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ABSTRACT 
The demand of highly flexible and easy to deploy network 
monitoring systems has pushed companies toward software based 
network monitoring probes implemented with commodity 
hardware rather than with expensive and highly specialized 
network devices. Deploying software probes under virtual 
machines executed on the same physical box is attractive for 
reducing deployment costs and for simplifying the management of 
advanced network monitoring architectures built on top of 
heterogeneous monitoring tools (i.e. Intrusion Detection Systems 
and Performance Monitoring Systems). Unfortunately, software 
probes are usually not able to meet the performance requirements 
when deployed in virtualized environments as virtualization 
introduces severe performance bottlenecks when performing 
packet capture, which is the core activity of passive network 
monitoring systems. 

This paper covers the design and implementation of vPF_RING, a 
novel framework for efficiently capturing packets on virtual 
machines running on commodity hardware. This solution allows 
network administrators to exploit the benefits of virtualization 
such as reduced costs and centralized administration, while 
preserving the ability to capture packets at wire speed even when 
deploying applications in virtual machines. The validation process 
has demonstrated that this solution can be profitably used for 
multi-gigabit network monitoring, paving the way to low-cost 
virtualized monitoring systems. 

Categories and Subject Descriptors 
C.2.2 [Computer-Communication Networks]: Network 
Protocols—Measurement; C.2.3 [Network Operations]: Network 
monitoring—Performance. 

General Terms 
Measurement, Performance. 

Keywords 
Virtualization, Packet Capture, Passive Traffic Monitoring. 

 

 

1. INTRODUCTION AND MOTIVATION 
In the past years, one of the industry trends is to optimize rack 
space and power consumption while simplifying administration 
by migrating physical servers onto Virtual Machines (VMs).  

In the context of network monitoring, the idea of running multiple 
monitoring systems on independent VMs deployed on the same 
physical box is definitely appealing. By running software probes 
in virtualized environment network administrator can delegate 
certain tasks (i.e. performance management) to third persons, each 
having full access and control over specific virtual machines. 
VMs are often used for implementing monitoring on demand: 
namely activate monitoring facilities on specific network 
locations whenever certain network conditions happen (e.g. 
security alert). In addition, virtualization provides substantial 
deployment benefits in all the cases where multiple monitoring 
applications require access to the entire (or a subset of) the 
network traffic for performing different analysis tasks. By running 
heterogeneous monitoring software on the same box the 
complexity of deploying systems responsible to simultaneously 
dispatch the traffic towards multiple network analysis boxes can 
be completely avoided. 

Since traffic splitting or dispatching is usually implemented by 
deploying advanced hardware based multi-port network taps and 
management networks, virtualization in the context of network 
monitoring allows to substantially reduce the deployment costs of 
advanced multi-probe monitoring architectures. 

Unfortunately, running multiple monitoring systems in virtualized 
environments is desirable but not yet a common practice mostly 
due to the severe performance bottlenecks that virtualization 
introduces in application performing network monitoring. The 
most critical performance bottleneck introduced by virtualization 
when used for network monitoring is caused by the inefficient 
implementation of packet capture, which is the most important 
building block for most network monitoring applications. In fact, 
passive network monitoring systems strongly depends on packet 
capture, which is the process of accessing the stream of packets 
flowing on a network link. The packet stream is captured for 
performing several tasks, including network troubleshooting, 
traffic accounting, security breaches detection, and performance 
monitoring. Depending on the number of monitoring systems and 
on their nature, the same packet have to be captured several times. 
For instance an intrusion detection system (IDS) and a traffic 
accounting application might need the same packets for 
accomplishing their respective monitoring tasks. Depending on 
the criteria these systems use for classifying traffic [1], they might 
be interested in capturing all packets independently from their 
nature and content, or only a subset of packets that match specific 
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filtering rules (e.g. all UDP packets sent by server 192.168.1.1) 
usually specified using BPF filters [2] or hardware-assisted 
filtering rules supported by modern network adapters [21].  

The following figure shows the packet capture performance 
(packets are just captured and not processed) of a single VM 
running on a Kernel-based Virtual Machine (KVM) [3] while 
capturing packets using VirtIO-Net [4] on a quad-core Xeon 
system. 

 
Figure 1. Packet Capture Rate at 1Gbit using KVM 

Since packet capture performance under a KVM virtualized host 
is poor for small packets and acceptable only for medium/large 
packets, KVM virtual machines are not suitable for running 
network monitoring applications. 

In the past years, the authors have developed PF_RING [5] [45], a 
Linux kernel module implementing a framework that can be 
profitably used for simplifying the development of efficient 
monitoring applications requiring high speed packet capture. 
PF_RING substantially accelerates packet capture under the 
Linux operating system and for this reason is widely used on 
specific field such as for accelerating IDS/IPS and for passively 
monitoring network traffic using flow-based tools. Unfortunately, 
the framework does not provide packet capture acceleration under 
virtualized environments. In this work, we introduce virtual 
PF_RING (vPF_RING), an high performance packet capture 
solution optimized for virtualized environments that solves the 
performance bottlenecks present in KVM when used for 
deploying multiple monitoring applications on the same physical 
box. To improve the packet capture performance the authors 
capitalize on vNPlug, a novel framework that provides hypervisor 
bypass. 

The rest of the paper is structured as follows. In section 2, we 
discuss how networking has changed with the advent of virtual 
machines. In section 3, we cover the design of vNPlug a 
framework that implements support for hypervisor-bypass. In 
section 4, we describe how vNPlug has been successfully used to 
create vPF_RING, an extension of PF_RING for virtualized 
environments. Finally in section 5, vPF_RING performance is 
evaluated. 

2. RELATED WORK 
2.1 Networking in Virtual Machines 
Virtualization is appealing for the industry as it simplifies 
administrative tasks, while reducing costs and increasing 
scalability [29] [40]. In the past few years there have been many 
efforts to improve network performance on VMs [33] [34], both 
with hardware [37] and software solutions [36]. However, with 
the only exception of Endace, which offers the virtual DAG 

capture device (vDAG [18]), there are no other companies 
addressing the problem of using VMs for high-performance 
network monitoring but just for general network operations. A 
popular solution for bypassing the hypervisor during network 
operations is to map the network adapters directly inside the VM 
such as VMware VMDirectPath [31] [43]. We believe that this 
solution is sub-optimal for traffic monitoring because: 

• Each VM would need a physical network port, thus 
increasing: 

• Each VM would need a physical network port, thus 
increasing: 

o The operational costs due to the need of private per-
VM ports. 

o The number of monitoring ports. 

o The complexity required during live VM migration 
and reconfiguration, being each VM bound to a 
specific network port on which traffic to be analyzed 
is received. 

• If multiple VMs running on the same host need to analyze 
the same traffic with different goals (e.g. run a VM with 
an IDS and another VM with a NetFlow probe), it is 
necessary to use specialized hardware for duplicating the 
packets to be dispatched to each adapter. 

• As packet capture is a costly activity in terms of CPU 
cycles required, capturing the same packet multiple times 
on various VMs running on the same hosts is more 
expensive than capturing the packet once and dispatching 
it to multiple VMs especially when having high 
throughputs and small packets. 

• As hardware adapters are accessed directly by VMs, it is 
necessary to install native drivers into the guests, adding 
an extra constrain to live migration with respect to 
virtualized adapters. 

• Physical and virtual IRQ sharing, and device assignment 
dependencies [43] can jeopardize the performance of the 
system and make this solution effective only on 
specialized servers. 

Paravirtualization [19] has been the first attempt to reduce the 
overhead of emulating real network devices. By implementing 
paravirtualization, the guest operating system is aware of being 
virtualized, and cooperates with the hypervisor to virtualize the 
underlying hardware. In other words, the guest uses custom 
drivers that use a direct path for communicating with the 
hypervisor. Taking the example of VirtIO-Net [4], the 
paravirtualized network device in KVM, the burden on the 
hypervisor is reduced, and some optimizations, such as the 
VHost-Net support, attempt to reduce the number of system calls 
thus improving latency. Unfortunately the packet journey is not 
reduced as packets flow through virtual bridges and virtual TAP 
devices, and twice through the operating system. 

Recently, network equipments manufactures have introduced 
technologies for enhancing networking on virtualized 
environments. For example, some Intel server class network 
interface cards (NICs) implement the Intel VMDq (Virtual 
Machine Device Queues) technology [8]. To abstract the network 
device and share it across multiple VMs, the hypervisor has to 
implement a software network switch, which usually introduce 
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severe performance penalties. As shown in Figure 2, VMDq-
aware NICs implement all this in hardware thus preventing the in-
software switching overhead. By combining this technology with 
optimized paravirtualization techniques, it is possible to achieve 
high networking performance in VMs [9] [10]. Unfortunately 
packet capture cannot benefit from it, as VMDq basically 
partitions the NIC into several virtual NICs but it does not feature 
mechanisms for: 

• Accelerating packet capture. 

• Capturing packets from all virtual queues, rather than 
from just the one assigned to the VM. 

 
Figure 2. Intel VMDq Technology 

Along the path of VMDq, the Single Root I/O Virtualization 
technology [11] is a way of sharing a device in a virtualized 
environment, bypassing the hypervisor involvement in data 
movement. As depicted in Figure 3, with this technology a single 
Ethernet port can be configured by the hypervisor to appear as 
multiple independent devices, each one with its own configuration 
space. The hypervisor assigns each Virtual Function (VF, 
lightweight PCIe functions) to a VM, providing independent 
memory space and DMA streams. PCIe PF (Physical Functions) is 
the physical device seen by the hypervisor on the host. Memory 
address translation technologies based on IOMMUs [12] [13], 
such as Intel VT-d [14] and AMD IOMMU, provide hardware 
assisted techniques to allow direct DMA transfers bypassing the 
hypervisor, while keeping isolation between host and VMs [30].  

 
Figure 3. SR-IOV Technology 

There are several projects following the same approach of the SR-
IOV, with different designs of self-virtualized devices for direct 
I/O [15] [16] [17]. All these techniques represent good solutions 
for common connectivity but, besides efficiency, they do not 
provide assistance in accelerating packet capture. 

2.2 Packet Filtering 
The previous section has shown various alternatives to implement 
efficient networking inside VMs. With paravirtualization, packets 
pass through virtual bridges and virtual TAP devices if hardware 
support such as VMDq is not present. Using VMDq-aware 
network devices or self-virtualized devices [11] [15] [16] [17], 
packet filtering still happens in software as hardware filtering 
used by VMDq usually provides only MAC-address filtering and 
thus in-NIC bridging that is disabled when the NIC is set in 
promiscuous mode. The result is that both with/without VMDq, 
packet filtering has to happen in software as modern NICs do not 
provide assistance for filtering packets when used in virtualized 
environments. 

Early packet filtering is necessary to prevent packets from being 
discarded late in their journey to the VM, after that they have 
passed through several components. This is because filtering on 
guest OS means that the packet has already reached the VM and 
thus that in case of packet not satisfying any filter it would result 
in wasted CPU cycles.  

Another side effect of in-VM filtering, is that all received packets 
need to be copied to each VM, whereas in case of early filtering, 
just the packets matching the filters will be forwarded to VMs. 

For specific application domains such as lawful interception, 
filtering at the VM level represents a major performance issue. 
This is because network operators usually provide a shadow copy 
of all packets flowing through a link where several hundred users 
are connected, but only a small portion of them belong to users 
that need to be intercepted; the result is that most packets will be 
discarded except those belonging to the targets (i.e. those users 
that are being intercepted). This problem is even more visible if 
the same input traffic needs to be passed to various VMs, each 
performing a different type of analysis. For this reason early 
packet discard on the physical machine is very important as it 
avoid VMs to be over flood with packets that will be discarded 
later on. Lawful interception is a good example where the 
physical host receives all packets, and it both filters and 
dispatches to the VMs only those packets matching the individual 
filters set by each VM. 

A possible solution to the problem is to replace virtual bridges 
with virtual switches such as Open vSwitch [26] [27]. Open 
vSwitch implements standard Ethernet switching, while providing 
high flexibility with full control on the forwarding table by 
implementing a superset of the OpenFlow protocol [28]. 
However, as mentioned in [26], the problem is that these switches 
cause high CPU utilization when switching packets, so latency 
and overhead of the paravirtualization solutions increases. On the 
contrary, hardware based OpenFlow switches [42], can  
potentially offload the VMs from packet filtering. This approach 
allows the load on VMs introduced by packet filtering to be 
reduced [29] [41], but limits the flexibility offered by virtualized 
environments (e.g. the migration of VM across physical machines 
is compromised) and limits filtering to what is offered by the 
switches. 

In order to implement efficient VM filtering, it is necessary to 
discard packets in the physical machine as close as possible to the 
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physical NIC. This way, only packets matching the filtering rules 
will continue their journey to the VMs, whereas others will be 
dropped immediately as depicted in Figure 4. In a nutshell, early 
packet filtering in the context of network monitoring is a key 
requirement for achieving a high performance. 

Discarding packets on the physical machine leveraging on the 
PF_RING filtering support would be very useful in security when 
IDS (Intrusion Detection Systems) are used. We have developed a 
PF_RING module, part of the PF_RING code distribution,  for the 
popular snort IDS named PF_RING DAQ (Data AcQuisition 
library) [46]. This module is responsible for receiving packets 
from PF_RING and dispatching them to snort. For each packet, 
snort emits a verdict that can be drop/pass and also white/black-
list. In the latter case, it would be very desirable to have a snort 
instance running on a VM able to set filtering rules inside the 
PF_RING kernel module running on the physical host by means 
of this DAQ module. The advantage is that unwanted 
packets/flows are discarded by PF_RING and never hit the VM. 
This would be a great advantage of early packet discarding that 
we want to offer inside the vPF_RING framework. 

 
Figure 4. Early Packet Filtering 

2.3 PF_RING and Operating System Bypass 
PF_RING is a kernel-based extensible traffic analysis framework, 
that significantly improves the performance of packet capture. It 
reduces the journey of captured packets from wire to user-space, 
and features a flexible packet filtering system and an extensible 
plugin-based architecture for adding new functionality at runtime. 

PF_RING can use both vanilla Linux drivers and PF_RING-aware 
drivers. The main difference is that the latter can push captured 
packets directly to the PF_RING kernel module thus reducing the 
packet journey with respect to Linux native packet capture. 
PF_RING supports a rich set of packet filtering mechanisms that 
allow users to specify actions (e.g. dump a packet to disk), 
whenever incoming packets match the filtering rules. It also 
supports hardware filtering and packet steering capabilities when 
packet capture happens on modern network adapters, such as the 
Intel 82599 [21] and the Silicom PE210G2RS [22].  With those 
adapters packets are filtered inside the NIC without any assistance 
from the main CPU as it happen with software packet filtering. 
Hardware and software packet filtering, allow efficient 
applications processing packets directly inside the kernel to be 
easily implemented. Kernel based packet processing is more 
efficient than user-space packet processing as packets do not have 
to be copied from kernel to user-space in case they don’t match 
any configured filter. 

The PF_RING framework provides a user-space library that 
exposes an easy-to-use API for implementing monitoring 
applications. As depicted in Figure 5, through this library, ring 
buffers on which PF_RING is based, are directly mapped from 
kernel-space into user-space by using mmap(), reducing overheads 
and the number of data copies. 

When an application wants to read a new packet, the library 
checks the ring: 

• If there are new packets available, they get processed 
immediately. 

• When no packets are found, a poll() is called in order to 
wait for new packets. When the poll() returns, the library 
checks again the ring for new packets. 

 
Figure 5. PF_RING Architecture 

In order to reduce the number of poll() calls and thus a continuous 
poll()-wake up-poll() transition, the PF_RING kernel module 
implements a dynamic polling mechanism that can be configured 
by packet capture applications. The poll() system call returns 
when at least X packets are available, where X can range from 
one to several thousand, or when the call times out, usually this is 
set to 10 msec. This mechanism allows CPU cycles to be 
preserved for those applications that do not need to process packet 
immediately, but it also enables low-latency applications to be 
implemented setting X to one. 

As described above, the approach followed by PF_RING is to 
create a straight path for packets bypassing the operating system 
standard mechanisms by means of a memory-map from kernel-
space to the address space of the monitoring application. With this 
solution, system calls other than the poll() are completely avoided. 
The operating system bypass approach is adopted in many 
research projects [23] [24] as well as commercial products such as 
those manufactured by companies such as Endace and Napatech, 
most of all in areas requiring intense I/O activity, and where low 
latency and high bandwidth are vital. 

2.4 Hypervisor Bypass 
The hypervisor involvement in all the VM I/O accesses ensures 
isolation and system integrity, 4uti t also leads to longer latency 
and higher overhead compared to native I/O accesses in non-
virtualized environments, thus becoming a bottleneck for I/O 
intensive workloads.  

In this paper, we propose a model that extends the PF_RING’s 
operating system bypass approach to the context of virtual 
environments, thus creating a direct mapping between the host 
kernel-space and the guest user-space. This approach aims to 
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perform operations that require intensive workloads such as 
packet capture using a direct VM-to-physical host path, without 
the involvement of the hypervisor except during the setup phase. 
It is worth to note that as in native PF_RING, this does not mean 
that the hypervisor is completely bypassed in all operations, but 
just for those that are computationally expensive such as packet 
capture while it is still used for implementing packet polling. In 
this view, hypervisor overhead does not affect packet capture 
performance because this component is fully bypassed when 
packets are read from the PF_RING ring sitting on the host. 

 
Figure 6. Hypervisor Bypass 

The hypervisor-bypass approach is not a novel idea: self-
virtualized devices for direct I/O, such as SR-IOV [35] capable 
ones, are an example. There are also some studies in the context 
of High Performance Computing (HPC) [6] [7] that have 
demonstrated that the hypervisor-bypass method can represent a 
very good solution in order to remove bottlenecks in systems with 
high I/O demands, especially those equipped with modern low 
latency and high bandwidth network interconnects. 

3. vPF_RING DESIGN PRINCIPLES 
In this section, we present the design and implementation of 
Virtual PF_RING (vPF_RING), that is based on vNPlug, a 
framework implementing the hypervisor-bypass, also developed 
by the authors. Although the work presented on this paper 
addresses general issues that are not dependent on a specific 
virtualization framework, the authors focus only on KVM as it 
leverages Linux kernel capabilities, such as scheduling and 
memory management. KVM is a small and relatively simple 
software, present out-of-the-box on the majority of Linux 
distributions, contrary to other similar solutions such as Xen that 
is not integrated into the mainstream kernel. Proprietary solutions 
such as VMware [38], which is widely accepted in the industry, 
have not been taken into account due to their license restrictions 
and because of the source code not being open and available [20]. 

KVM implements a kernel-based virtual machine on top of the 
Linux kernel, and exploits a modified version of QEMU [25] for 
emulating I/O devices. Implemented as kernel module, KVM 
supports native code execution by exploiting hardware 
virtualization extensions such as Intel VT and AMD Secure 
Virtual Machine. Common tasks, such as scheduling and memory 
management, are delegated to the Linux kernel. VMs run as 
conventional user-space processes making Linux unaware of 
dealing with a virtual system.  

 

vPF_RING, described later in section 3.2, does not strictly depend 
on KVM but it mostly relies on PF_RING APIs. Instead, as 
described in the next section, the vNPlug framework has been 
designed on top of KVM for implementing the hypervisor-bypass 
approach (mapping memory, exchanging control messages, 
notifying events). Porting vNPlug to another hypervisor such as 
Xen, requires a complete code rewrite, contrary to the vPF_RING 
code that should not be  modified. 

3.1 vNPlug Framework 
The vNPlug framework exploits the hypervisor-bypass approach 
for achieving high packet capture performance in virtualized 
environments. It has been designed to be general enough for being 
used by every monitoring application and not just vPF_RING. For 
instance, the Linux native socket type PF_PACKET is quite 
similar to PF_RING as both use memory mapped buffers to 
exchange packets between kernel and user-space. Porting 
PF_PACKET on top of vPF_RING-vNPlug is thus just a matter of 
time as it does not seem to have any technical challenge being the 
two socket types pretty similar.  

The framework follows a paravirtualization-like design, guests are 
aware of being virtualized and consequently the architecture is 
logically split in a guest and an host side block.  
The framework is logically divided into two main components. 
The first component, vNPlug-Dev, is responsible for: 

• Mapping memory between the host kernel-space and the 
guest user-space. 

• Implementing an efficient event notification that is 
necessary for VM/Host communications. 

The second component, vNPlug-CTRL, is responsible for 
coordinating the host and guest side of applications by means of a 
control communication channel. The channel is required, for 
example, when an application needs to instrument its host-side 
back-end for filtering specific packets.  

As can be seen, applications built on top of the framework can 
access physical host resources that are usually not available in 
virtualized environments. In case of vPF_RING, applications 
executed under VMs can capture packets not only from VM’s 
network interfaces, but also from physical host interfaces. This 
feature can be offered by building vPF_RING on top of the 
vNPlug framework. 

vNPlug is implemented as a QEMU patch on the host side, and a 
Linux kernel module (vnplug.ko), based on both vNPlug-Dev and 
vNPlug-CTRL components, on the guest OS. 

3.1.1 vNPlug-Dev 
The original PF_RING maps kernel ring buffers to user-space via 
memory-map. vNPlug-Dev allows to further memory-map these 
virtual memory areas to virtual machines. The initial memory-
mapping happens through the hypervisor, whereas all packets are 
exchanged directly between the VM and the PF_RING sitting on 
the host without any hypervisor support. This mapping is 
performed dynamically attaching additional blocks of memory via 
virtual PCI devices whenever a vPF_RING is created. Inside the 
VM, these memory regions can be accessed by ioremap(), and 
mapped in virtual memory areas via the vnplug.ko kernel module 
that creates character devices that can be memory-mapped. Figure 
7 depicts the vNPlug-Dev architecture. 
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Figure 7. vNPlug-Dev Architecture 

vNPlug-Dev is dynamic by design as it allows dynamic memory-
mapping to take place by means of virtual PCI devices. Therefore, 
the number of rings is not limited as it happens, for instance, in 
BSD systems where packets are captured from a limited number 
of statically allocated capture devices (/dev/bpfX). 
The PCI hotplug support allows devices to be dynamically 
attached and removed from a running system. Even if hotplug is 
rarely used in practice, basic hotplug support is provided by the 
majority of modern operating systems, making hot-plugged 
devices immediately usable with limited effort. By exploiting the 
hotplug, it is possible to dynamically attach memory mappings to 
guests whenever necessary, making vPF_RING a very flexible 
system that does not have any limitation in terms of functionality 
and flexibility with respect to native PF_RING. 
The event signaling functionality of the framework takes 
advantage of the irqfd and ioeventfd supports of KVM in order to 
provide a two-way notification mechanism, from host-to-guest 
and from guest-to-host. Both of them are based on the eventfd file 
descriptor for event notification, that is quite powerful yet flexible 
as it can be used from both user-space and kernel-space in order to 
signal/wait events.  
Using the irqfd support it is possible to send interrupts to the VM 
without passing through the QEMU process, which is responsible 
to emulate the device on which interrupts are dispatched. In fact, 
since virtual interrupts are injected to the guest via KVM, the 
irqfd support allows the latter to directly translate a signal on an 
eventfd into an interrupt, thus ensuring efficiency. At the same 
time, the MSI (Message Signaled Interrupt) support ensures 
flexibility, by using multiple vectors that simplifies the 
notification mechanism when several events are required. On the 
guest side, the framework has been inspired by the eventfd 
approach that uses a blocking read() on a character device for 
notifying user-space applications that an interrupt has been 
received. 
ioeventfd is used to register arbitrary addresses of a MMIO 
(Memory-Mapped I/O) region belonging to a virtual device, along 
with a unique value and an eventfd. On the guest side, these 
MMIO regions are mapped in user-space. Whenever the guest OS 
writes a value to such MMIO region, if the written value matches 
the registered value, then an event is triggered on the 
corresponding eventfd. This mechanism is quite efficient as it 
allows a lightweight exit (long enough to signal an eventfd in 
kernel-space by means of a KVM service routine), while a normal 
I/O operation on an emulated virtual device requires a costly VM 
exit. 

3.1.2 vNPlug-CTRL 
The component implements a message based communication 

channel that allows control messages to be exchanged between the 
guest side of the monitoring application and its back-end. For 
instance it can be used by an application to request the back-end 
to setup a new memory-mapping, or to filter packets.  

The vNPlug-CTRL component has been introduced for having a 
control channel totally independent from network 
communications, and, as such, not susceptible to unintentional 
network configuration changes. 

As depicted in Figure 8, the vNPlug-CTRL component 
implementation is based on the VirtIO interface for 
paravirtualization that is efficient and ensures low response times, 
but required a little more effort at development time compared to 
a network communication implementation. The two-way 
communication channel over VirtIO uses two virtqueue’s, one for 
host-to-guest messages and one for the opposite direction. In order 
to send and receive messages from the guest user-space, the 
framework exposes common file operations (read and write) on a 
character device. 

 

Figure 8. vNPlug-CTRL Component 

Through this communication channel, the framework routes 
messages between the host-side and guest-side of applications. As 
multiple applications are supported, each with multiple virtual 
devices, the framework uses a minimal and yet efficient protocol 
stack, depicted in Figure 9. At the bottom of the stack, the VirtIO 
transport mechanism takes place, providing a two-way point-to-
point communication channel between the two sides of the 
framework: guest and host side. At the second layer, a framework-
level header allows the framework to distinguish between 
messages addressed to itself and those addressed to an application. 
At the third layer, an application-level header allows the 
framework to identify the application to which such message has 
to be delivered. From the fourth layer on, all is managed by the 
application, in order to identify internal operations and address 
virtual devices. 

 

Figure 9. vNPlug-CTRL Message Routing 
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3.1.3 vNPlug API 
In order to simplify the development of monitoring applications, 
the framework provides a simple API, that implements an 
abstraction layer on top of the implemented functions. 
Framework’s components get abstracted through two subsets of 
the interface: the host side API and the guest side API.  

The main features the interface provides: 

• Host Side 

o Registration and unregistration of the application 
back-end. 

o Control messages reception and transmission. 

o Virtual devices, for memory-mapping, creation and 
tear-down. 

• Guest Side 

o Control messages transmission and reception. 

o Shared memory-mapping and unmapping in the 
virtual address space of the application. 

o Event signaling/waiting functionalities. 

3.2 vPF_RING 
vPF_RING is an extension of PF_RING for virtualized 
environments built on top of vNPlug. The design of original 
PF_RING lent itself particularly well to be adapted to the vNPlug 
framework. In fact, on the host side, it only needed a few 
enhancements, keeping both the kernel module and the user-space 
library fully backward-compatible with the original version. As 
the PF_RING library uses memory-mapping for exporting the 
packet capture ring from kernel-space into user-space, the virtual 
memory address returned by mmap() can be used by the 
framework to map it into the guest. In a nutshell, PF_RING is 
responsible for making this memory area available to the guest 
user-space. 

 
Figure 10. vPF_RING Design 

The two-way event signaling support of the framework has been 
used for replacing the poll() calls used by PF_RING applications 
for being waken-up when new incoming packets are available. 
When an application on the guest-side has to read a new packet, 
but no packets are ready to be read, the library on the guest-side 
informs the host side. This way, the host-side knows that if there 
are unread packets, or when a new one arrives, it has to send an 
interrupt to the guest-side that is waiting for packets. Furthermore 

an algorithm similar to the adaptive sleep of the PF_RING native 
library is used, in order to avoid many poll-equivalent calls. 

A new and thin library has been created on the guest-side for: 

• Translating each call to the PF_RING library into control 
messages over the communication channel provided by 
the framework. 

• Memory-mapping and event signaling/waiting 
mechanisms just described. 

The vPF_RING back-end on the host-side, is also responsible of 
translating guest-to-host control messages into calls to the 
PF_RING library. It allows monitoring applications running on 
guests to: 

• Read packets from kernel via memory-map and not 
through read() system calls as it happens with VirtIO. 

• Access host network interfaces in addition to guest 
network interfaces. 

• Setup packet capture filters directory on the host 
PF_RING, thus implementing early packet filtering. 

• Seamlessly develop applications, that can run unchanged 
both on physical or virtualized environments, easing the 
move towards a virtualized monitoring environment. 

In a nutshell vPF_RING has been designed to be transparent to 
application developers, both in terms of features and packet 
capture speed. The only visible difference is the device name from 
which packets are captured. With native PF_RING it is possible to 
capture packets just from physical interfaces. Using vPF_RING, it 
is possible to capture packets from both the VM’s virtual Ethernet 
device, and the physical host interface. In the former case, 
vPF_RING operates as PF_RING when capturing packets from a 
host adapter (in this case from the VM virtual adapter). In the 
latter case, vPF_RING is not capturing from the VM’s interface 
but from the host’s physical interface. As vPF_RING’s API is 
unchanged with respect to PF_RING, a special device naming 
convention has been used in order to instruct the framework to 
capture packets from the host interface. This is because host 
interfaces are not visible to the VM via standard Linux commands 
such as ifconfig, and also because interface name present on both 
the VM and host might be the same (e.g. eth0). For this reason in 
vPF_RING the following naming convention has been used: 
interface names with a  “host:” prefix indicate host interface. For 
instance when a VM opens “eth0” it means that it wants to open 
the virtual VM eth0 interface; instead “host:eth0” means the eth0 
physical host interface. 

vPF_RING honors all PF_RING capture extensions. For instance 
applications can capture traffic from a specific RX queue of a 
multi-queue adapter when using PF_RING-aware driver [32], and 
specify filtering and packet steering rules in hardware on adapters 
such as Intel 82599 [21]. On one hand, these are interesting 
features to have as for instance a VM having to analyze HTTP 
traffic, can capture traffic on RX queue X on which it has 
configured a hardware filter that sends to such queue only HTTP 
packets. On the other hand, like most kernel bypass technologies 
(e.g. the same PF_RING), must be used properly as they 
circumvent some protection mechanisms, such as the insulation of 
the VM from host environment. 
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4. vPF_RING VALIDATION 
vPF_RING validation and performance evaluation tests have been 
performed on a simple test bed, where an IXIA 400 traffic 
generator has been used for sending packets to a server powered 
by an Intel Xeon X3440, running Linux kernel 2.6.36 and 
equipped with a dual Intel 82576 Gigabit Ethernet controller. The 
IXIA 400 traffic generator is connected to the server via the two 
gigabit ports, and can generate network traffic at configurable 
rates, including the wire-rate, on both port regardless of the packet 
size. For 10 Gigabit tests we have used a home-grown tool named 
pfsend with PF_RING DNA (Direct NIC Access) [47] for 
reproducing traffic at wire speed previously captured on a 
network backbone. This has allowed us to test vPF_RING under 
various conditions and with both synthetic and real network 
traffic. For the tests described later on this section, have been used 
forged packets in order to evaluate this work with different packet 
rates and sizes. 

The performance of vPF_RING has been compared with the 
performance of native PF_RING 4.6.x running on a physical (non 
virtualized) host and PF_RING running on a virtual KVM 
environment (using the VirtIO-Net support with the VHost-Net 
optimization). vPF_RING performance has also been 
positionedagainst VMware ESXi (using VMXNET 3, the latest 
version available of the VMware paravirtualized  network device). 
All the VMs used during the evaluation have a single-core virtual 
CPU and also run Linux kernel version 2.6.36. 

The device driver used on the server on the host-side is the igb, 
developed by Intel, which is included in the Linux kernel. It is 
worth to remark that, although PF_RING supports PF_RING-
aware optimized drivers to bypass the standard operating system’s 
mechanisms, we decided not to use them in order to evaluate our 
work on the worst case (i.e. without any packet capture 
acceleration exploiting specific network cards features). This is 
because we want to compare native VirtIO-Net agains 
vPF_RING, without accounting any vPF_RING performance 
benefit due to these optimized drivers. 

Before describing the evaluating results, it is important to 
understand how the packet size affects the benchmarks. This 
parameter is relevant because the maximum packet rate that can 
be injected on a link depends on the packet size. As shown in 
Table 1, at wire-rate, small packet sizes corresponds tohigher 
packet rates. The packet capture performance is affected by the 
packet rate, which can be as high as 1.4 Million of packets per 
seconds (Mpps) when the packet size is 64 bytes (minimum 
packet size) on Gigabit links, 14.880 Mpps on 10 Gigabit. 

Table 1. Maximum Packet Rates 

Line  
Speed  

Rates Per Frame Size (Kpps) 
64 

Byte 
128 
Byte 

256 
Byte 

512 
Byte 

1024 
Byte 

1 Gigabit 1488 844 452 234 119 

10 Gigabit 14880 8445 4528 2349 1197 

 

 

 

Another aspect worth to mention, is that with vPF_RING it is 
possible to use efficient packet filtering techniques within the host 
(in kernel-space or even in hardware), to further increase the 
performance. In fact, through the efficient communication channel 
provided by the vNPlug-CTRL component, vPF_RING is capable 
to instrument the PF_RING module for setting a variety of 
efficient filters. However, as we are interested in evaluating our 
work in the worst case scenario, packet filtering has not been 
used. 

Benchmarks have been done using pfcount, a simple packet 
capture application implemented on top of the PF_RING API. The 
application captures packets, updates some statistics, and then 
discards packets without doing any further processing. 

In the first test we evaluate the packet capture performance when 
a single instance of pfcount processes the traffic injected at wire 
rate with different packet sizes on a single Gigabit link.  

In Figure 11 we show that vPF_RING, similar to PF_RING on a 
native environment, is able to process packets at wire-rate 
(without packet loss), for every packet size, up to the maximum 
rate (1.488 Mpps per port). From the same figure we can observe 
that by using PF_RING in a virtual environment with the VirtIO-
Net support (i.e. without the assistance of our framework), it is 
possible to efficiently capture without packet loss only 
medium/large packets, when packet rates are not more than a few 
hundred Kpps. In fact, with small packets severe packet drops can 
be observed. Results are slightly better when using PF_RING on a 
VMware ESXi virtual environment, but we can still notice severe 
packet drops for high rates. 

 
Figure 11. Packet Capture Rate (1 Gbit) 

In addition to packet capture, we evaluate the percentage of CPU 
idle time as reported by the top command utility. In this way, we 
can have an indication of the free CPU cycles available for packet 
processing.  
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Figure 12 shows that vPF_RING can cope with high packet rates 
while keeping the CPU relatively idle, almost the same percentage 
as the native solution. Instead, with the VirtIO-Net support, there 
is an higher overhead even if fewer packets per second are 
processed. 

 
Figure 12. Idle CPU % During Capture On Host As Reported 

By top (1 Gbit) 

Figure 13 depicts the packet loss percentage that pfcount reports 
when using different capture mechanisms.  The result highlights 
that both vPF_RING and PF_RING allows packets to be captured 
without observing any packet loss for all packet sizes, including 
the minimum packet size corresponding to the highest packet rate 
(1.4 Mpps for 64 byte packets). On the contrary, when using 
VirtIO-Net, the packet loss percentage is significant (as high as 
90% in the case of 64 bytes packets), making it unsuitable for 
applications where 100% packet capture is required. A lower 
packet loss percentage can be observed when VMware ESXi is 
used; however also this solution cannot guarantee no packet loss. 

 
Figure 13. Packet Loss Percentage (1 Gbit) 

 

A second test has been performed to evaluate the performance 
when two instances of the pfcount application, running on the 
same VM, process the traffic injected on two different Gbit 
interfaces. 

Figure 14 shows the aggregated packet capture rate that is 
achieved by running the two pfcount instances. Both vPF_RING 
and PF_RING are able to process up to nearly two million packets 
per second without packet loss (with an average of one million per 
instance). When the packet rate on the wire increases further (with 
64-byte packets at wire-speed) both capture mechanisms lose 
packets. However native PF_RING processes about half a million 
more than vPF_RING. 

 
Figure 14. Total Captured Packets By Two pfcount Instances 

Running On The Same VM 

As the virtual machine where the two instances of pfcount have 
limited CPU resources, this result does not necessarily mean that 
vPF_RING offers a worse scalability than the native PF_RING. In 
fact, while the two instances of pfcount of the native solution can 
run concurrently on different cores of the same processor, we 
know that a virtual CPU, where the two application instances of 
the virtual solution are scheduled on, is itself scheduled as a 
normal thread by the host operating system. 

Regarding the virtual solution without the framework, using the 
VirtIO-Net support, performance are similar or even worse to the 
previous, with up to one hundred thousand packets per second 
processed by each application instance. The conclusion is that 
even with large packets, packet loss is pretty severe. 

Figure 15 depicts the percentage of CPU idle time, and it confirms 
that vPF_RING keeps the CPU relatively idle, even more that 
native PF_RING. This is because the native PF_RING is more 
efficient than the virtual version, thus it consumes packets more 
quickly hence calls poll() much more often that contributes to 
reduce the idle time. Instead the solution based on VirtIO-Net 
requires more CPU time even with a very low percentage of 
captured packets. 
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Figure 15. Idle CPU % When Two pfcount Instances Are 

Running On The Same VM 

Another test has been conducted for evaluating the performance 
of two instances of the application, each one processing one 
Gigabit of traffic on a different interface, but this time each 
running on a different VM. 

As shown in Figure 16, the total number of captured packets by 
both application instances has that same trend as in the previous 
test. The only difference is that in this case for 64-byte packets the 
capture rate of vPF_RING is basically the same of the native 
PF_RING. This, once again, confirms our hypothesis about 
scalability. In fact, in this case we have two virtual CPUs 
scheduled on the host, one for each VM, and on each virtual CPU 
an application instance is scheduled. 

The solution based on VirtIO-Net, this time, seems to scale for 
large packets but, at high rates, performance is similar to the one 
observed in the previous tests. 

 
Figure 16. Total Captured Packets By Two pfcount Instances 

Running On Different VMs 

 
Figure 17. Idle CPU % When Two pfcount Instances Are 

Running On Different VMs 

Figure 17 shows the percentage of CPU idle time. As one would 
guess, vPF_RING overhead is higher than the native PF_RING. 
The solution based on VirtIO-Net still requires many more CPU 
cycles, even if its packet capture performance is lower. 

Another series of tests has been performed in order to compare the 
packet capture performance offered by vPF_RING when 
capturing from a 10 Gigabit link, to the performance provided by 
the native PF_RING. pfsend on top of PF_RING DNA has been 
used to generate traffic at wire speed. An Intel 82599 based 
Gigabit Ethernet interface has been used as a capture device. The 
server used is still an Intel Xeon X3440 running Linux kernel 
2.6.36. The device driver used for these tests, on the host-side, is a 
PF_RING-aware version of the ixgbe, which is able to copy 
packets directly to PF_RING my means of Linux NAPI packet 
polling. 

In the first of these tests, we evaluated the performance with a 
single application instance. Figure 18 shows that vPF_RING is 
able to match the packet capture performance offered by the 
native PF_RING. 

 
Figure 18. Packet Capture Rate (10 Gigabit) 
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A second test has been performed to evaluate the scalability, with 
two instances of pfcount capturing packets from the same 
interface, balancing the traffic across applications by means of 
RSS (Receive-Side Scaling) queues. In the virtual case, each 
pfcount instance is running on a different VM. As shown in Figure 
19, also in this case, packet capture performance offered by 
vPF_RING is close to the one offered by the native PF_RING. 

 
Figure 19. Captured Packets By Each Of the Two pfcount 

Instances Running On Different VMs (10 Gigabit) 

In order to further evaluate the scalability, another test has been 
conducted with four instances of pfcount. As in the previous test, 
the pfcount instances capture packets from the same interface.  

As depicted in Figure 20, vPF_RING offers packet capture 
performance comparable to the one provided by the native 
PF_RING. 

 

Figure 20. Captured Packets By Each Of The Four pfcount 
Instances Running On Different VMs (10 Gigabit) 

In summary using vPF_RING has no performance penalty relative 
to native PF_RING (Figures 11,12). Relative to PF_RING in a 
VM: 

•  vPF_RING is more than an order of magnitude faster 
with respect to the performance achieved by vanilla KVM. 

This means that thanks to vPF_RING it is finally possible 
to effectively perform traffic monitoring inside KVM-
based VMs. 

• For all packet sizs, vPF_RING and PF_RING have 
comparable performance (Fig 14, 18). 

5. OPEN ISSUES AND FUTURE WORK 
The work described on this paper is an efficient and flexible 
solution to effective packet capture on VMs. Nevertheless there 
are a few areas where extra work is needed. 

The main issue is live VM migration, as the hypervisor does not 
have knowledge of the resources allocated by the applications. 
This is in contrast to traditional device virtualization approaches, 
where the hypervisor is involved and it can suspend all the 
operations when live migration starts. While developing the 
framework we mostly focused on achieving high packet capture 
performance and we did not consider additional virtualization 
features, such as live migration. In the future we plan to address 
the issue for further increasing the flexibility offered by our 
solution. 

Furthermore, it would be interesting to perform more detailed 
tests, look for further performance improvements, and evaluate 
the framework on VMs with multiple virtual CPUs investigating 
on scheduling and resource management. 

6. FINAL REMARKS 
In the past few years there have been many efforts to improve 
network performance on VMs, both with hardware and software 
solutions. However, none of the available solution addresses the 
problem of using VMs for high-performance network monitoring. 

This paper used a well-known approach named hypervisor-
bypass, which allows packets to follow a straight path from kernel 
to VMs, thus avoiding per-packet overhead due to the hypervisor 
and system calls. This mechanism has been successfully applied 
for implementing vPF_RING, a kernel-based extensible traffic 
analysis framework developed by the authors. The validation 
phase has confirmed that it can drastically improve packet capture 
performance, often achieving packet capture rates and CPU usage 
close to those that can be obtained on bare hardware. This 
reducing the dropped packet rate up to 90% on Gigabit links with 
respect to preexisting open source software solutions, 55% with 
respect to commercial solutions such as VMware (or even more 
on faster links). 

The outcome is that it is now possible to efficiently run multiple 
VMs on commodity hardware, each monitoring the same traffic 
for different purposes, without packet loss and with plenty of CPU 
cycles available for processing the captured traffic. 

7. CODE AVAILABILITY 
This work is distributed under the GNU GPL license and is 
available at the ntop home page 
http://www.ntop.org/products/pf_ring/vpf_ring/. 
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Reviewer #1 
Strengths: A software framework for hypervisor bypass to 
improve passive packet capture performance in virtualized 
environments. 

Weaknesses: Limited novelty of the system (hypervisor bypass 
has been proposed and implemented in other intensive I/O 
settings) 

Comments to Authors:  The vPF_RING framework proposed 
and evaluated by the authors is a nice, albeit unsurprising, 
adaptation of hypervisor bypass to improve passive network 
measurement performance. The work is valuable and likely to see 
wide use and adaptation in other hypervisors, e.g., VMWare, 
Hyper-V, and Xen. The specific technical contributions and 
evaluation, however, are somewhat limited and the paper would 
have perhaps been better formulated as a short submission. The 
writing (especially related work) is quite verbose and could have 
been substantially tightened. Indeed, I believe the paper would 
have been a stronger submission had it been a short paper.   

In Figure 17, there’s no explanation for the poor relative 
performance of vPF_RING for packet size of 128 B. 

 
Reviewer #2 
Strengths: The work is technically sound and well presented. 
 
Weaknesses: Given that the solution builds on the author’s 
previously existing tool to accomplish performance sensitive I/O 
tasks in virtualized environments, it’s not clear how to value the 
marginal contribution of this work.  It seems like the most 
performance benefit relative to native PF_RING is only realized 
when the average packet size is < 128 bytes - is this true?  Also,  
there are missing points that could have improved the evaluation. 
 
Comments to Authors: There was not a clear “X% better” 
statement in the paper.  Digging a bit, I think I have come up with 
the following candidates: if you agree, you should repeat them 
many times in the paper, likely both in the introduction and the 
conclusion: 
- relative to PF_RING, in a VM, vPF_RING reduces the dropped 
packet rate from x% to y% for packet rates above z PPS (1 
Gbps/128 byte packets?). For packet rates below z, vPF_RING 
and PF_RING have comparable performance (Fig 14) 
- using vPF_RING in native (non-VM) mode has no performance 
penalty relative to PF_RING (figs 11,12) 
 

As it stands, particularly from graph 14, it looks like there is no 
benefit to using vPF_RING if your average packet size is above 
128 bytes: is that really true?  If so, that definitely limits the 
utility of this work. 
 
I would have really liked to see a quantatitive comparison of your 
work against the more naive solutions in either VMWare or Xen.  
Particularly with closed source applications, quite often high-level 
algorithmic arguments about why solution X is better than Y (as 
you claim in the related work section) are not correct simply 
because the algorithms are trade secrets and not published. 
 
It’s a shame that you didn’t also compare against PF_RING 
optimized drivers.  It’s good to understand both the common and 
the worst case.  Given that PF_RING seems to preform 
comparable to vPF_RING for medium sized packets, it makes me 
wonder what the utility would be with an optimized driver. 
 
The focus on PF_RING as a base software-capture tool is a bit 
dated.  Please see the following paper (and its references) for 
more cutting edge software-capture technologies: Lothar Braun, 
Alexander Didebulidze, Nils Kammenhuber, Georg Carle, 
“Comparing and Improving Current Packet Capturing Solutions 
based on Commodity Hardware”, Proc. IMC 2010. 
 
How much work would it take to extend your work from 
PF_RING to PF_PACKET? Would vPF_RING need to be 
rewritten completely for each new capture architecture?   
 

Reviewer #3 
Strengths: Systems that use virtual machines are more common 
every day and we currently have no efficient way to do packet 
captures in these systems. The libraries designed in this paper 
should be useful in practice. 

Weaknesses: The writing mixes implementation details with 
design principles making it hard to understand the key ideas. The 
paper also lacks a clear motivation and set of use cases for this 
type of measurement. 

Comments to Authors: This paper presents the thorough design 
and evaluation of a framework to capture packets at high speeds 
on virtual machines. Given the prevalence of systems using 
virtualization, the concepts to make packet capture work on VMs 
introduced here are an important contribution to the community. 
In my view, the paper has two main contributions: (i) the design 
principles and (ii) the tool itself, which serves as a proof-of-
concept and works only for KVM. It is not clear from the paper 
whether the tool will be available to the community, but I assume 
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it is. The first contribution is not easy to get from the current 
version of the paper because of the presentation.  

There are two main changes that can help improve the 
presentation: 

1. The paper never clearly articulates the scenarios in which one 
would need to monitor packets in virtualized environments. Often 
when applications are running in different VMs it is because they 
need isolation, so the idea that one VM can tap another VM’s 
traffic is not conventional. It would be helpful to have examples 
of systems that need this kind of capability. Having clear use 
cases from the start can also help motivate and kind the 
evaluation. The evaluation section could be much more 
interesting if you had some case studies motivated by the use 
cases from your introduction. 

2. The discussion in Sec. 3 presents details first and the overall 
idea after. The functionality discussion that is currently in Sec. 
3.2 helps set the stage for why you need the APIs and functions 
described in Sec. 3.1. In general, this section goes into a lot of 
detail, but it doesn’t clearly separate the design principles. It 
would be helpful to have some conceptual discussion of the hooks 
you need in the kernel, the kinds of interrupts, memory-mapping, 
then you can discuss more specific implementation (anything that 
is specific to KVM and your implementation). In fact, it is OK to 
only implement the framework for one virtualization technique, 
but it is important to discuss which parts of the framework are 
specific for KVM and what is general.  

The paper would benefit from a careful proof reading.  

In Sec. 4, it is not clear where the traces are coming from. The 
first paragraph of Sec. 4 says that you capture traces with the 
Endace card on a network backbone (if this is the case, can you 
give some details on the traces? Dates of collection, length of the 
trace, the type of network it was collected, how many bytes in the 
trace). However, the results in this section seem to indicate that 
traces were generated synthetically with different packet sizes at 
fixed bandwidth. 

 

Reviewer #4  
Strengths: Timely, relevant work, impressive performance 
numbers. Very nicely written to put the work in context of other 
related work. 

Weaknesses: My major concern was whether PF_RING itself 
was widely adopted or used, and what the value of porting it to 
virtualized environments is. 

The evaluation was a bit too repetitive - I would have liked to see 
more results on (a) the effects of running multiple monitoring 
applications on different VMs and (b) the benefits of early packet 
capture. 

Comments to Authors: I really liked this paper - it addresses a 
timely problem with a well-engineered system implementation 
that has very good performance.  

I don’t really know how widely used PF_RING is, and what the 
merits of this exercise are in terms of practical deployments etc. 
Some numbers/statistics on how PF_RING is deployed would add 
to your motivation a lot. 

I liked Section 2 - the authors have done a nice job of putting their 
work in perspective of the various proposed optimizations in the 
literature (e.g., hypervisor bypass, dedicated NICs per VM etc).  

The figures were very helpful, but they dont seem to be referred 
to or explained in the text and I found them to be lacking in 
context at times; e.g., in Figure 3 what’s the difference between 
the PCIePF and PCI-e VFI?  

Sec 2.2 - the comment about lawful interception -- I dont 
understand this paragraph. 

Are you worried about accidental privacy leakage? 

Sec 2.3 - is the main difference between a modified hardware and 
a vanilla hardware the ability to offload filtering to the NIC?  

Figure 5 - can standard drivers not write to the PF_RING data 
structure, the text seems to suggest otherwise, but the figure is 
confusing me? 

 Section 3 - some examples of how different applications could 
“subscribe” to different subsets of traffic filters would be very 
helpful here. An end-to-end example of how a monitoring 
application can use vPFRing would be very useful here.  

Section 4 - the results are impressive, but I would have liked to 
see a bit more “breadth” in the experiments. Right now, you go 
deep into a single VM performance in the worst case, but what 
about running multiple applications, what’s the impact on say an 
application like Snort, how can packet filtering at early stage help 
etc?  

Section 5 - I don’t think I followed the concerns about live 
migration here.  Is this specific to vPF-Ring or any approach that 
does bypass or paravirtualization? 

Section 6 - “introduced a mechanism named hypervisor bypass” - 
didn’t you tell me that this was well known. 

Reviewer #5  
Strengths: The development of a highly accurate packet capture 
for virtual machines is important for using them in network 
measurements. This paper presents an important step toward 
reducing cost and improving coverage of traffic monitoring 
systems. 

Weaknesses: This new method builds on an existing PR_RING 
framework and provides little innovation for a full paper. The 
evaluations are limited to only one architecture and do not 
consider multiple virtual CPUs. 
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Comments to Authors: I find your work extremely interesting as 
it allows for using virtual machines to measure networks. This 
solution will then enable us to reduce deployment and 
management cost of a shared measurement platforms. However, 
the innovation in by-passing hypervisor was already considered  
in previous work, including [5]. The evaluation is also limited.  

Some detailed comments on the paper: 

The related work section (Section 2) is a bit too long and you 
have not used all the available space for the paper. There are 
spaces to present more validations to fully understand the 
limitations of the proposed solution. 

Section 4, the comparisons between vPF_RING and PF_RING 
show that vPF_RING performs almost as good as PF_RING, 
which is expected. However, comparisons with other packet 
capture techniques both on virtual machine and on real hardware 
are needed to understand the potentials and limitations of the 
techniques used in both vPF_RING and PF_RING. 

Response from the Authors 
 
- We have analyzed all reviewer’s comments and taken them into 
account. We have not found a single comment that was out of 
scope, thus all of them have been addressed in the  new paper 
version. The main changes include:	
- Positioned out work against other VMs (Xen) as well 
commercial VMs (VMware). We have also extended the figures 
so that we have depicted also the performance of VMware with 
respect to our work. 
- Clarify some statements that were not fully correct, or not easy 
to understand 
- Added some sentences about how difficult would be to port out 
work to other hypervisors. 
- Added a few examples where our work could be used, including 
(as requested) security and snort, a popular IDS/IPS. 
- Better described our statement about the use of VMs in lawful 
interception. 
- Explained some technical terms we used in the text but that are 
not very common. 
- Moved/rewritten some sentences to simplify the text. 
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