulk data to end-users; in the beginning there is
a burst and then the bandwidth in throttled. For example see this
paper:

- “Application Flow Control in YouTube Video
Streams”, ACM CCR April 2011.

You may want to comment on these results and elaborate why
you observe that the amount of traffic downloaded by clients that
is not used by them is significant. Is this due to the fact that the
download speed is higher than the watch speed, or is it due to the
fact that the mechanism cannot accurately estimate (overestimate)
the minimum bandwidth that is needed so that the end-users will
not complain about the quality of the video.

Did you observe special cases where the application flow
mechanism of YouTube is not accurate? Does this happen for

popular or unpopular content? Is this related to the proximity of
the YouTube server to end-user?

You should comment on the time-of-day effect in your datasets.
Do you observe that users stop the session faster during the peak
hours than during non-peak hours? How does the flow control
behave during the peak hours and the non-peak hours?

The related work is not very well written and should go over a
few more iterations.

Response from the Authors

We would like to deeply thank the reviewers for their valuable
comments. In the final version of the paper, we have integrated
most of the reviewers’ suggestions. In the following, we highlight
the major changes.

We updated some figures adding the y-label as to better express
the reported measurements. We also clarified some statements in
our paper, rewrote sentences and smoothed claims by making
them more conjecture-like as suggested by the second reviewer.
In some cases, as for the full screen resolution switch, we
provided further numbers to support our conclusions.

A common suggestion was to investigate further the impact of
different mobile operating systems and to verify if the problem
related to the amount of wasted data downloaded is similar
considering different devices. In the original data sets, we are not
able to distinguish the O.S. or the device used. This does not
allow us to precisely quantify the differences. However, we
performed active experiments, as reported in Sec. 5.6, with both
Android and iOS devices, and concluded that they exhibit similar
behavior and suffer from similar deficiencies.

All reviewers suggested improvements to the paper by including
measurements collected from 3G/4G cellular networks. We agree
with this requirement and we are actively pursuing the issue with
mobile operators as possible partners but unfortunately we do not
have such data set for now. However, in the final version of the
paper we have strengthened the results by performing other active
measurements using mobile phones. Findings confirm the trends
already observed in the paper.

Finally, we have added a paragraph to the conclusion section,
discussing some of the interesting avenues for future work. In
particular, besides the analysis of 3G/4G cellular networks, we
have left the assessment of the impact on our results if we
consider measurements of different devices, time-of-day effects
and the comparison with other streaming services as future
analysis.



