
vPF_RING: Towards Wire-Speed
Network Monitoring Using Virtual Machines

Alfredo Cardigliano1
Luca Deri1,2

ntop1, IIT-CNR2
Pisa, Italy

{cardigliano, deri}@ntop.org

Joseph Gasparakis
Intel Corporation
Hillsboro, USA

joseph.gasparakis@intel.com

Francesco Fusco
IBM Research

Rüschlikon, Switzerland

ffu@zurich.ibm.com

ABSTRACT
The demand of highly flexible and easy to deploy network
monitoring systems has pushed companies toward software based
network monitoring probes implemented with commodity
hardware rather than with expensive and highly specialized
network devices. Deploying software probes under virtual
machines executed on the same physical box is attractive for
reducing deployment costs and for simplifying the management of
advanced network monitoring architectures built on top of
heterogeneous monitoring tools (i.e. Intrusion Detection Systems
and Performance Monitoring Systems). Unfortunately, software
probes are usually not able to meet the performance requirements
when deployed in virtualized environments as virtualization
introduces severe performance bottlenecks when performing
packet capture, which is the core activity of passive network
monitoring systems.

This paper covers the design and implementation of vPF_RING, a
novel framework for efficiently capturing packets on virtual
machines running on commodity hardware. This solution allows
network administrators to exploit the benefits of virtualization
such as reduced costs and centralized administration, while
preserving the ability to capture packets at wire speed even when
deploying applications in virtual machines. The validation process
has demonstrated that this solution can be profitably used for
multi-gigabit network monitoring, paving the way to low-cost
virtualized monitoring systems.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols—Measurement; C.2.3 [Network Operations]: Network
monitoring—Performance.

General Terms
Measurement, Performance.

Keywords
Virtualization, Packet Capture, Passive Traffic Monitoring.

1. INTRODUCTION AND MOTIVATION
In the past years, one of the industry trends is to optimize rack
space and power consumption while simplifying administration
by migrating physical servers onto Virtual Machines (VMs).

In the context of network monitoring, the idea of running multiple
monitoring systems on independent VMs deployed on the same
physical box is definitely appealing. By running software probes
in virtualized environment network administrator can delegate
certain tasks (i.e. performance management) to third persons, each
having full access and control over specific virtual machines.
VMs are often used for implementing monitoring on demand:
namely activate monitoring facilities on specific network
locations whenever certain network conditions happen (e.g.
security alert). In addition, virtualization provides substantial
deployment benefits in all the cases where multiple monitoring
applications require access to the entire (or a subset of) the
network traffic for performing different analysis tasks. By running
heterogeneous monitoring software on the same box the
complexity of deploying systems responsible to simultaneously
dispatch the traffic towards multiple network analysis boxes can
be completely avoided.

Since traffic splitting or dispatching is usually implemented by
deploying advanced hardware based multi-port network taps and
management networks, virtualization in the context of network
monitoring allows to substantially reduce the deployment costs of
advanced multi-probe monitoring architectures.

Unfortunately, running multiple monitoring systems in virtualized
environments is desirable but not yet a common practice mostly
due to the severe performance bottlenecks that virtualization
introduces in application performing network monitoring. The
most critical performance bottleneck introduced by virtualization
when used for network monitoring is caused by the inefficient
implementation of packet capture, which is the most important
building block for most network monitoring applications. In fact,
passive network monitoring systems strongly depends on packet
capture, which is the process of accessing the stream of packets
flowing on a network link. The packet stream is captured for
performing several tasks, including network troubleshooting,
traffic accounting, security breaches detection, and performance
monitoring. Depending on the number of monitoring systems and
on their nature, the same packet have to be captured several times.
For instance an intrusion detection system (IDS) and a traffic
accounting application might need the same packets for
accomplishing their respective monitoring tasks. Depending on
the criteria these systems use for classifying traffic [1], they might
be interested in capturing all packets independently from their
nature and content, or only a subset of packets that match specific

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
IMC’11, November 2–4, 2011, Berlin, Germany.
Copyright 2011 ACM 978-1-4503-1013-0/11/11...$10.00.

533

filtering rules (e.g. all UDP packets sent by server 192.168.1.1)
usually specified using BPF filters [2] or hardware-assisted
filtering rules supported by modern network adapters [21].

The following figure shows the packet capture performance
(packets are just captured and not processed) of a single VM
running on a Kernel-based Virtual Machine (KVM) [3] while
capturing packets using VirtIO-Net [4] on a quad-core Xeon
system.

Figure 1. Packet Capture Rate at 1Gbit using KVM

Since packet capture performance under a KVM virtualized host
is poor for small packets and acceptable only for medium/large
packets, KVM virtual machines are not suitable for running
network monitoring applications.

In the past years, the authors have developed PF_RING [5] [45], a
Linux kernel module implementing a framework that can be
profitably used for simplifying the development of efficient
monitoring applications requiring high speed packet capture.
PF_RING substantially accelerates packet capture under the
Linux operating system and for this reason is widely used on
specific field such as for accelerating IDS/IPS and for passively
monitoring network traffic using flow-based tools. Unfortunately,
the framework does not provide packet capture acceleration under
virtualized environments. In this work, we introduce virtual
PF_RING (vPF_RING), an high performance packet capture
solution optimized for virtualized environments that solves the
performance bottlenecks present in KVM when used for
deploying multiple monitoring applications on the same physical
box. To improve the packet capture performance the authors
capitalize on vNPlug, a novel framework that provides hypervisor
bypass.

The rest of the paper is structured as follows. In section 2, we
discuss how networking has changed with the advent of virtual
machines. In section 3, we cover the design of vNPlug a
framework that implements support for hypervisor-bypass. In
section 4, we describe how vNPlug has been successfully used to
create vPF_RING, an extension of PF_RING for virtualized
environments. Finally in section 5, vPF_RING performance is
evaluated.

2. RELATED WORK
2.1 Networking in Virtual Machines
Virtualization is appealing for the industry as it simplifies
administrative tasks, while reducing costs and increasing
scalability [29] [40]. In the past few years there have been many
efforts to improve network performance on VMs [33] [34], both
with hardware [37] and software solutions [36]. However, with
the only exception of Endace, which offers the virtual DAG

capture device (vDAG [18]), there are no other companies
addressing the problem of using VMs for high-performance
network monitoring but just for general network operations. A
popular solution for bypassing the hypervisor during network
operations is to map the network adapters directly inside the VM
such as VMware VMDirectPath [31] [43]. We believe that this
solution is sub-optimal for traffic monitoring because:

• Each VM would need a physical network port, thus
increasing:

• Each VM would need a physical network port, thus
increasing:

o The operational costs due to the need of private per-
VM ports.

o The number of monitoring ports.

o The complexity required during live VM migration
and reconfiguration, being each VM bound to a
specific network port on which traffic to be analyzed
is received.

• If multiple VMs running on the same host need to analyze
the same traffic with different goals (e.g. run a VM with
an IDS and another VM with a NetFlow probe), it is
necessary to use specialized hardware for duplicating the
packets to be dispatched to each adapter.

• As packet capture is a costly activity in terms of CPU
cycles required, capturing the same packet multiple times
on various VMs running on the same hosts is more
expensive than capturing the packet once and dispatching
it to multiple VMs especially when having high
throughputs and small packets.

• As hardware adapters are accessed directly by VMs, it is
necessary to install native drivers into the guests, adding
an extra constrain to live migration with respect to
virtualized adapters.

• Physical and virtual IRQ sharing, and device assignment
dependencies [43] can jeopardize the performance of the
system and make this solution effective only on
specialized servers.

Paravirtualization [19] has been the first attempt to reduce the
overhead of emulating real network devices. By implementing
paravirtualization, the guest operating system is aware of being
virtualized, and cooperates with the hypervisor to virtualize the
underlying hardware. In other words, the guest uses custom
drivers that use a direct path for communicating with the
hypervisor. Taking the example of VirtIO-Net [4], the
paravirtualized network device in KVM, the burden on the
hypervisor is reduced, and some optimizations, such as the
VHost-Net support, attempt to reduce the number of system calls
thus improving latency. Unfortunately the packet journey is not
reduced as packets flow through virtual bridges and virtual TAP
devices, and twice through the operating system.

Recently, network equipments manufactures have introduced
technologies for enhancing networking on virtualized
environments. For example, some Intel server class network
interface cards (NICs) implement the Intel VMDq (Virtual
Machine Device Queues) technology [8]. To abstract the network
device and share it across multiple VMs, the hypervisor has to
implement a software network switch, which usually introduce

0

20

40

60

80

100

64 128 256 512 1024 1500

%
 P

ac
ke

t C
ap

tu
re

d

Packet Size (Bytes)

534

severe performance penalties. As shown in Figure 2, VMDq-
aware NICs implement all this in hardware thus preventing the in-
software switching overhead. By combining this technology with
optimized paravirtualization techniques, it is possible to achieve
high networking performance in VMs [9] [10]. Unfortunately
packet capture cannot benefit from it, as VMDq basically
partitions the NIC into several virtual NICs but it does not feature
mechanisms for:

• Accelerating packet capture.

• Capturing packets from all virtual queues, rather than
from just the one assigned to the VM.

Figure 2. Intel VMDq Technology

Along the path of VMDq, the Single Root I/O Virtualization
technology [11] is a way of sharing a device in a virtualized
environment, bypassing the hypervisor involvement in data
movement. As depicted in Figure 3, with this technology a single
Ethernet port can be configured by the hypervisor to appear as
multiple independent devices, each one with its own configuration
space. The hypervisor assigns each Virtual Function (VF,
lightweight PCIe functions) to a VM, providing independent
memory space and DMA streams. PCIe PF (Physical Functions) is
the physical device seen by the hypervisor on the host. Memory
address translation technologies based on IOMMUs [12] [13],
such as Intel VT-d [14] and AMD IOMMU, provide hardware
assisted techniques to allow direct DMA transfers bypassing the
hypervisor, while keeping isolation between host and VMs [30].

Figure 3. SR-IOV Technology

There are several projects following the same approach of the SR-
IOV, with different designs of self-virtualized devices for direct
I/O [15] [16] [17]. All these techniques represent good solutions
for common connectivity but, besides efficiency, they do not
provide assistance in accelerating packet capture.

2.2 Packet Filtering
The previous section has shown various alternatives to implement
efficient networking inside VMs. With paravirtualization, packets
pass through virtual bridges and virtual TAP devices if hardware
support such as VMDq is not present. Using VMDq-aware
network devices or self-virtualized devices [11] [15] [16] [17],
packet filtering still happens in software as hardware filtering
used by VMDq usually provides only MAC-address filtering and
thus in-NIC bridging that is disabled when the NIC is set in
promiscuous mode. The result is that both with/without VMDq,
packet filtering has to happen in software as modern NICs do not
provide assistance for filtering packets when used in virtualized
environments.

Early packet filtering is necessary to prevent packets from being
discarded late in their journey to the VM, after that they have
passed through several components. This is because filtering on
guest OS means that the packet has already reached the VM and
thus that in case of packet not satisfying any filter it would result
in wasted CPU cycles.

Another side effect of in-VM filtering, is that all received packets
need to be copied to each VM, whereas in case of early filtering,
just the packets matching the filters will be forwarded to VMs.

For specific application domains such as lawful interception,
filtering at the VM level represents a major performance issue.
This is because network operators usually provide a shadow copy
of all packets flowing through a link where several hundred users
are connected, but only a small portion of them belong to users
that need to be intercepted; the result is that most packets will be
discarded except those belonging to the targets (i.e. those users
that are being intercepted). This problem is even more visible if
the same input traffic needs to be passed to various VMs, each
performing a different type of analysis. For this reason early
packet discard on the physical machine is very important as it
avoid VMs to be over flood with packets that will be discarded
later on. Lawful interception is a good example where the
physical host receives all packets, and it both filters and
dispatches to the VMs only those packets matching the individual
filters set by each VM.

A possible solution to the problem is to replace virtual bridges
with virtual switches such as Open vSwitch [26] [27]. Open
vSwitch implements standard Ethernet switching, while providing
high flexibility with full control on the forwarding table by
implementing a superset of the OpenFlow protocol [28].
However, as mentioned in [26], the problem is that these switches
cause high CPU utilization when switching packets, so latency
and overhead of the paravirtualization solutions increases. On the
contrary, hardware based OpenFlow switches [42], can
potentially offload the VMs from packet filtering. This approach
allows the load on VMs introduced by packet filtering to be
reduced [29] [41], but limits the flexibility offered by virtualized
environments (e.g. the migration of VM across physical machines
is compromised) and limits filtering to what is offered by the
switches.

In order to implement efficient VM filtering, it is necessary to
discard packets in the physical machine as close as possible to the

VM1 VM3 VMn

L2 Software Switch

Hypervisor

VM2

VMDq Enabled NIC

L2 Hardware Classifier/Sorter

Network

Hypervisor

SR-IOV Enabled NIC

PCIe PF PCIe VFnPCIe VF1

NIC driver

VM1

NIC driver

VM2

NIC driver

VM3

NIC driver

VMm

NIC driver

L2 Software Switch

Internet

535

physical NIC. This way, only packets matching the filtering rules
will continue their journey to the VMs, whereas others will be
dropped immediately as depicted in Figure 4. In a nutshell, early
packet filtering in the context of network monitoring is a key
requirement for achieving a high performance.

Discarding packets on the physical machine leveraging on the
PF_RING filtering support would be very useful in security when
IDS (Intrusion Detection Systems) are used. We have developed a
PF_RING module, part of the PF_RING code distribution, for the
popular snort IDS named PF_RING DAQ (Data AcQuisition
library) [46]. This module is responsible for receiving packets
from PF_RING and dispatching them to snort. For each packet,
snort emits a verdict that can be drop/pass and also white/black-
list. In the latter case, it would be very desirable to have a snort
instance running on a VM able to set filtering rules inside the
PF_RING kernel module running on the physical host by means
of this DAQ module. The advantage is that unwanted
packets/flows are discarded by PF_RING and never hit the VM.
This would be a great advantage of early packet discarding that
we want to offer inside the vPF_RING framework.

Figure 4. Early Packet Filtering

2.3 PF_RING and Operating System Bypass
PF_RING is a kernel-based extensible traffic analysis framework,
that significantly improves the performance of packet capture. It
reduces the journey of captured packets from wire to user-space,
and features a flexible packet filtering system and an extensible
plugin-based architecture for adding new functionality at runtime.

PF_RING can use both vanilla Linux drivers and PF_RING-aware
drivers. The main difference is that the latter can push captured
packets directly to the PF_RING kernel module thus reducing the
packet journey with respect to Linux native packet capture.
PF_RING supports a rich set of packet filtering mechanisms that
allow users to specify actions (e.g. dump a packet to disk),
whenever incoming packets match the filtering rules. It also
supports hardware filtering and packet steering capabilities when
packet capture happens on modern network adapters, such as the
Intel 82599 [21] and the Silicom PE210G2RS [22]. With those
adapters packets are filtered inside the NIC without any assistance
from the main CPU as it happen with software packet filtering.
Hardware and software packet filtering, allow efficient
applications processing packets directly inside the kernel to be
easily implemented. Kernel based packet processing is more
efficient than user-space packet processing as packets do not have
to be copied from kernel to user-space in case they don’t match
any configured filter.

The PF_RING framework provides a user-space library that
exposes an easy-to-use API for implementing monitoring
applications. As depicted in Figure 5, through this library, ring
buffers on which PF_RING is based, are directly mapped from
kernel-space into user-space by using mmap(), reducing overheads
and the number of data copies.

When an application wants to read a new packet, the library
checks the ring:

• If there are new packets available, they get processed
immediately.

• When no packets are found, a poll() is called in order to
wait for new packets. When the poll() returns, the library
checks again the ring for new packets.

Figure 5. PF_RING Architecture

In order to reduce the number of poll() calls and thus a continuous
poll()-wake up-poll() transition, the PF_RING kernel module
implements a dynamic polling mechanism that can be configured
by packet capture applications. The poll() system call returns
when at least X packets are available, where X can range from
one to several thousand, or when the call times out, usually this is
set to 10 msec. This mechanism allows CPU cycles to be
preserved for those applications that do not need to process packet
immediately, but it also enables low-latency applications to be
implemented setting X to one.

As described above, the approach followed by PF_RING is to
create a straight path for packets bypassing the operating system
standard mechanisms by means of a memory-map from kernel-
space to the address space of the monitoring application. With this
solution, system calls other than the poll() are completely avoided.
The operating system bypass approach is adopted in many
research projects [23] [24] as well as commercial products such as
those manufactured by companies such as Endace and Napatech,
most of all in areas requiring intense I/O activity, and where low
latency and high bandwidth are vital.

2.4 Hypervisor Bypass
The hypervisor involvement in all the VM I/O accesses ensures
isolation and system integrity, 4uti t also leads to longer latency
and higher overhead compared to native I/O accesses in non-
virtualized environments, thus becoming a bottleneck for I/O
intensive workloads.

In this paper, we propose a model that extends the PF_RING’s
operating system bypass approach to the context of virtual
environments, thus creating a direct mapping between the host
kernel-space and the guest user-space. This approach aims to

VM 1

Applications

Operating
System

VM 2

Operating
System

Applications

Host
Packet

FIltering

Application 1 Application 2

Standard
Linux Network Stack

ring ring

user-space
kernel

PF_RING

Enhanced
drivers

Standard
drivers

mmap()

536

perform operations that require intensive workloads such as
packet capture using a direct VM-to-physical host path, without
the involvement of the hypervisor except during the setup phase.
It is worth to note that as in native PF_RING, this does not mean
that the hypervisor is completely bypassed in all operations, but
just for those that are computationally expensive such as packet
capture while it is still used for implementing packet polling. In
this view, hypervisor overhead does not affect packet capture
performance because this component is fully bypassed when
packets are read from the PF_RING ring sitting on the host.

Figure 6. Hypervisor Bypass

The hypervisor-bypass approach is not a novel idea: self-
virtualized devices for direct I/O, such as SR-IOV [35] capable
ones, are an example. There are also some studies in the context
of High Performance Computing (HPC) [6] [7] that have
demonstrated that the hypervisor-bypass method can represent a
very good solution in order to remove bottlenecks in systems with
high I/O demands, especially those equipped with modern low
latency and high bandwidth network interconnects.

3. vPF_RING DESIGN PRINCIPLES
In this section, we present the design and implementation of
Virtual PF_RING (vPF_RING), that is based on vNPlug, a
framework implementing the hypervisor-bypass, also developed
by the authors. Although the work presented on this paper
addresses general issues that are not dependent on a specific
virtualization framework, the authors focus only on KVM as it
leverages Linux kernel capabilities, such as scheduling and
memory management. KVM is a small and relatively simple
software, present out-of-the-box on the majority of Linux
distributions, contrary to other similar solutions such as Xen that
is not integrated into the mainstream kernel. Proprietary solutions
such as VMware [38], which is widely accepted in the industry,
have not been taken into account due to their license restrictions
and because of the source code not being open and available [20].

KVM implements a kernel-based virtual machine on top of the
Linux kernel, and exploits a modified version of QEMU [25] for
emulating I/O devices. Implemented as kernel module, KVM
supports native code execution by exploiting hardware
virtualization extensions such as Intel VT and AMD Secure
Virtual Machine. Common tasks, such as scheduling and memory
management, are delegated to the Linux kernel. VMs run as
conventional user-space processes making Linux unaware of
dealing with a virtual system.

vPF_RING, described later in section 3.2, does not strictly depend
on KVM but it mostly relies on PF_RING APIs. Instead, as
described in the next section, the vNPlug framework has been
designed on top of KVM for implementing the hypervisor-bypass
approach (mapping memory, exchanging control messages,
notifying events). Porting vNPlug to another hypervisor such as
Xen, requires a complete code rewrite, contrary to the vPF_RING
code that should not be modified.

3.1 vNPlug Framework
The vNPlug framework exploits the hypervisor-bypass approach
for achieving high packet capture performance in virtualized
environments. It has been designed to be general enough for being
used by every monitoring application and not just vPF_RING. For
instance, the Linux native socket type PF_PACKET is quite
similar to PF_RING as both use memory mapped buffers to
exchange packets between kernel and user-space. Porting
PF_PACKET on top of vPF_RING-vNPlug is thus just a matter of
time as it does not seem to have any technical challenge being the
two socket types pretty similar.

The framework follows a paravirtualization-like design, guests are
aware of being virtualized and consequently the architecture is
logically split in a guest and an host side block.
The framework is logically divided into two main components.
The first component, vNPlug-Dev, is responsible for:

• Mapping memory between the host kernel-space and the
guest user-space.

• Implementing an efficient event notification that is
necessary for VM/Host communications.

The second component, vNPlug-CTRL, is responsible for
coordinating the host and guest side of applications by means of a
control communication channel. The channel is required, for
example, when an application needs to instrument its host-side
back-end for filtering specific packets.

As can be seen, applications built on top of the framework can
access physical host resources that are usually not available in
virtualized environments. In case of vPF_RING, applications
executed under VMs can capture packets not only from VM’s
network interfaces, but also from physical host interfaces. This
feature can be offered by building vPF_RING on top of the
vNPlug framework.

vNPlug is implemented as a QEMU patch on the host side, and a
Linux kernel module (vnplug.ko), based on both vNPlug-Dev and
vNPlug-CTRL components, on the guest OS.

3.1.1 vNPlug-Dev
The original PF_RING maps kernel ring buffers to user-space via
memory-map. vNPlug-Dev allows to further memory-map these
virtual memory areas to virtual machines. The initial memory-
mapping happens through the hypervisor, whereas all packets are
exchanged directly between the VM and the PF_RING sitting on
the host without any hypervisor support. This mapping is
performed dynamically attaching additional blocks of memory via
virtual PCI devices whenever a vPF_RING is created. Inside the
VM, these memory regions can be accessed by ioremap(), and
mapped in virtual memory areas via the vnplug.ko kernel module
that creates character devices that can be memory-mapped. Figure
7 depicts the vNPlug-Dev architecture.

Application

VM
Host

Operating System

Operating System

Hypervisor

user-space
kernel-space

user-space
kernel-space

Hypervisor
bypass

Operating
System
bypass PF_RING

537

Figure 7. vNPlug-Dev Architecture

vNPlug-Dev is dynamic by design as it allows dynamic memory-
mapping to take place by means of virtual PCI devices. Therefore,
the number of rings is not limited as it happens, for instance, in
BSD systems where packets are captured from a limited number
of statically allocated capture devices (/dev/bpfX).
The PCI hotplug support allows devices to be dynamically
attached and removed from a running system. Even if hotplug is
rarely used in practice, basic hotplug support is provided by the
majority of modern operating systems, making hot-plugged
devices immediately usable with limited effort. By exploiting the
hotplug, it is possible to dynamically attach memory mappings to
guests whenever necessary, making vPF_RING a very flexible
system that does not have any limitation in terms of functionality
and flexibility with respect to native PF_RING.
The event signaling functionality of the framework takes
advantage of the irqfd and ioeventfd supports of KVM in order to
provide a two-way notification mechanism, from host-to-guest
and from guest-to-host. Both of them are based on the eventfd file
descriptor for event notification, that is quite powerful yet flexible
as it can be used from both user-space and kernel-space in order to
signal/wait events.
Using the irqfd support it is possible to send interrupts to the VM
without passing through the QEMU process, which is responsible
to emulate the device on which interrupts are dispatched. In fact,
since virtual interrupts are injected to the guest via KVM, the
irqfd support allows the latter to directly translate a signal on an
eventfd into an interrupt, thus ensuring efficiency. At the same
time, the MSI (Message Signaled Interrupt) support ensures
flexibility, by using multiple vectors that simplifies the
notification mechanism when several events are required. On the
guest side, the framework has been inspired by the eventfd
approach that uses a blocking read() on a character device for
notifying user-space applications that an interrupt has been
received.
ioeventfd is used to register arbitrary addresses of a MMIO
(Memory-Mapped I/O) region belonging to a virtual device, along
with a unique value and an eventfd. On the guest side, these
MMIO regions are mapped in user-space. Whenever the guest OS
writes a value to such MMIO region, if the written value matches
the registered value, then an event is triggered on the
corresponding eventfd. This mechanism is quite efficient as it
allows a lightweight exit (long enough to signal an eventfd in
kernel-space by means of a KVM service routine), while a normal
I/O operation on an emulated virtual device requires a costly VM
exit.

3.1.2 vNPlug-CTRL
The component implements a message based communication

channel that allows control messages to be exchanged between the
guest side of the monitoring application and its back-end. For
instance it can be used by an application to request the back-end
to setup a new memory-mapping, or to filter packets.

The vNPlug-CTRL component has been introduced for having a
control channel totally independent from network
communications, and, as such, not susceptible to unintentional
network configuration changes.

As depicted in Figure 8, the vNPlug-CTRL component
implementation is based on the VirtIO interface for
paravirtualization that is efficient and ensures low response times,
but required a little more effort at development time compared to
a network communication implementation. The two-way
communication channel over VirtIO uses two virtqueue’s, one for
host-to-guest messages and one for the opposite direction. In order
to send and receive messages from the guest user-space, the
framework exposes common file operations (read and write) on a
character device.

Figure 8. vNPlug-CTRL Component

Through this communication channel, the framework routes
messages between the host-side and guest-side of applications. As
multiple applications are supported, each with multiple virtual
devices, the framework uses a minimal and yet efficient protocol
stack, depicted in Figure 9. At the bottom of the stack, the VirtIO
transport mechanism takes place, providing a two-way point-to-
point communication channel between the two sides of the
framework: guest and host side. At the second layer, a framework-
level header allows the framework to distinguish between
messages addressed to itself and those addressed to an application.
At the third layer, an application-level header allows the
framework to identify the application to which such message has
to be delivered. From the fourth layer on, all is managed by the
application, in order to identify internal operations and address
virtual devices.

Figure 9. vNPlug-CTRL Message Routing

Host Kernel

QEMU

KVM

Guest

Application
backend

Application

vNPlug-Dev
vNPlug-Dev

kernel

userspace

vNPlug-Dev
Virtual Device

In-kernel
App. backend

qemu_ram_alloc_from_ptr()

mmap()

mmap()

irqfd ioeventfd

Host Kernel

QEMU

KVM

Guest

App
back-end

Application

vNPlug-
CTRL

vNPlug-CTRL

kernel

user-space

Virtio-over-PCI

push() get_buf()

pop() add_buf()
virtqueue

Virtio

Host side Guest side

App1
back-end

App2
back-end

App1
instance1

App1
instance2

Framework

App2
instance1

Framework

Virtual
Device

1

Virtual
Device

2

Virtual
Device

3

Mapping
1

Mapping
2

Mapping
3

538

3.1.3 vNPlug API
In order to simplify the development of monitoring applications,
the framework provides a simple API, that implements an
abstraction layer on top of the implemented functions.
Framework’s components get abstracted through two subsets of
the interface: the host side API and the guest side API.

The main features the interface provides:

• Host Side

o Registration and unregistration of the application
back-end.

o Control messages reception and transmission.

o Virtual devices, for memory-mapping, creation and
tear-down.

• Guest Side

o Control messages transmission and reception.

o Shared memory-mapping and unmapping in the
virtual address space of the application.

o Event signaling/waiting functionalities.

3.2 vPF_RING
vPF_RING is an extension of PF_RING for virtualized
environments built on top of vNPlug. The design of original
PF_RING lent itself particularly well to be adapted to the vNPlug
framework. In fact, on the host side, it only needed a few
enhancements, keeping both the kernel module and the user-space
library fully backward-compatible with the original version. As
the PF_RING library uses memory-mapping for exporting the
packet capture ring from kernel-space into user-space, the virtual
memory address returned by mmap() can be used by the
framework to map it into the guest. In a nutshell, PF_RING is
responsible for making this memory area available to the guest
user-space.

Figure 10. vPF_RING Design

The two-way event signaling support of the framework has been
used for replacing the poll() calls used by PF_RING applications
for being waken-up when new incoming packets are available.
When an application on the guest-side has to read a new packet,
but no packets are ready to be read, the library on the guest-side
informs the host side. This way, the host-side knows that if there
are unread packets, or when a new one arrives, it has to send an
interrupt to the guest-side that is waiting for packets. Furthermore

an algorithm similar to the adaptive sleep of the PF_RING native
library is used, in order to avoid many poll-equivalent calls.

A new and thin library has been created on the guest-side for:

• Translating each call to the PF_RING library into control
messages over the communication channel provided by
the framework.

• Memory-mapping and event signaling/waiting
mechanisms just described.

The vPF_RING back-end on the host-side, is also responsible of
translating guest-to-host control messages into calls to the
PF_RING library. It allows monitoring applications running on
guests to:

• Read packets from kernel via memory-map and not
through read() system calls as it happens with VirtIO.

• Access host network interfaces in addition to guest
network interfaces.

• Setup packet capture filters directory on the host
PF_RING, thus implementing early packet filtering.

• Seamlessly develop applications, that can run unchanged
both on physical or virtualized environments, easing the
move towards a virtualized monitoring environment.

In a nutshell vPF_RING has been designed to be transparent to
application developers, both in terms of features and packet
capture speed. The only visible difference is the device name from
which packets are captured. With native PF_RING it is possible to
capture packets just from physical interfaces. Using vPF_RING, it
is possible to capture packets from both the VM’s virtual Ethernet
device, and the physical host interface. In the former case,
vPF_RING operates as PF_RING when capturing packets from a
host adapter (in this case from the VM virtual adapter). In the
latter case, vPF_RING is not capturing from the VM’s interface
but from the host’s physical interface. As vPF_RING’s API is
unchanged with respect to PF_RING, a special device naming
convention has been used in order to instruct the framework to
capture packets from the host interface. This is because host
interfaces are not visible to the VM via standard Linux commands
such as ifconfig, and also because interface name present on both
the VM and host might be the same (e.g. eth0). For this reason in
vPF_RING the following naming convention has been used:
interface names with a “host:” prefix indicate host interface. For
instance when a VM opens “eth0” it means that it wants to open
the virtual VM eth0 interface; instead “host:eth0” means the eth0
physical host interface.

vPF_RING honors all PF_RING capture extensions. For instance
applications can capture traffic from a specific RX queue of a
multi-queue adapter when using PF_RING-aware driver [32], and
specify filtering and packet steering rules in hardware on adapters
such as Intel 82599 [21]. On one hand, these are interesting
features to have as for instance a VM having to analyze HTTP
traffic, can capture traffic on RX queue X on which it has
configured a hardware filter that sends to such queue only HTTP
packets. On the other hand, like most kernel bypass technologies
(e.g. the same PF_RING), must be used properly as they
circumvent some protection mechanisms, such as the insulation of
the VM from host environment.

Host Kernel

QEMU

KVM

Guest

A
P
I

A
P
I

vNPlug-CTRL

vNPlug-Dev

vNPlug-CTRL

vNPlug-Dev

libpfring

irqfd ioeventfd

PF_RING
module

Virtual
PF_RING
back-end

Virtual
PF_RING

539

4. vPF_RING VALIDATION
vPF_RING validation and performance evaluation tests have been
performed on a simple test bed, where an IXIA 400 traffic
generator has been used for sending packets to a server powered
by an Intel Xeon X3440, running Linux kernel 2.6.36 and
equipped with a dual Intel 82576 Gigabit Ethernet controller. The
IXIA 400 traffic generator is connected to the server via the two
gigabit ports, and can generate network traffic at configurable
rates, including the wire-rate, on both port regardless of the packet
size. For 10 Gigabit tests we have used a home-grown tool named
pfsend with PF_RING DNA (Direct NIC Access) [47] for
reproducing traffic at wire speed previously captured on a
network backbone. This has allowed us to test vPF_RING under
various conditions and with both synthetic and real network
traffic. For the tests described later on this section, have been used
forged packets in order to evaluate this work with different packet
rates and sizes.

The performance of vPF_RING has been compared with the
performance of native PF_RING 4.6.x running on a physical (non
virtualized) host and PF_RING running on a virtual KVM
environment (using the VirtIO-Net support with the VHost-Net
optimization). vPF_RING performance has also been
positionedagainst VMware ESXi (using VMXNET 3, the latest
version available of the VMware paravirtualized network device).
All the VMs used during the evaluation have a single-core virtual
CPU and also run Linux kernel version 2.6.36.

The device driver used on the server on the host-side is the igb,
developed by Intel, which is included in the Linux kernel. It is
worth to remark that, although PF_RING supports PF_RING-
aware optimized drivers to bypass the standard operating system’s
mechanisms, we decided not to use them in order to evaluate our
work on the worst case (i.e. without any packet capture
acceleration exploiting specific network cards features). This is
because we want to compare native VirtIO-Net agains
vPF_RING, without accounting any vPF_RING performance
benefit due to these optimized drivers.

Before describing the evaluating results, it is important to
understand how the packet size affects the benchmarks. This
parameter is relevant because the maximum packet rate that can
be injected on a link depends on the packet size. As shown in
Table 1, at wire-rate, small packet sizes corresponds tohigher
packet rates. The packet capture performance is affected by the
packet rate, which can be as high as 1.4 Million of packets per
seconds (Mpps) when the packet size is 64 bytes (minimum
packet size) on Gigabit links, 14.880 Mpps on 10 Gigabit.

Table 1. Maximum Packet Rates

Line
Speed

Rates Per Frame Size (Kpps)
64

Byte
128
Byte

256
Byte

512
Byte

1024
Byte

1 Gigabit 1488 844 452 234 119

10 Gigabit 14880 8445 4528 2349 1197

Another aspect worth to mention, is that with vPF_RING it is
possible to use efficient packet filtering techniques within the host
(in kernel-space or even in hardware), to further increase the
performance. In fact, through the efficient communication channel
provided by the vNPlug-CTRL component, vPF_RING is capable
to instrument the PF_RING module for setting a variety of
efficient filters. However, as we are interested in evaluating our
work in the worst case scenario, packet filtering has not been
used.

Benchmarks have been done using pfcount, a simple packet
capture application implemented on top of the PF_RING API. The
application captures packets, updates some statistics, and then
discards packets without doing any further processing.

In the first test we evaluate the packet capture performance when
a single instance of pfcount processes the traffic injected at wire
rate with different packet sizes on a single Gigabit link.

In Figure 11 we show that vPF_RING, similar to PF_RING on a
native environment, is able to process packets at wire-rate
(without packet loss), for every packet size, up to the maximum
rate (1.488 Mpps per port). From the same figure we can observe
that by using PF_RING in a virtual environment with the VirtIO-
Net support (i.e. without the assistance of our framework), it is
possible to efficiently capture without packet loss only
medium/large packets, when packet rates are not more than a few
hundred Kpps. In fact, with small packets severe packet drops can
be observed. Results are slightly better when using PF_RING on a
VMware ESXi virtual environment, but we can still notice severe
packet drops for high rates.

Figure 11. Packet Capture Rate (1 Gbit)

In addition to packet capture, we evaluate the percentage of CPU
idle time as reported by the top command utility. In this way, we
can have an indication of the free CPU cycles available for packet
processing.

0

500

1000

1500

64 128 256 512 1024

Pa
ck

et
 R

at
e

(K
pp

s)

Packet Size (Bytes)

Generated traffic Native PF_RING
Virtual PF_RING Virtio-Net VhostNet
ESXi VMXNET 3

540

Figure 12 shows that vPF_RING can cope with high packet rates
while keeping the CPU relatively idle, almost the same percentage
as the native solution. Instead, with the VirtIO-Net support, there
is an higher overhead even if fewer packets per second are
processed.

Figure 12. Idle CPU % During Capture On Host As Reported

By top (1 Gbit)

Figure 13 depicts the packet loss percentage that pfcount reports
when using different capture mechanisms. The result highlights
that both vPF_RING and PF_RING allows packets to be captured
without observing any packet loss for all packet sizes, including
the minimum packet size corresponding to the highest packet rate
(1.4 Mpps for 64 byte packets). On the contrary, when using
VirtIO-Net, the packet loss percentage is significant (as high as
90% in the case of 64 bytes packets), making it unsuitable for
applications where 100% packet capture is required. A lower
packet loss percentage can be observed when VMware ESXi is
used; however also this solution cannot guarantee no packet loss.

Figure 13. Packet Loss Percentage (1 Gbit)

A second test has been performed to evaluate the performance
when two instances of the pfcount application, running on the
same VM, process the traffic injected on two different Gbit
interfaces.

Figure 14 shows the aggregated packet capture rate that is
achieved by running the two pfcount instances. Both vPF_RING
and PF_RING are able to process up to nearly two million packets
per second without packet loss (with an average of one million per
instance). When the packet rate on the wire increases further (with
64-byte packets at wire-speed) both capture mechanisms lose
packets. However native PF_RING processes about half a million
more than vPF_RING.

Figure 14. Total Captured Packets By Two pfcount Instances

Running On The Same VM

As the virtual machine where the two instances of pfcount have
limited CPU resources, this result does not necessarily mean that
vPF_RING offers a worse scalability than the native PF_RING. In
fact, while the two instances of pfcount of the native solution can
run concurrently on different cores of the same processor, we
know that a virtual CPU, where the two application instances of
the virtual solution are scheduled on, is itself scheduled as a
normal thread by the host operating system.

Regarding the virtual solution without the framework, using the
VirtIO-Net support, performance are similar or even worse to the
previous, with up to one hundred thousand packets per second
processed by each application instance. The conclusion is that
even with large packets, packet loss is pretty severe.

Figure 15 depicts the percentage of CPU idle time, and it confirms
that vPF_RING keeps the CPU relatively idle, even more that
native PF_RING. This is because the native PF_RING is more
efficient than the virtual version, thus it consumes packets more
quickly hence calls poll() much more often that contributes to
reduce the idle time. Instead the solution based on VirtIO-Net
requires more CPU time even with a very low percentage of
captured packets.

0

20

40

60

80

100

64 128 256 512 1024

%
 Id

le

Packet Size (Bytes)

Virtio-Net VhostNet Native PF_RING
Virtual PF_RING

0

20

40

60

80

100

64 128 256 512 1024

%
 P

ac
ke

t L
os

s

Packet Size (Bytes)

Virtio-Net VhostNet Native PF_RING
Virtual PF_RING ESXi VMXNET 3

0

500

1000

1500

2000

2500

3000

64 128 256 512 1024
Pa

ck
et

 R
at

e
(K

pp
s)

Packet Size (Bytes)

Generated traffic Native PF_RING
Virtual PF_RING Virtio-Net VhostNet

541

Figure 15. Idle CPU % When Two pfcount Instances Are

Running On The Same VM

Another test has been conducted for evaluating the performance
of two instances of the application, each one processing one
Gigabit of traffic on a different interface, but this time each
running on a different VM.

As shown in Figure 16, the total number of captured packets by
both application instances has that same trend as in the previous
test. The only difference is that in this case for 64-byte packets the
capture rate of vPF_RING is basically the same of the native
PF_RING. This, once again, confirms our hypothesis about
scalability. In fact, in this case we have two virtual CPUs
scheduled on the host, one for each VM, and on each virtual CPU
an application instance is scheduled.

The solution based on VirtIO-Net, this time, seems to scale for
large packets but, at high rates, performance is similar to the one
observed in the previous tests.

Figure 16. Total Captured Packets By Two pfcount Instances

Running On Different VMs

Figure 17. Idle CPU % When Two pfcount Instances Are

Running On Different VMs

Figure 17 shows the percentage of CPU idle time. As one would
guess, vPF_RING overhead is higher than the native PF_RING.
The solution based on VirtIO-Net still requires many more CPU
cycles, even if its packet capture performance is lower.

Another series of tests has been performed in order to compare the
packet capture performance offered by vPF_RING when
capturing from a 10 Gigabit link, to the performance provided by
the native PF_RING. pfsend on top of PF_RING DNA has been
used to generate traffic at wire speed. An Intel 82599 based
Gigabit Ethernet interface has been used as a capture device. The
server used is still an Intel Xeon X3440 running Linux kernel
2.6.36. The device driver used for these tests, on the host-side, is a
PF_RING-aware version of the ixgbe, which is able to copy
packets directly to PF_RING my means of Linux NAPI packet
polling.

In the first of these tests, we evaluated the performance with a
single application instance. Figure 18 shows that vPF_RING is
able to match the packet capture performance offered by the
native PF_RING.

Figure 18. Packet Capture Rate (10 Gigabit)

0

20

40

60

80

100

64 128 256 512 1024

%
 Id

le

Packet Size (Bytes)

Virtio-Net VhostNet Native PF_RING
Virtual PF_RING

0

500

1000

1500

2000

2500

3000

64 128 256 512 1024

Pa
ck

et
 R

at
e

(K
pp

s)

Packet Size (Bytes)

Generated traffic Native PF_RING
Virtual PF_RING Virtio-Net VhostNet

0

20

40

60

80

100

64 128 256 512 1024

%
 Id

le

Packet Size (Bytes)

Virtio-Net VhostNet Native PF_RING
Virtual PF_RING

0

500

1000

1500

2000

2500

3000

64 128 256 512 1024

Pa
ck

et
 R

at
e

(K
pp

s)

Packet Size (Bytes)

Native PF_RING Virtual PF_RING

542

A second test has been performed to evaluate the scalability, with
two instances of pfcount capturing packets from the same
interface, balancing the traffic across applications by means of
RSS (Receive-Side Scaling) queues. In the virtual case, each
pfcount instance is running on a different VM. As shown in Figure
19, also in this case, packet capture performance offered by
vPF_RING is close to the one offered by the native PF_RING.

Figure 19. Captured Packets By Each Of the Two pfcount

Instances Running On Different VMs (10 Gigabit)

In order to further evaluate the scalability, another test has been
conducted with four instances of pfcount. As in the previous test,
the pfcount instances capture packets from the same interface.

As depicted in Figure 20, vPF_RING offers packet capture
performance comparable to the one provided by the native
PF_RING.

Figure 20. Captured Packets By Each Of The Four pfcount
Instances Running On Different VMs (10 Gigabit)

In summary using vPF_RING has no performance penalty relative
to native PF_RING (Figures 11,12). Relative to PF_RING in a
VM:

• vPF_RING is more than an order of magnitude faster
with respect to the performance achieved by vanilla KVM.

This means that thanks to vPF_RING it is finally possible
to effectively perform traffic monitoring inside KVM-
based VMs.

• For all packet sizs, vPF_RING and PF_RING have
comparable performance (Fig 14, 18).

5. OPEN ISSUES AND FUTURE WORK
The work described on this paper is an efficient and flexible
solution to effective packet capture on VMs. Nevertheless there
are a few areas where extra work is needed.

The main issue is live VM migration, as the hypervisor does not
have knowledge of the resources allocated by the applications.
This is in contrast to traditional device virtualization approaches,
where the hypervisor is involved and it can suspend all the
operations when live migration starts. While developing the
framework we mostly focused on achieving high packet capture
performance and we did not consider additional virtualization
features, such as live migration. In the future we plan to address
the issue for further increasing the flexibility offered by our
solution.

Furthermore, it would be interesting to perform more detailed
tests, look for further performance improvements, and evaluate
the framework on VMs with multiple virtual CPUs investigating
on scheduling and resource management.

6. FINAL REMARKS
In the past few years there have been many efforts to improve
network performance on VMs, both with hardware and software
solutions. However, none of the available solution addresses the
problem of using VMs for high-performance network monitoring.

This paper used a well-known approach named hypervisor-
bypass, which allows packets to follow a straight path from kernel
to VMs, thus avoiding per-packet overhead due to the hypervisor
and system calls. This mechanism has been successfully applied
for implementing vPF_RING, a kernel-based extensible traffic
analysis framework developed by the authors. The validation
phase has confirmed that it can drastically improve packet capture
performance, often achieving packet capture rates and CPU usage
close to those that can be obtained on bare hardware. This
reducing the dropped packet rate up to 90% on Gigabit links with
respect to preexisting open source software solutions, 55% with
respect to commercial solutions such as VMware (or even more
on faster links).

The outcome is that it is now possible to efficiently run multiple
VMs on commodity hardware, each monitoring the same traffic
for different purposes, without packet loss and with plenty of CPU
cycles available for processing the captured traffic.

7. CODE AVAILABILITY
This work is distributed under the GNU GPL license and is
available at the ntop home page
http://www.ntop.org/products/pf_ring/vpf_ring/.

8. ACKNOWLEDGEMENTS
Our thanks to Silicom Ltd. that has greatly supported this research
work and provided network equipment used during tests.

9. REFERENCES
[1] F. Baboescu and G. Varghese, Scalable packet classification,

Proc. of ACM Sigcomm, 2001.

0

500

1000

1500

64 128 256 512 1024

Pa
ck

et
 R

at
e

(K
pp

s)

Packet Size (Bytes)

Native PF_RING Virtual PF_RING

0

500

1000

64 128 256 512 1024

Pa
ck

et
 R

at
e

(K
pp

s)

Packet Size (Bytes)

Native PF_RING Virtual PF_RING

543

[2] S. McCanne and V. Jacobson, The BSD Packet Filter: A
New Architecture for User-level Packet Capture, Proc. of
USENIX Conference, 1993.

[3] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori,
kvm: the Linux virtual machine monitor, Proc. of 2007
Ottawa Linux Symposium, July 2007.

[4] R. Russell, VirtIO: Towards a De-Facto Standard for Virtual
I/O Devices, SIGOPS Operating Systems Review, Vol. 42,
Issue 5, July 2008.

[5] L. Deri, Improving Passive Packet Capture: Beyond Device
Polling, Proc. of SANE 2004, 2004.

[6] W. Huang et al., A case for high performance computing
with virtual machines, Proc. of the 20th annual international
conference on Supercomputing, 2006.

[7] J. Liu et al., High performance VMM-bypass I/O in virtual
machines, Proc. of USENIX annual conference, 2006.

[8] R. Hiremane and S. Chinni, Virtual Machine Device Queues:
An Integral Part of Intel Virtualization Technology for
Connectivity that Delivers Enhanced Network Performance,
Intel Corporation, White Paper, 2007.

[9] K.K. Ram et al., Achieving 10 Gb/s using safe and
transparent network interface virtualization, Proc. of the
2009 ACM SIGPLAN/SIGOPS international conference on
Virtual execution environments, 2009.

[10] J.R. Santos et al., Bridging the gap between software and
hardware techniques for i/o virtualization, Proc. of USENIX
2008 Annual Technical Conference on Annual Technical
Conference, 2008.

[11] PCI-SIG, Single Root I/O Virtualization and Sharing
Specification, Revision 1.0, 2007.

[12] M. Ben-Yehuda et al., Utilizing IOMMUs for virtualization
in Linux and Xen, Proc. of the 2006 Ottawa Linux
Symposium, 2006.

[13] M.D. Hummel et al., Address translation for input/output
(I/O) devices and interrupt remapping for I/O devices in an
I/O memory management unit (IOMMU), US Patent
7’653’803, 2010.

[14] S. Muthrasanallur et al., Intel Virtualization Technology for
Directed I/O, Intel Corporation, 2006.

[15] J. LeVasseur et al.,Standardized but flexible I/O for self-
virtualizing devices, Proc. of the First conference on I/O
virtualization, USENIX Association, 2008.

[16] H. Raj and K. Schwan, High performance and scalable I/O
virtualization via self-virtualized devices, Proc. of the 16th
international symposium on High performance distributed
computing, ACM, 2007.

[17] J. Shafer et al., Concurrent direct network access for virtual
machine monitors, Proc. of IEEE 13th International
Symposium on High Performance Computer Architecture,
2007.

[18] Endace, OSm 4.2 vDAG (Virtualized DAG),
http://www.endace.com/endace-operating-system-for-
network-monitoring-osm.html, June 2011.

[19] L. Youseff at al., Paravirtualization for HPC Systems, Proc.
of Workshop on Xen in High-Performance Cluster and Grid
Computing, 2006.

[20] K. Adams and O. Agesen, A Comparison of Software and
Hardware Techniques for x86 Virtualization, International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2006.

[21] L. Deri et al., Wire-Speed Hardware-Assisted Traffic
Filtering with Mainstream Network Adapters, Proc. of
NEMA 2010 Workshop, October 2010.

[22] Silicom Ltd., PCIe Packet Processor Server Adapter
PE210G2RS, http://www.silicom-
usa.com/default.asp?contentID=2144, 2010.

[23] A. Biswas, A High Performance Real-time Packet Capturing
Architecture for Network Management Systems, Masters
Thesis, Concordia University, 2005.

[24] L. Degioanni and G. Varenni, Introducing Scalability in
Network Measurement: Toward 10 Gbps with Commodity
Hardware, Proc. of IMC ’04, 2004.

[25] F. Bellard, QEMU, a Fast and Portable Dynamic Translator,
Proc. of the USENIX Annual Technical Conference,
FREENIX Track, 2005.

[26] J. Pettit et al., Virtual Switching in an Era of Advanced
Edges, 2nd Workshop on Data Center – Converged and
Virtual Ethernet Switching (DC-CAVES), Sept. 2010.

[27] B. Pfaff et al., Extending networking into the virtualization
layer, Proc. of HotNets, October 2009.

[28] N. McKeown et al., OpenFlow: enabling innovation in
campus networks, ACM SIGCOMM Computer
Communication Review 38.2 (2008).

[29] A. Greenhalgh et al., Flowstream Architectures, Proc. of
WowKiVS 2009 Conference, 2009.

[30] Intel Corporation, 82599 10GbE Controller Datasheet,
Revision 2.3, April 2010.

[31] Intel Corporation and VMware Inc., Enabling I/O-Intensive
Applications for Server Virtualization, White Paper, 2009.

[32] Luca Deri et al., High Speed Network Traffic Analysis with
Commodity Multi-core Systems, Proc. of IMC 2010,
November 2010.

[33] B. Plaff et al., Extending Networking into the Virtualization
Layer, Proc. of 8th HotNets Workshop, October 2009.

[34] N. Chowdhury and R. Boutaba, Network virtualization: state
of the art and research challenges, IEEE Communications
Magazine, July 2009.

[35] Y. Dong at al., SR-IOV networking in Xen: architecture,
design and implementation, Proc. of WIOV'08, 2008.

[36] S. Rixner, Network Virtualization: Breaking the Performance
Barrier, ACM Queue Magazine, Vol. 6 Issue 1, Jan./Feb
2008.

[37] D. Unnikrishnan et al., Scalable network virtualization using
FPGAs, Proc. of ACM FPGA '10, 2010.

[38] E. L. Haletky, VMware ESX Server in the Enterprise:
Planning and Securing Virtualization Servers, ISBN
0132302071, 2008.

[39] J. Wiegert et al., Challenges for Scalable Networking in a
Virtualized Server, Proc. of 16th ICCCN Conference, 2007.

[40] N. Niebert et al., Network Virtualization: A Viable Path
Towards the Future Internet, Strategic Workshop, 2007.

544

[41] R. Sherwood et al. FlowVisor: A Network Virtualization
Layer. Technical Report Openflow-tr-2009-1, Stanford
University, 2009.

[42] R. Sherwood et al., Carving research slices out of your
production networks with OpenFlow. ACM SIGCOMM
Computer Communication Review, 2010.

[43] VMware Inc.,Configuration Examples and Troubleshooting
for VMDirectPath, Technical Note, 2010.

[44] L. Deri, nCap: Wire-speed Packet Capture and Transmission,
Proc. of E2EMON Workshop, 2005.

[45] L. Braun et al., Comparing and Improving Current Packet
Capturing Solutions Based On Commodity Hardware, Proc.
of. IMC '10, November 2010.

[46] Russ Combs, Snort 2.9 Essentials: The DAQ, http://vrt-
blog.snort.org/2010/08/snort-29-essentials-daq.html, August
2010.

[47] ntop, PF_RING DNA,
http://www.ntop.org/products/pf_ring/dna/, September 2011.

545

Summary Review Documentation for

“vPF_RING: Towards Wire-Speed Network Monitoring
Using Virtual Machines”

Authors: A. Cardigliano, L. Deri, J. Gasparakis, F. Fusco

Reviewer #1
Strengths: A software framework for hypervisor bypass to
improve passive packet capture performance in virtualized
environments.

Weaknesses: Limited novelty of the system (hypervisor bypass
has been proposed and implemented in other intensive I/O
settings)

Comments to Authors: The vPF_RING framework proposed
and evaluated by the authors is a nice, albeit unsurprising,
adaptation of hypervisor bypass to improve passive network
measurement performance. The work is valuable and likely to see
wide use and adaptation in other hypervisors, e.g., VMWare,
Hyper-V, and Xen. The specific technical contributions and
evaluation, however, are somewhat limited and the paper would
have perhaps been better formulated as a short submission. The
writing (especially related work) is quite verbose and could have
been substantially tightened. Indeed, I believe the paper would
have been a stronger submission had it been a short paper.

In Figure 17, there’s no explanation for the poor relative
performance of vPF_RING for packet size of 128 B.

Reviewer #2
Strengths: The work is technically sound and well presented.

Weaknesses: Given that the solution builds on the author’s
previously existing tool to accomplish performance sensitive I/O
tasks in virtualized environments, it’s not clear how to value the
marginal contribution of this work. It seems like the most
performance benefit relative to native PF_RING is only realized
when the average packet size is < 128 bytes - is this true? Also,
there are missing points that could have improved the evaluation.

Comments to Authors: There was not a clear “X% better”
statement in the paper. Digging a bit, I think I have come up with
the following candidates: if you agree, you should repeat them
many times in the paper, likely both in the introduction and the
conclusion:
- relative to PF_RING, in a VM, vPF_RING reduces the dropped
packet rate from x% to y% for packet rates above z PPS (1
Gbps/128 byte packets?). For packet rates below z, vPF_RING
and PF_RING have comparable performance (Fig 14)
- using vPF_RING in native (non-VM) mode has no performance
penalty relative to PF_RING (figs 11,12)

As it stands, particularly from graph 14, it looks like there is no
benefit to using vPF_RING if your average packet size is above
128 bytes: is that really true? If so, that definitely limits the
utility of this work.

I would have really liked to see a quantatitive comparison of your
work against the more naive solutions in either VMWare or Xen.
Particularly with closed source applications, quite often high-level
algorithmic arguments about why solution X is better than Y (as
you claim in the related work section) are not correct simply
because the algorithms are trade secrets and not published.

It’s a shame that you didn’t also compare against PF_RING
optimized drivers. It’s good to understand both the common and
the worst case. Given that PF_RING seems to preform
comparable to vPF_RING for medium sized packets, it makes me
wonder what the utility would be with an optimized driver.

The focus on PF_RING as a base software-capture tool is a bit
dated. Please see the following paper (and its references) for
more cutting edge software-capture technologies: Lothar Braun,
Alexander Didebulidze, Nils Kammenhuber, Georg Carle,
“Comparing and Improving Current Packet Capturing Solutions
based on Commodity Hardware”, Proc. IMC 2010.

How much work would it take to extend your work from
PF_RING to PF_PACKET? Would vPF_RING need to be
rewritten completely for each new capture architecture?

Reviewer #3
Strengths: Systems that use virtual machines are more common
every day and we currently have no efficient way to do packet
captures in these systems. The libraries designed in this paper
should be useful in practice.

Weaknesses: The writing mixes implementation details with
design principles making it hard to understand the key ideas. The
paper also lacks a clear motivation and set of use cases for this
type of measurement.

Comments to Authors: This paper presents the thorough design
and evaluation of a framework to capture packets at high speeds
on virtual machines. Given the prevalence of systems using
virtualization, the concepts to make packet capture work on VMs
introduced here are an important contribution to the community.
In my view, the paper has two main contributions: (i) the design
principles and (ii) the tool itself, which serves as a proof-of-
concept and works only for KVM. It is not clear from the paper
whether the tool will be available to the community, but I assume

546

it is. The first contribution is not easy to get from the current
version of the paper because of the presentation.

There are two main changes that can help improve the
presentation:

1. The paper never clearly articulates the scenarios in which one
would need to monitor packets in virtualized environments. Often
when applications are running in different VMs it is because they
need isolation, so the idea that one VM can tap another VM’s
traffic is not conventional. It would be helpful to have examples
of systems that need this kind of capability. Having clear use
cases from the start can also help motivate and kind the
evaluation. The evaluation section could be much more
interesting if you had some case studies motivated by the use
cases from your introduction.

2. The discussion in Sec. 3 presents details first and the overall
idea after. The functionality discussion that is currently in Sec.
3.2 helps set the stage for why you need the APIs and functions
described in Sec. 3.1. In general, this section goes into a lot of
detail, but it doesn’t clearly separate the design principles. It
would be helpful to have some conceptual discussion of the hooks
you need in the kernel, the kinds of interrupts, memory-mapping,
then you can discuss more specific implementation (anything that
is specific to KVM and your implementation). In fact, it is OK to
only implement the framework for one virtualization technique,
but it is important to discuss which parts of the framework are
specific for KVM and what is general.

The paper would benefit from a careful proof reading.

In Sec. 4, it is not clear where the traces are coming from. The
first paragraph of Sec. 4 says that you capture traces with the
Endace card on a network backbone (if this is the case, can you
give some details on the traces? Dates of collection, length of the
trace, the type of network it was collected, how many bytes in the
trace). However, the results in this section seem to indicate that
traces were generated synthetically with different packet sizes at
fixed bandwidth.

Reviewer #4
Strengths: Timely, relevant work, impressive performance
numbers. Very nicely written to put the work in context of other
related work.

Weaknesses: My major concern was whether PF_RING itself
was widely adopted or used, and what the value of porting it to
virtualized environments is.

The evaluation was a bit too repetitive - I would have liked to see
more results on (a) the effects of running multiple monitoring
applications on different VMs and (b) the benefits of early packet
capture.

Comments to Authors: I really liked this paper - it addresses a
timely problem with a well-engineered system implementation
that has very good performance.

I don’t really know how widely used PF_RING is, and what the
merits of this exercise are in terms of practical deployments etc.
Some numbers/statistics on how PF_RING is deployed would add
to your motivation a lot.

I liked Section 2 - the authors have done a nice job of putting their
work in perspective of the various proposed optimizations in the
literature (e.g., hypervisor bypass, dedicated NICs per VM etc).

The figures were very helpful, but they dont seem to be referred
to or explained in the text and I found them to be lacking in
context at times; e.g., in Figure 3 what’s the difference between
the PCIePF and PCI-e VFI?

Sec 2.2 - the comment about lawful interception -- I dont
understand this paragraph.

Are you worried about accidental privacy leakage?

Sec 2.3 - is the main difference between a modified hardware and
a vanilla hardware the ability to offload filtering to the NIC?

Figure 5 - can standard drivers not write to the PF_RING data
structure, the text seems to suggest otherwise, but the figure is
confusing me?

 Section 3 - some examples of how different applications could
“subscribe” to different subsets of traffic filters would be very
helpful here. An end-to-end example of how a monitoring
application can use vPFRing would be very useful here.

Section 4 - the results are impressive, but I would have liked to
see a bit more “breadth” in the experiments. Right now, you go
deep into a single VM performance in the worst case, but what
about running multiple applications, what’s the impact on say an
application like Snort, how can packet filtering at early stage help
etc?

Section 5 - I don’t think I followed the concerns about live
migration here. Is this specific to vPF-Ring or any approach that
does bypass or paravirtualization?

Section 6 - “introduced a mechanism named hypervisor bypass” -
didn’t you tell me that this was well known.

Reviewer #5
Strengths: The development of a highly accurate packet capture
for virtual machines is important for using them in network
measurements. This paper presents an important step toward
reducing cost and improving coverage of traffic monitoring
systems.

Weaknesses: This new method builds on an existing PR_RING
framework and provides little innovation for a full paper. The
evaluations are limited to only one architecture and do not
consider multiple virtual CPUs.

547

Comments to Authors: I find your work extremely interesting as
it allows for using virtual machines to measure networks. This
solution will then enable us to reduce deployment and
management cost of a shared measurement platforms. However,
the innovation in by-passing hypervisor was already considered
in previous work, including [5]. The evaluation is also limited.

Some detailed comments on the paper:

The related work section (Section 2) is a bit too long and you
have not used all the available space for the paper. There are
spaces to present more validations to fully understand the
limitations of the proposed solution.

Section 4, the comparisons between vPF_RING and PF_RING
show that vPF_RING performs almost as good as PF_RING,
which is expected. However, comparisons with other packet
capture techniques both on virtual machine and on real hardware
are needed to understand the potentials and limitations of the
techniques used in both vPF_RING and PF_RING.

Response from the Authors

- We have analyzed all reviewer’s comments and taken them into
account. We have not found a single comment that was out of
scope, thus all of them have been addressed in the new paper
version. The main changes include:	
- Positioned out work against other VMs (Xen) as well
commercial VMs (VMware). We have also extended the figures
so that we have depicted also the performance of VMware with
respect to our work.
- Clarify some statements that were not fully correct, or not easy
to understand
- Added some sentences about how difficult would be to port out
work to other hypervisors.
- Added a few examples where our work could be used, including
(as requested) security and snort, a popular IDS/IPS.
- Better described our statement about the use of VMs in lawful
interception.
- Explained some technical terms we used in the text but that are
not very common.
- Moved/rewritten some sentences to simplify the text.

548

